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Abstract
AIM 
To determine the effect of tempol in normal rats fed 
high salt on arterial pressure and the balance between 
antagonist components of the renal renin-angiotensin 
system.

METHODS
Sprague-Dawley rats were fed with 8% NaCl high-
salt (HS) or 0.4% NaCl (normal-salt, NS) diet for 3 wk, 
with or without tempol (T) (1 mmol/L, administered in 
drinking water). Mean arterial pressure (MAP), glomerular 
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filtration rate (GFR), and urinary sodium excretion (UVNa) 
were measured. We evaluated angiotensin Ⅱ (Ang Ⅱ), 
angiotensin 1-7 (Ang 1-7), angiotensin converting enzyme 
2 (ACE2), mas receptor (MasR), angiotensin type 1 
receptor (AT1R) and angiotensin type 2 receptor (AT2R) 
in renal tissues by immunohistochemistry.

RESULTS
The intake of high sodium produced a slight but significant 
increase in MAP and differentially regulated components 
of the renal renin-angiotensin system (RAS). This 
included an increase in Ang Ⅱ and AT1R, and decrease 
in ACE-2 staining intensity using immunohistochemistry. 
Antioxidant supplementation with tempol increased 
natriuresis and GFR, prevented changes in blood pressure 
and reversed the imbalance of renal RAS components. 
This includes a decrease in Ang Ⅱ and AT1R, as increase 
in AT2, ACE2, Ang (1-7) and MasR staining intensity using 
immunohistochemistry. In addition, the natriuretic effects 
of tempol were observed in NS-T group, which showed an 
increased staining intensity of AT2, ACE2, Ang (1-7) and 
MasR.

CONCLUSION
These findings suggest that a high salt diet leads to 
changes in the homeostasis and balance between 
opposing components of the renal RAS in hypertension 
to favour an increase in Ang Ⅱ. Chronic antioxidant 
supplementation can modulate the balance between the 
natriuretic and antinatriuretic components of the renal 
RAS.

Key words: Kidney; Angiotensin Ⅱ; Tempol; Angiotensin 
1-7; High sodium diet
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Core tip: This study explored the effect of tempol on 
arterial pressure and the balance between antagonist 
components of the renal renin-angiotensin system in rats 
fed high salt for 3 wk. A high salt diet altered the balance 
between opposing components of renal renin-angiotensin 
system (RAS), favouring the angiotensin Ⅱ arm. Tempol 
supplementation improves the balance between the 
natriuretic and antinatriuretic components of the renal 
RAS.
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INTRODUCTION
Several studies have shown that the current dietary 

intake of salt in Western societies is an important factor 
for the genesis of hypertension and may even cause 
blood pressure-independent target organ damage, 
including the kidney[1,2]. It is well known that a high 
salt intake increases the oxidative stress in the kidney 
of normal and salt-sensitive rats[3-5]. In this regard, 
we have reported that the administration of tempol 
(4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), a 
permeate superoxide dismutase mimetic[6] commonly 
used to scavenge superoxide anion, prevented oxidative 
stress and produced a natriuretic and diuretic effect in 
Sprague Dawley rats fed a high salt diet[7].

