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Abstract
Chronic inflammation and nutritional imbalance are impor
tant comorbid conditions that correlate with poor clinical 
outcomes in children with chronic kidney disease (CKD). 
Nutritional disorders such as cachexia/protein energy 
wasting, obesity and growth retardation negatively 
impact the quality of life and disease progression in 
children with CKD. Inadequate nutrition has been asso
ciated with growth disturbances in children with CKD. On 
the other hand, over-nutrition and obesity are associated 
with poor outcomes in children with CKD. The exact 
mechanisms leading to these unfavorable conditions are 
not fully elucidated and are most likely multifactorial. In 
this review, we focus on the pathophysiology of nutrition 
disorders and inflammation and their impact on clinical 
outcomes in children with CKD. 
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Core tip: Nutritional imbalances, such as protein energy 
wasting, cachexia, obesity and growth retardation, have 
been associated with poor clinical outcomes in children 
with chronic kidney disease (CKD). Chronic inflamma
tion may lead to further deterioration of nutritional 
imbalance in advanced CKD patients. Results of recent 
studies have increased awareness of the importance 
of chronic inflammation and nutritional imbalance in 
children with CKD. 
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NUTRITION IMBALANCE IN CHRONIC 
KIDNEY DISEASE
Nutritional imbalance is prevalent in children with 
chronic kidney disease (CKD) and may influence clinical 
outcomes. Wasting, defined as low weight proportion 
to height, is the consequence of inadequate nutrition 
intake, and highly prevalent in children with CKD. 
The term cachexia or wasting syndrome has been 
defined as the pathological combination of a dramatic 
decrease in appetite and increase in the metabolism of 
fat and lean body mass[1]. The International Society of 
Renal Nutrition and Metabolism expert panel defined 
the term protein energy wasting (PEW) as a state of 
decreased body stores of protein and energy fuels (body 
protein and fat masses)[2]. PEW/cachexia, a complex 
condition of metabolic and nutritional derangement, 
has been associated with not only malnutrition, but also 
maladaptive responses, such as anorexia, increased 
metabolic rate, decreased protein store, reduced body 
weight and muscle mass. PEW/cachexia cannot be 
reversed nutritionally. In contrast to PEW/cachexia, 
malnutrition is the consequence of insufficiency of 
energy intake and is accompanied by adaptive re­
sponses, including hunger, a protective decrease in 
energy expenditure, preferential use of fat stores for 
energy and preservation of lean body mass. Nutrition 
supplementation cannot reverse nutritional deficiency 
in malnourished patients. Thus, PEW/cachexia and 
malnutrition are not identical. In addition to PEW/
cachexia, two common features of nutritional imbalance 
in children with CKD are obesity and growth failure[3-7]. 
This review focuses on these nutrition disorders and 
the pathophysiological role of chronic inflammation in 
children with CKD.

PEW and cachexia in CKD
PEW and cachexia is highly prevalent in CKD patients. 
PEW was evident in 20% to 75% adult dialysis 
patients. Studies of CKD in children (CKiD), a multi-
center prospective cohort study of children aged 1 
to 16 in United States, revealed the prevalence of 
PEW estimates ranged from 6% to 65%. The wide 
range of prevalence of PEW in this cohort is likely due 
to difference in diagnostic criteria[5]. To better define 
PEW in children with CKD, we evaluated prevalence of 
PEW using different diagnostic criteria. The incidence 
of PEW in CKiD ranged from 7% to 20% by applying 
3 different diagnostic criteria, namely, a minimal, a 
standard and a modified PEW definition (Figure 1). 
Our results suggested that only the modified PEW 
diagnostic criteria, which included growth retardation 
as a criterion, showed modest significance. Our modi­
fied PEW diagnostic criteria for children with CKD 
is defined as the standard ≥ 3 of the 4 criteria as 
described in adults PEW (biochemical parameters, body 
and muscle mass assessments and anorexia) with 
the additional incorporation of growth retardation as 