The renin-angiotensin system (RAS) essentially 
controls the sodium homeostasis and blood pressure[8]. 
Furthermore, a local RAS that is expressed in the 
kidneys and operate independently of the systemic 
RAS, may also contribute to long-term blood pressure 
control and cause renal injury when it is associated 
with a high salt diet[7,9-11]. Angiotensin Ⅱ (Ang Ⅱ), 
the main effector of RAS, acts through two receptor 
subtypes named angiotensin Ⅱ type-1 receptor (AT1R) 
and type-2 receptor (AT2R). It is well known that the 
triad angiotensin Ⅰ converting enzyme (ACE)/Ang Ⅱ
/AT1R is closely involved in signaling pathways that 
mediate vasoconstriction, antinatriuresis, release of 
cytokines and accumulation of inflammatory cells in 
the kidney, all factors which together tend to increase 
blood pressure[12,13]. On the other hand, activation of 
AT2R is associated with vasodilatation, apoptosis, anti-
proliferation and natriuresis, which contribute to lower 
blood pressure[14]. Therefore, AT2R is considered a 
physiological antagonist of AT1R. The discovery of the 
Ang Ⅱ breakdown enzyme, angiotensin Ⅰ converting 
enzyme 2 (ACE2) in addition to ACE, enhanced the 
complexity and understanding of generation and 
degradation of Ang Ⅱ in hypertension[15,16]. ACE2 leads 
to generation of Ang-(1-7) that stimulates Mas receptor 
(MasR), antagonizing AT1R-mediated effects, and 
favouring vasodilatation, natriuresis, anti-fibrogenic and 
anti-proliferative actions[17,18]. Hyper-activation of the 
RAS, mainly via enhanced AT1R function, contributes 
to excessive sodium reabsorption in the kidney, like in 
salt-sensitive hypertension[19]. There is evidence that 
AT1R activation decreases ACE2 activity and Ang-(1-7) 
production[16]. These findings suggest the presence of 
an imbalance between opposing components of the 
renal RAS, namely the hypertensive axis, ACE-Ang 
Ⅱ-AT1R vs the anti-hypertensive axis, AT2 and ACE2-
Ang (1-7)-MasR in the development of hypertension.

Although it is well known that the intake of sodium 
is a regulatory factor to control the activity of renal axis 
ACE-Ang Ⅱ-AT1R components, the regulation of renal 
axis AT2 and ACE2-Ang (1-7)-MasR in response to high 
sodium intake is not fully understood to date. Hereby, it 
remains unclear whether the increased oxidative stress 
observed in salt-sensitive hypertension is associated to 
an imbalance of renal RAS components or not.

We hypothesized that a high sodium intake, through 
oxidative stress development, may induce an imbalance 
between the hypertensive and anti-hypertensive com
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ponents of the renal RAS, contributing to the patho
genesis of hypertension. Considering this assertion, we 
explored the effect of tempol (used as an inhibitor of 
oxidative stress) in normal rats fed a high salt intake on 
the balance between the antagonist components of the 
renal RAS.

MATERIALS AND METHODS
Animal model
Male Sprague Dawley rats, 5-6 wk-old (180-200 g body 
weight), were used in the experiments. The animals were 
housed in steel cages in a controlled room temperature 
at 23 ℃ ± 2 ℃, exposed to a daily 12-h light-dark cycle 
(light on 07:00 a.m. to 07:00 p.m), fed for three weeks 
with the diets described below, and given tap water ad 
libitum. Experiments were conducted in accordance with 
the institutional University of Buenos Aires guidelines for 
the care and use of research animals. The experiments 
were performed in animals randomly divided in four 
groups (n = 6 each group): (1) NS (control): Animals 
fed with a normosodic diet (0.4% NaCl); (2) HS: Fed 
with a hypersodic diet (8% NaCl); (3) NS-T: Fed with 
a normosodic diet (0.4% NaCl), plus 1 mmol/L tempol 
(Sigma-Aldrich Inc, St. Louis, Missouri, United States), 
administered in the drinking water; (4) HS-T: Fed with 
a hypersodic diet (8% NaCl), plus 1 mmol/L tempol 
administered in the drinking water. After a 3-wk diet, the 
rats were intraperitoneally anaesthetized with urethane 
(1.2 g/kg). A PE-90 tubing (3 cm long) was inserted into 
the trachea to maintain an open airway. The left femoral 
vein was catheterized with a Silastic cannula (0.12 mm 
i.d.) for continuous infusion. The right carotid artery was 
also catheterized with a T4 tube for blood sampling and 
for continuous mean arterial pressure recording (MAP) by 
means of a Statham GOULD P23ID transducer coupled 
to a Grass Polygraph 79D during all the procedures. The 
bladder was cannulated for urine collection using a PE-75 
cannula. A femoral vein infusion with isotonic saline 
solution, 0.15 mol/L NaCl (ISS) was performed at a 0.04 
mL/min rate (Syringe Infusion Pump, SageTM, Orion) for 
60 min to allow reaching a steady diuresis and permitting 
urine collection in all groups. Then, ISS infusion continued 
for another 60 min at the same rate as an experimental 
period. Blood samples were collected at 30 min and urine 
samples were collected along the 60 min of ISS infusion 
for sodium, potassium and creatinine measurement.