a diagnostic criteria. The etiology of CKD-associated 
PEW is complex. Common risk factors for PEW in 
CKD, such as poor nutrition, systemic inflammation, 
endocrine disorder, comorbid condition, fluid overload 
and metabolic acidosis have been listed (Figure 2)[1,3,5]. 
Of the many complications of CKD-associated PEW/
cachexia, CKD patients are prone to muscle weakness 
and as a result, have difficulties performing their daily 
routine of activities. Other systemic consequences of 
PEW in children with CKD comprise increased risk of 
cardiovascular disease, infection, depression, prolonged 
hospitalization and mortality, and growth retardation[3,5]. 
The incidence rates of hospitalization were almost 2-fold 
higher for CKD children with PEW[3]. Mortality rate in 
patients with CKD is 100-200 times higher than the 
general population[8] and represents a major burden to 
health systems. Importantly, high mortality in patients 
with CKD has been associated with components of risk 
factor of PEW/cachexia as listed in Figure 2. 

Obesity 
Anorexia is prevalent and has contributed to the nutri­
tional imbalance and growth failure in children with 
CKD[5]. Ironically, another nutritional disorder - over-
nutrition and obesity, is also prevalent in children 
with CKD[9,10]. Prevalence of overweight or obesity 
(34%) exceeds the prevalence of PEW in CKiD cohort. 
Prevalence of overweight or obesity in children with 
glomerular and non-glomerular CKD was 46% and 
32%, respectively[11]. In a large cohort of European 
pediatric renal replacement therapy (RRT) population, 
the prevalence of overweight and obesity far exceeded 
the prevalence of underweight (20.8%, 12.5% vs 3.5%, 
respectively)[12]. There was a significant increase in body 
mass index (BMI) after the initiation of RRT in this study 
cohort. Short stature and glucocorticoid treatment were 
further associated with an increased risk of overweight 
and obesity in this transplanted population. Other 
risk factors strongly associated with increased BMI in 
patients with RRT were lower initial BMI and higher age 
at the initiation of RRT, longer duration of dialysis as well 
as a longer time with a functioning graft[12]. 

The obesity paradox or reverse epidemiology is a 
controversial hypothesis[13]. It proposes that obesity 
may, contrary to conventional wisdom, be related to 
decreased morbidity and mortality in some populations. 
This hypothesis has been reported in patients with 
heart failure, myocardial infarction, and acute coronary 
syndrome[13,14]. Nevertheless, it was not consistently 
supported by data in end-stage renal disease (ESRD) 
patients. Indeed, initial analysis of epidemiologic studies 
have shown a strong survival advantage of obesity 
in dialysis patients with the primary outcomes of all-
cause and cardiovascular mortality[14]; and low BMI 
values are associated with increased mortality rate. 
However, there is a fundamental flaw in the study 
design as those investigators compared short-term 
mortality rate in dialysis patients vs long-term mortality 
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rate in the general population. No evidence of reverse 
epidemiology of BMI and survival advantage was found 
in dialysis patients when both patients and general 
population were analyzed with the same time frame for 
outcomes, even with multivariable adjustments for age 
and race[15]. More recently, association of BMI values 
with all-cause of mortality rate and disease progression 