Urine and blood measurements
Urinary and plasmatic sodium and creatinine were 
measured by standard methods using an autoanalyzer. 
Creatinine clearance was assessed in order to evaluate 
glomerular filtration rate (GFR). GFR and sodium 
fractional excretion (FENa) were calculated according 
to a standard formula. Urinary sodium excretion is 
expressed as μmol/min per kilogram, GFR as mL/min 
and FENa as percentage.

Kidney processing for histological examination
At the end of the infusion period, the left kidney 
was perfused with ISS through the abdominal aorta 
until the blood was washed out and the parenchyma 
showed a pale appearance. The kidney was rapidly 
excised, decapsuled, longitudinally cut and harvested 
for immunohistochemical studies. Tissues were fixed 
in phosphate-buffered 10% formaldehyde (pH 7.2) 
and included in paraffin. For immunohistochemistry, 
renal sections were deparaffined and rehydrated, 
and endogenous peroxidase activity was blocked by 
treatment with 0.5 % H2O2 in methanol for 20 min. Local 
Ang Ⅱ, ACE 2, AT1R, AT2, Ang (1-7) and MasR were 
detected using the following specific antibodies: human 
anti-Ang Ⅱ (Peninsula, CA; United States, dilution of 
1:500), rabbit anti-Ang (1-7) (Santa Cruz Biotechnology, 
Inc, United States; dilution: 1:200), rabbit anti-ACE2 
(Santa Cruz Biotechnology, Inc, United States; dilution: 
1:200), rabbit anti-AT1 (Santa Cruz Biotechnology, Inc, 
United States; dilution: 1:200), rabbit anti-AT2 (Santa 
Cruz Biotechnology, Inc; dilution: 1:200) and rabbit anti-
MasR (Abcam, Cambridge, MA, United States, dilution: 
1:100). Immunostaining was carried out by means of a 
commercial modified avidin-biotin-peroxidase complex 
technique (Vectastain ABC kit, Universal Elite, Vector 
Laboratories, CA, United States) and counterstained with 
hematoxylin. Histological sections were observed in a 
Nikon E400 light microscope (Nikon Instrument Group, 
Melville, New York, United States). The antibodies used 
in this study worked well in nephron segments, especially 
in tubules[20-25]. Immunoreactivities for Ang Ⅱ, ACE 2, 
AT1R, AT2R, Ang (1-7) and MasR in renal tissue are 
expressed as integrated optical density (IOD) ± SEM 
using a model for automated computer image analysis 
to quantify immunohistochemical stains in hematoxylin 
counterstained histological sections[26].

Statistical analysis
Results from urine, blood measurements and MAP are 
expressed as mean ± SEM. Gaussian distribution was 
evaluated by the Kolmogorov and Smirnov method and 
comparisons between groups were carried out using 
ANOVA followed by the Newman-Keuls test. P values < 
0.05 were considered significant.

RESULTS
MAP, GFR and excretory function
In Table 1, it can be observed that HS diet increased 
MAP, UVNa and FENa(%), but did not alter GFR, respect 
to NS fed animals. Interestingly, even though the 
administration of Tempol to NS group did not modify 
MAP levels and FENa(%), it increased GFR and UVNa 
respect to NS group. Moreover, tempol administration to 
HS group, restored MAP to control NS levels, increased 
GFR to similar levels of NS-T group and increased 
further UVNa and FENa values.

Cao G et al . Tempol and intrarrenal renin angiotensin system
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Intrarenal Ang Ⅱ  expression
Figure 1 shows Ang Ⅱ immunoexpression in renal 

tissues. Immunohistochemical analysis of renal sections 
revealed positive staining for Ang Ⅱ in all tubular 

Table 1  High-salt diet increased mean arterial pressure, urinary sodium excretion and sodium fractional excretion (%), but did not 
alter glomerular filtration rate, respect to normal salt fed animals

NS NS-T HS HS-T

MAP (mmHg) 92 ± 3 94 ± 3 108 ± 3a 95 ± 2c

GFR (mL/min) 1.50 ± 0.1     3.2 ± 0.5c 1.52 ± 0.2   3.1 ± 0.6c

UVNa (µmol/min per kilogram) 0.25 ± 0.1     2.03 ± 0.90c     3.56 ± 0.70a    13.2 ± 1.2a,c

FENa (%) 0.06 ± 0.02   0.10 ± 0.06     0.50 ± 0.08a     1.20 ± 0.15a,c

All values are mean ± SEM (n = 5-6 per group), aP < 0.05 vs respective NS group, cP < 0.05 vs respective group without tempol. NS: Normal salt diet 
group; HS: High salt diet group; NS-T: Normal salt diet plus tempol group; HS-T: High salt diet plus tempol group; MAP: Mean arterial pressure; GFR: 
Glomerular filtration rate; UVNa: Urinary sodium excretion; FENa: Fractional sodium excretion.

Figure 1  The graphs show the quantitative evaluation of Angiotensin Ⅱ immunostaining in renal tissue. Data are expressed as mean ± SEM; aP < 0.05 
vs the respective NS group, cP < 0.05 vs the respective group without tempol. The photomicrographs represent Ang Ⅱ immunostaining in NS, HS, NS-T and HS-T 
groups. Original magnification: 400 ×. IOD: Integrated optic density; NS: Normal salt diet group; HS: High salt diet group; NS-T: Normal salt diet plus tempol group; 
HS-T: High salt diet plus tempol group.
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sections of the nephron examined. HS diet increased 
Ang Ⅱ expression with respect to NS group. Tempol 
administration, which did not reduce Ang Ⅱ staining 
significantly in NS-T, decreased Ang Ⅱ staining in HS-T 
animals, but remaining higher in NS-T group.

Intrarenal ACE2 expression
Figure 2 shows ACE2 immunoexpression in renal tissues. 
The study focused on tubular expression, where ACE2 
staining was more evident, whereas in glomeruli it 
was very low. ACE2 appeared to be expressed in the 
endothelium of larger vessels which was closer to the 
renal hilum. In renal tubules where the differences 
between groups are more significant, ACE2 staining 
was expressed, in order of density, in proximal con

volute tubules, distal convolute tubules located in the 
juxtamedullary area, and in collecting tubules.

HS diet decreased ACE2 immunoexpression com
pared to NS fed animals. Tempol administration nearly 
duplicated ACE2 staining in both groups, NS-T and HS-T 
respect to NS and HS groups, respectively, showing in 
HS-T group similar levels than those in NS control group.

Intrarenal Ang (1-7) expression
Figure 3 shows Ang 1-7 immunoexpression in renal 
tissues. Positive staining for Ang 1-7 was observed in 
all tubular sections examined. HS diet did not modify 
Ang (1-7) expression with respect to NS group. Tempol 
increased Ang 1-7 staining in NS-T animals and further 
increased in HS-T group.

Figure 2  The graphs show the quantitative evaluation of angiotensin converting enzyme 2 immunostaining in renal tissue. Data are expressed as mean 
± SEM; aP < 0.05 vs the respective NS group, cP < 0.05 vs the respective group without tempol. The photomicrographs represent ACE2 immunostaining in NS, HS, 
NS-T and HS-T groups. Original magnification: 400 ×. IOD: Integrated optic density; NS: Normal salt diet group; HS: High salt diet group; NS-T: Normal salt diet plus 
tempol group; HS-T: High salt diet plus tempol group; ACE2: Angiotensin converting enzyme 2.
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Intrarenal MasR expression
Figure 4 shows MasR immunoexpression in renal tissues. 
HS diet decreased MasR staining respect to NS control 
group, while tempol nearly doubled in MasR staining in 
NS-T and H-T groups compared to NS and HS groups, 
respectively. MasR expression remained lower in HS-T 
group respect to NS-T group.