was analyzed in a large cohort of adult predialysis CKD 
patients. BMI showed a U-shaped relationship with 
clinical outcomes, with the best outcomes observed in 
overweight and mildly obese patients[16]. Similar findings 
were observed in children with ESRD, the showing of a 
U-shaped relationship between BMI values and the risk 
of all-cause mortality rate (Figure 3). Higher mortality 
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Figure 1  The prevalence of indicators of protein-energy wasting used to form the three definitions. PEW: Protein energy wasting; CKD: Chronic kidney 
disease; CRP: C-reactive protein.
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Figure 2  Schematic representation of the causes and manifestations of the protein-energy wasting syndrome in chronic kidney disease. CKD: Chronic 
kidney disease; GH: Growth hormone; IGF: Insulin-like growth factor; PTH: Parathyroid hormone; BMI: Body mass index; PEW: Protein-energy wasting; CRP: C-reactive 
protein.
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The etiology of poor growth in CKD is multifactorial 
and can be associated with poor nutritional status as 
well as other comorbidities such as metabolic acidosis, 
anemia, bone and mineral disorders, genetic factors 
and perturbations in growth hormone (GH) and insulin-
like growth factor (IGF)-Ⅰ axis signaling pathways. 
Data from NAPRTCS showed that the greatest height 
deficits were observed in youngest CKD patients prior to 
entering RRT programs. After renal transplantation, the 
greatest height improvement was observed for those 
youngest patients with the greatest height deficits prior 
to their RRT[9]. Growth retardation is associated with 
poor clinical outcomes in children with ESRD. Five year 
mortality rate for children on hemodialysis with severe 
growth failure, moderate growth failure and normal 
growth was 16.2%, 11.5% and 5.6%, respectively. 
Moreover, higher hospitalization rate was observed in 
ESRD children with severe and moderate growth failure 
relative to those with normal growth[27]. 

IMPACT OF INFLAMMATION ON 
NUTRITIONAL DISORDER IN CHILDREN 
WITH CKD
Levels of serum inflammatory markers such as C-reactive 
protein (CRP), IL-6 and TNF-α were elevated in CKD 
patients[28]. The etiology of CKD-associated inflammation 
is multifactorial. Important factors include decreased 
glomerular filtration rate, underlying disorders and other 
complications of CKD[29].

PEW/cachexia
Chronic inflammation is important for the pathogenesis 
of PEW/cachexia in patients with CKD through various 

rate was observed in obese children relative to non-
obese children with CKD after renal transplantation 
(27% vs 17%, respectively)[17]. Furthermore, childhood 
and adolescent obesity have negative impacts on the 
cardiovascular health. Obesity in adolescence was pos­
itively associated with death rate in future decades[18]. 
Obesity per se is a strong and independent risk factor 
for the progression of CKD. Obesity hastens the 
deterioration of renal function among patients with 
IgA nephropathy and unilateral renal agenesis[19-21]. 
In another study, progression of CKD is increased by 
1.23 fold for each standard deviation increment of BMI 
values[22].

Growth failure
Poor nutrition contributes to the high prevalence of 
growth retardation in children with CKD but growth 
retardation may still persist despite improvement of 
nutritional status in this population. Recent data from 
International Pediatric Peritoneal Dialysis Network 
registry suggested that enteral feeding by nasogastric 
or gastrostomy tube improved nutritional status, as 
indicated by an increment of BMI values in pediatric 
patients with stage 5 CKD. Nevertheless, nutritional 
supplementation did not attenuate growth failure in 
this population[23]. Growth failure has been associated 
with poor clinical outcomes of increased morbidity and 
mortality rate in children with CKD. About one third of 
children enrolled in the North American Pediatric Renal 
Trials and Collaborative Studies (NAPRTCS) registry in 
2005 had severe short status[24]. Similar findings were 
observed in a recent report from the same registry in 
2011[25]. Prevalence of growth retardation was 29.3% 
for children enrolled in the Serbian Pediatric Registry of 
CKD[26]. 
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mechanisms including leptin and melanocortin signaling 
modulation, inflammatory cytokines and nuclear factor 
kappa B (NFκB) signaling.