Intrarenal AT1R expression
Figure 5 shows AT1R immunoexpression in renal tissues. 
HS diet increased AT1R expression compared to NS 
group. Tempol administration prevented changes in 
AT1R staining in HS-T group with respect to HS group. 
No differences were observed in AT1R staining between 
NS-T and NS groups.

Intrarenal AT2R expression
Figure 6 shows AT2R immunoexpression in renal tissues. 
High salt diet did not change AT2R expression compared 
to NS group. Tempol administration increased AT2R 
staining in NS-T and H-T groups respect to NS and HS 
groups, respectively. No differences were observed in 
AT2R staining between NS-T and HS-T groups.

DISCUSSION
Our current study shows that a high sodium intake, 
besides increasing blood pressure, may also deregulate 
the components of the renal RAS. In HS diet-fed animals, 
we observed increased Ang Ⅱ and AT1R, and decreased 
ACE-2 immunoexpression, suggesting an altered 

Figure 3  The graphs show the quantitative evaluation of Angiotensin 1-7 immunostaining in renal tissue. Data are expressed as mean ± SEM; aP < 0.05 
vs the respective NS group, cP < 0.05 vs the respective group without tempol. The photomicrographs represent Ang 1-7 immunostaining in NS, HS, NS-T and HS-T 
groups. Original magnification: 400 ×. IOD: Integrated optic density; NS: Normal salt diet group; HS: High salt diet group; NS-T: Normal salt diet plus tempol group; 
HS-T: High salt diet plus tempol group.
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production and/or degradation of Ang Ⅱ. Antioxidant 
supplementation with tempol in rats which were fed a 
high salt diet, not only prevented the increase in blood 
pressure, but also reversed the imbalance of renal RAS 
components. Indeed, tempol decreased Ang Ⅱ and 
AT1R overexpression and increased AT2, ACE2, Ang 
1-7 and MasR expression. This result was associated 
with enhanced diuresis and natriuresis, which may 
justify the decrease in blood pressure observed in these 
animals. In addition, the natriuretic effect of tempol 
was also observed in NS-T group, which simultaneously 
showed increased AT2, ACE2, Ang (1-7) and MasR 
immunoexpression.

Many reports indicate that oxidative stress is an 
important contributing factor in hypertension[27-31]. 

Hypertensive patients and animal models of hypertension 
have shown increased reactive oxygen species production 
and decreased antioxidant capacity[32,33]. Tempol, has 
been shown to reduce oxidative stress and attenuate 
hypertension in obese Zucker rats, Dahl salt-sensitive and 
spontaneously hypertensive rats (SHR)[34-38]. In addition, 
we have previously reported that tempol can prevent the 
increase in renal oxidative stress and arterial pressure in 
Sprague Dawley rats fed a high salt diet[7].

It is well known that the proximal tubule synthesizes 
and secretes Ang Ⅱ to the lumen in the kidney[39,40]. 
Our current study, using a model of oxidative stress in 
rats fed a high salt diet, showing that Ang Ⅱ expression 
increased and ACE2 expression decreased in renal 
tissues. Considering that ACE2 is the enzyme that 

Figure 4  The graphs show the quantitative evaluation of Mas receptor immunostaining in renal tissue. Data are expressed as mean ± SEM; aP < 0.05 vs the 
respective NS group, cP < 0.05 vs the respective group without tempol. The photomicrographs represent MasR immunostaining in NS, HS, NS-T and HS-T groups. 
Original magnification: 400 ×. IOD: Integrated optic density; NS: Normal salt diet group; HS: High salt diet group; NS-T: Normal salt diet plus tempol group; HS-T: High 
salt diet plus tempol group; MasR: Mas receptor.
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metabolizes Ang Ⅱ to Ang 1-7, one might assume 
that the higher expression of Ang Ⅱ is due to reduced 
expression of ACE2. With this in mind, Deshotels et al[41] 
have described that Ang Ⅱ is able to up-regulate ACE 
and down-regulate ACE2 expressions in human kidney 
tubular cells, associated with activation of extracellular 
regulated (ERK)1/2 and p38 mitogen-activated protein 
(MAP) kinases, a component that was blocked by the 
angiotensin Ⅱ AT1R antagonist losartan, but not by the 
AT2 receptor blocker PD123319. 

Down-regulation of ACE2 by Ang Ⅱ represents a 
novel positive feed-forward system as noted in the 
brain[42,43]. Our findings suggest that down-regulation 
of ACE2 in high salt fed animals may favour decreased 
Ang Ⅱ degradation. 

Moreover, the increase of ACE2 expression in tempol 
treated rats in HS-T group, could explain the decline of 
Ang Ⅱ and the enhancement of Ang (1-7) expression 
observed in this group. 

Interestingly, however, the increasing effects of 
tempol on ACE2 and Ang (1-7) expression were also 
observed in the rats fed with NS. Thus, we can suggest 
that these effects of tempol are independent of dietary 
sodium load. Moreover, these results suggest, that 
intrarenal mechanisms that regulate the differential 
expression of Ang Ⅱ and ACE2 exacerbated by a high-
sodium diet, would not be a dependent mechanism of 
oxidative stress. In this sense it has been shown that in 
physiological conditions, acute renal sympathetic nerve 
activity modulates sodium reabsorption by increasing 

Figure 5  The graphs show the quantitative evaluation of angiotensin type 1 receptor immunostaining in renal tissue. Data are expressed as mean ± SEM; 
aP < 0.05 vs the respective NS group, cP < 0.05 vs the respective group without tempol. The photomicrographs represent AT1R immunostaining in NS, HS, NS-T and 
HS-T groups. Original magnification: 400 ×. IOD: Integrated optic density; NS: Normal salt diet group; HS: High salt diet group; NS-T: Normal salt diet plus tempol 
group; HS-T: High salt diet plus tempol group; AT1R: Angiotensin type 1 receptor.
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intrarenal Ang Ⅱ generation and activation of the luminal 
membrane AT1R[44]. It has been recently shown that 
activation of renal nervous system results in higher levels 
of intrarenal angiotensinogen and Ang Ⅱ independent of 
changes in renal function and systemic RAS[45]. 

In this study results show that HS diet decreased 
MasR expression while tempol treatment increased Ang 
1-7 and AT2R expression, and restored MasR levels. As 
tempol also increased MasR expression in rats fed with 
NS diet, this action of tempol seems to be independent 
from sodium overload in the diet. These changes may 
aid the natriuretic effect and normalization of blood 
pressure in HS-T animals.

Altogether, the results suggest that the signalling 
pathways of the renal RAS could be physiologically 

regulated by the redox state. 
It is known that Ang (1-7) reduces vasoconstriction, 

water retention, salt intake, cell proliferation and 
reactive oxygen stress, displaying also a renoprotective 
effect[46]. Thus, our results suggest that in the renal 
RAS, the ACE2-Ang (1-7)-Mas axis counteracts the 
ACE-Ang Ⅱ-AT1 axis.