Aberrant leptin/melanocortin signaling and PEW/
cachexia in CKD
Leptin is an anorexigenic hormone. Leptin is mainly 
secreted by adipose tissues and modulates energy 
homeostasis through melanocortin signaling. Leptin 
signaling in the hypothalamus nuclei is enabled by 
inhibiting neuropeptide Y (NPY) and agouti related 
peptide (AgRP) neurons and by stimulating pro-
opiomelanocortin neurons, which in turn activates the 
release of α-melanocyte-stimulating hormone and 
stimulates the type 4 melanocortin receptor signaling 
(MC4R)[30,31]. Transgenic mice over-expressing leptin 
had reduced energy consumption relative to controls[32]. 
Leptin is degraded from the circulation in the renal 
tubules. Serum levels of leptin were elevated in CKD 
patients with the decline in renal glomerular filtration 
function[33,34]. We have shown that leptin/melanocortin 
signaling is an important mechanism underlying CKD-
associated cachexia. Transgenic mice with deletion of 
leptin receptor (db/db) and MC4-R knockout attenu­
ated aberrant metabolic effects of CKD-associated 
cachexia[35]. Administration of AgRP, a natural MC4R 
antagonist, normalized food intake, total weight gain, 
improved lean mass content as well as basal metabolic 
rate in CKD mice relative to control mice[36]. We also 
evaluated the effects of leptin receptor antagonism in 
CKD mice. Administration of pegylated leptin receptor 
antagonist (PLA) attenuated food intake, weight gain, 
improved lean mass and in vivo muscle function as 
well as normalized basal metabolic rate in mice with 
CKD. In addition, the administration of PLA significantly 
decreased expression of uncoupling proteins and cor­
rected aberrant muscle mass signaling pathway as well 
as normalized muscle protein levels of IL-1α, IL-1β, 
IL-6, and TNF-α in CKD mice[37]. Thus, inhibition of the 
leptin/melanocortin signal pathway may represent a 
novel therapeutic approach for CKD-associated cachexia. 
Elevated serum levels of leptin were associated with 
higher prevalence of PEW/cachexia in patients. Mal­
nourished patients had higher serum levels of leptin than 
those without malnutrition[38]. Increases in serum leptin 
levels have been associated with inflammation and a 
decrease in lean mass content in dialysis patients[39]. 

Pro-inflammatory cytokine and PEW/cachexia in CKD
Increased levels of serum inflammatory cytokines were 
associated with poor clinical outcomes in patients with 
CKD[40]. Loss of kidney function, uremia and dialysis 
treatment per se are important causes of inflammation 
in this population. In addition, gene polymorphisms of 
inflammatory cytokines have been implicated in CKD 
patients[41]. Polymorphisms of TNF-α  gene predisposed 
malnutrition and inflammation in patients with ESRD[42]. 
Robust evidence supports a direct pathologic role of 

IL-1α, IL-6, and TNF-α in the development of PEW. 
Muscle wasting is a cardinal feature of CKD. Elevation 
of pro-inflammatory cytokines stimulates muscle 
catabolism. In animal models of CKD, IL-1, IL-6 and 
TNF-α stimulate inflammation in animal models of CKD. 
Increased serum levels of IL-6 correlated with increased 
muscle catabolism while the antagonist of IL-6 receptor 
attenuated CKD-associated muscle wasting[43].

PI3K-Akt signal transduction pathway mediates 
muscle metabolism in response to various extracellular 
signals. Aberrant PI3K/Akt pathway has been implicated 
in the etiology of muscle wasting. In skeletal muscle, 
Akt signaling mediates muscle fast/glycolytic fiber 
metabolism and muscle atrophy in CKD is associated 
with reduced Akt signaling in skeletal muscle tissue. 
In a mouse model of CKD, reduced Akt signaling was 
associated with skeletal muscle wasting. In contrast, 
skeletal muscle-specific Akt1 transgenic mice promoted 
skeletal muscle growth[44]. Akt1 transgenic mice at­
tenuated renal fibrosis, apoptosis, and inflammation 
in unilateral ureteral obstruction-induced CKD mice. 
Importantly, maintenance of muscle mass is associated 
with favorable clinical outcomes while muscle wasting is 
related to deterioration of renal function in patients with 
CKD[45].