It has been reported that Ang Ⅱ may directly 
stimulate nuclear AT1 receptors to induce transcriptional 
responses, which may be associated with stimulation 
of tubular epithelial sodium transport and inflammatory 
response[47,48]. When these effects are inhibited by 
tempol, they may increase distal sodium overload, which 
in turn may increase the tubule-glomerular feedback, 
thus decreasing the GFR. However, tempol also reduces 

Figure 6  The graphs show the quantitative evaluation of angiotensin type 2 receptor immunostaining in renal tissue. Data are expressed as mean ± SEM; aP 
< 0.05 vs the respective group without tempol. The photomicrographs represent AT2R immunostaining in NS, HS, NS-T and HS-T groups. Original magnification: 400 
×. IOD: Integrated optic density; NS: Normal salt diet group; HS: High salt diet group; NS-T: Normal salt diet plus tempol group; HS-T: High salt diet plus tempol group; 
AT2R: Angiotensin type 2 receptor.
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sodium signalling in the macula dense[49], as well as 
afferent arteriole responses[50], contributing to moderate 
the tubule-glomerular feedback response and to increase 
GFR, as we observed in the current study.

Finally, our results are in line with reports of studies 
performed in obesity-related hypertension, where it 
was suggest that a high sodium intake that provokes 
hypertension is also able to regulate differentially and 
shift the balance between opposing components of the 
renal RAS[51]. Additionally, antioxidant treatment with 
tempol reversed the imbalance of renal RAS components 
and led to diuresis and natriuresis, lowering obesity-
related hypertension. Furthermore, a high salt diet in SHR 
produced glomerular hypertrophy and decreased ACE2 
and nephrin expressions[52].

In conclusion, our results show that a high sodium 
diet may alter the physiological balance between 
opposing components of the renal RAS, favouring 
increased Ang Ⅱ and down-regulation of ACE2. Chronic 
antioxidant supplementation that attenuates oxidative 
stress can improve the imbalance between the natriuretic 
and antinatriuretic components of the renal RAS and 
decrease hypertensive blood pressure levels.

COMMENTS
Background
The renin-angiotensin system (RAS) is a key regulator of renal function and 
hydrosaline balance controlling arterial pressure. The aim of this study was to 
determine the effect of tempol on antagonist components of RAS in renal tissue 
in rats a high salt intake.

Research frontiers
To date, no study has been undertaken to assess the effectiveness of tempol 
in rats with imbalance between opposing components of the renal RAS on 
hypertension and moderate renal impairment. Further studies are required to 
elucidate whether oxidative stress directly contributes to altered blood pressure 
by high salt consume.

Innovations and breakthroughs
This study found that chronic antioxidant supplementation that attenuates 
oxidative stress can improve the imbalance between the natriuretic and 
antinatriuretic components of the renal RAS and decrease hypertensive blood 
pressure levels, suggesting that tempol may regulate renal function through 
renal RAS regulation.

Applications
Although this study provides promising data regarding oxidative stress as a 
possible target for renal inflammation and hypertension, it should be noted that 
there are no selective superoxide inhibitors approved for human use. Drugs that 
possess antioxidant properties, such as apocynin, may be potential therapies, 
but require further investigation in experimental models of high salt diet.

Terminology 
The altered function of the RAS could be a contributing factor to the renal 
alterations induced by salt excess. To further explore this issue, the authors 
evaluated the consequences of chronic tempol administration on the in vivo 
levels of Ang Ⅱ, Ang-(1-7), angiotensin Ⅰ converting enzyme 2, and Mas 
receptor in kidney of rats fed a high salt diet. In tissues such as kidney, heart, 
and vasculature, Ang Ⅱ, through the AT1 receptor, promotes vasoconstriction, 
reactive oxygen species production, and extracellular matrix remodeling, and 
can activate multiple intracellular signaling pathways leading to inflammatory 
response and tissue injury. In many cases, the AT2 receptor has been shown to 

counterbalance the actions exerted through the AT1 receptor. Advances in the 
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such as Ang- (1-7), ACE2, a homolog of classic ACE that forms Ang-(1-7) 
directly from Ang Ⅱ and indirectly from Ang I, and the Ang-(1-7)-specific 
G-protein-coupled receptor Mas. The ACE2/Ang-(1-7)/Mas receptor axis 
opposes the vascular and proliferative effects of Ang Ⅱ and exerts complex 
renal actions in chronic renal diseases and hypertension. 
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