Pro-inflammatory cytokines signal through the 
central nervous system and induce anorexia[46]. A meta-
analysis of 22 studies with 924 participants (anorexia 
nervosa = 512, health controls = 412) has shown that 
compared to controls, the serum level of TNF-α, IL-1β, 
IL-6 and TNF-receptor-Ⅱ were elevated in anorexia 
nervosa[47]. An animal study demonstrated that ano­
rectic effects were observed following acute adminis­
tration of exogenous TNF-α and IL-1β to mice[48]. 
Cytokines regulates energy expenditure. Infusion of 
IL-1 increased resting energy expenditure in rats and 
administration of recombinant TNF-α increased energy 
expenditures in patients with disseminated cancer[49,50].

NFκB pathway and PEW/cachexia in CKD
Activation of intracellular NFκB system has been 
correlated with PEW/cachexia in CKD[51]. Several recent 
articles provide comprehensive reviews for the NFκB 
family of transcription factors and its regulation[52]. 
Cytokines induce muscle wasting via activation of NFκB 
while blockade of NFκB signaling attenuates muscle 
atrophy. Denervation-induced muscle atrophy was 
significantly improved in muscle specific IKK knockout 
mice[53]. What are the underlying mechanisms by 
which activation of NFκB induce significant muscle 
atrophy? First, ubiquitin-proteasome system (UPS) 
promoted muscle protein degradation and activation 
of NFκB stimulated expression of protein levels of 
several components of UPS. Second, NFκB increased 
the expression of several NFκB-regulated molecules, 
especially pro-inflammatory cytokines. This positive 
feedback loop resulted in the over-stimulation of NFκB 
and the subsequent muscle atrophy. Third, NFκB 
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suppressed myogenic differentiation likely through the 
activation of transcription factor YY1[54]. And fourth, 
NFκB may suppress energy intake likely through the sup­
pression of NPY. Phenylpropanolamin (PPA), a synthetic 
sympathomimetic amine, suppressed food intake likely 
via the signaling of hypothalamic NPY. Cerebral NFκB 
knockdown attenuated the anorexic effects in PPA-
treated rats by decreasing the expression of NPY and 
antioxidants[55]. 

Obesity
Adipose tissue is an important energy reservoir and an 
active metabolic organ secreting numerous hormones. 
The adipokines are cell signaling proteins secreted by 
adipose tissue, including leptin, adiponectin, IL-6, TNF-α, 
and monocyte chemotactic protein-1[56]. Adipose tissue 
is an important source of inflammation in CKD patients. 
Adipokines mediate inflammation and accelerate the 
progression of vascular disease in patients with CKD[57]. 
Chronic inflammation may accelerate the progression of 
renal dysfunction in CKD patients. Elevated expression 
of adipokines was associated with increased numbers 
of infiltrated immunocompetent cells in adipose tissue 

in obese CKD patients[58]. Elevated serum inflammatory 
markers such as IL-6, TNF-α and CRP are correlated 
with thickness of carotid intima media and associated 
with high mortality rate in CKD patients. Increased 
expression of inflammatory cytokines in adipose tissue 
may accelerate atherosclerosis and induce deterioration 
of renal function in obese CKD patients[9,59].

Growth failure
Perturbation in the GH/IGF-Ⅰ axis is an important cause 
of growth failure in CKD children. GH/IGF-Ⅰ mediated 
postnatal growth, body composition and renal function. 
GH binds to its receptor (GHR) and subsequently 
regulates the expression of GH-regulated genes, 
including the IGF-Ⅰ gene. GH insensitivity is commonly 
observed in growth retarded CKD children, as serum 
levels of GH were normal or even elevated in this 
population. Pharmacological or endogenous GH treat­
ments have diminished growth-promoting effects in 
children with CKD. CKD caused a post-receptor defect 
in GH pathway via the JAK/STAT signaling which in 
turn, resulted in reduced expression of IGF-Ⅰ[60]. GH 
induces the expression of suppressors of cytokine 
signaling (SOCS) via the JAK-STAT signaling pathway. 
SOCS proteins, in turn, inactivates GHR/JAK2 complex, 
thus establishing a feedback loop for GH activity. CKD-
induced GH insensitivity was mediated by activation of 
GH-JAK2 via STAT transduction and the overexpression 
of SOCS proteins[61]. 

IGF-Ⅰ stimulates longitudinal growth at the 
growth plate. Circulating IGF-Ⅰ complex constitutes 
of IGF-Ⅰ, IGF binding protein (IGFBP) and acid labile 
subunit. Decline in renal function in CKD patients is 
associated with elevated serum IGFBP1 levels and the 
concomitant diminished IGF-Ⅰ bioactivity. Increased 

IGFBPs levels have been associated with decreased 
longitudinal growth in CKD children. A recent study 
further exploited the underlying mechanism of CKD-
induced GH insensitivity. In CKD rats with acute 
inflammation, endotoxin aggregates GH resistance 
and reduced IGF-Ⅰ gene expression, and this effect is 
related to the increased production of pro-inflammatory 
cytokines[62,63]. 

IMPACT OF MATERNAL NUTRITION 
Maternal malnutrition negatively influences the fetal and 
early life development. This critical period of pre- and 
early postnatal development exerts long-term effects 
on body weight and growth. An inadequate or excess 
maternal nutritional environment may activate multiple 
fetal responses which persist postnatally and have been 
correlated with the development of chronic diseases, 
including CKD and nutritional disorders[64]. Low birth 
weight (LBW) was associated with impaired renal 
reserve (a reduction in the number of nephrons) and 
structure per se (smaller renal size)[65-67]. Results from 
animal studies strongly support the notion that maternal 
malnutrition caused intrauterine growth retardation and 
a nephron deficit[66]. LBW was correlated with increased 
prevalence of early-onset CKD. The odds ratio for ESRD 
was 1.4 in adults who were born underweight[68]. LBW 
was correlated with deterioration of renal function in 
CKD patients[69]. Low nephron numbers was a risk factor 
for hypertension, likely due to the effect of compen­
satory hypertrophy in the setting of a low nephron 
number. 

Intrauterine and early-life environment substantially 
impact the development of obesity in childhood and in 
adulthood. Animal and human studies suggested that 
an adverse in utero environment such as intrauterine 
growth restriction (IUGR) was closely associated 
with postnatal development of obesity. Studies also 
showed that IUGR fetuses exhibited increased body 
fat accumulation, reduced serum levels of leptin and 
aberrant epigenomic properties, which subsequently 
promoted obesity in adult life. Food restriction during 
rat pregnancy produced hypoglycemic IUGR pups. 
Subsequently, for those IUGR pups permitted rapid 
catch-up growth, they exhibited aberrant metabolic 
responses including hypertriglyceridemia and adult 
obesity with insulin-resistance. The concept of develop­
mental origins of health and disease has been generally 
recognized. Infants born to obese, overweight, and 
diabetic mothers as well as infants born to malnourished 
mothers are associated with a higher risk of chronic 
illnesses in adult life. High birth weight enhances the risk 
of developing obesity and CKD in adult life[64]. On the 
other hand, LBW accompanied by an accelerated catch-
up growth has also correlated with an increased risk 
of obesity and CKD in adulthood. In an observational 
study, LBW and small gestational age in infants were 
associated with poor growth outcomes in children with 
mild to moderate CKD[70].

279WJN|www.wjgnet.com May 6, 2016|Volume 5|Issue 3|

Tu J et al . Inflammation and nutrition in pediatric CKD



CONCLUSION
Nutritional disorders, including PEW, cachexia, obesity 
and growth failure, have major impacts on clinical 
outcomes in children with CKD. Chronic inflammation is 
important for the pathogenesis of nutritional disorders 
in CKD. Increased awareness of nutritional status is 
needed for CKD children. Further research into the 
pathophysiology may yield novel therapies for CKD-
associated nutritional disorders.
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