
Online Submissions: http://www.wjgnet.com/2220-6132office
wjtm@wjgnet.com
doi:10.5528/wjtm.v1.i2.�

World J Transl Med  2012 August 12; 1(2): �-19
ISSN 2220-6132 (online)

© 2012 Baishideng. All rights reserved.

World Journal of
Translational MedicineW J T M

Recent advances and perspectives on tropical diseases: 
Malaria

Nicola Micale

REVIEW

� August 12, 2012|Volume 1|Issue 2|WJTM|www.wjgnet.com

Nicola Micale, Department of Drug Sciences and Health Prod-
ucts, University of Messina, 98168 Messina, Italy
Author contributions: Micale N solely contributed to this paper.
Correspondence to: Nicola Micale, PhD, Assistant Professor, 
Department of Drug Sciences and Health Products, University of 
Messina, 98168 Messina, Italy. nmicale@unime.it
Telephone: +39-90-6766419  Fax: +39-90-6766402
Received: June 22, 2012         Revised: June 31, 2012
Accepted: July 25, 2012
Published online: August 12, 2012

Abstract
Malaria remains a major health problem in the world. 
It is a neglected disease because it occurs almost 
exclusively in poor developing countries, which offer 
negligible marketable and profitable opportunities. 
Malaria (together with Tuberculosis), is responsible for 
an unprecedented global health crisis with devastating 
effects in developing countries. The 2011 Word Malaria 
Report indicated that 106 countries showed endemic 
malaria. Malaria control depends mainly on drug treat-
ment, which is increasingly difficult due to the spread 
of drug resistant parasites and requires expensive drug 
combinations. Part of the inability to combat this dis-
ease is attributed to an incomplete understanding of 
its pathogenesis and pathophysiology. Improving the 
knowledge of the underlying pathogenic mechanisms 
of malaria transmission and of the exclusive meta-
bolic pathways of the parasites (protozoa of the genus 
Plasmodium), should promote efficient treatment of 
disease and help the identification of novel targets 
for potential therapeutic interventions. Moreover, the 
elucidation of determinants involved in the spread of 
malaria will provide important information for efficient 
planning of strategies for targeted control.
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EPIDEMIOLOGY
Malaria remains one of  the most deadly parasitic diseas-
es with an estimated 216 million clinical cases and about 
655 000 deaths annually. Currently 86% of  deaths hap-
pen in sub-Saharan Africa, especially in children under 5 
years of  age[1].

Malaria burden is caused by Plasmodium (P.) parasite, 
transmitted through the bite of  infected female anophe-
line mosquitoes. Four species are able to infect humans: P. 
falciparum, P. vivax, P. malariae, and P. ovale. Among these, 
P. falciparum is the most lethal species and, together with 
P. vivax accounts for more than 95% of  malaria cases in 
the world[2]. More recently, cases of  infections in humans 
due to P. knowlesi, a malaria parasite normally hosted by 
“kra” monkey, have been reported in South East Asia[3]. 

There is no completely satisfactory epidemiological 
classification of  malaria. It is possible to distinguish be-
tween a high and stable malaria transmission, and a low 
and unstable malaria transmission strictly dependent on 
mosquito species (the vector of  the disease), geographic 
and climatic factors[4]. The most common parameter 
used for the measurement of  malaria transmission is 
the number of  infective mosquito bite per year. Stable 
malaria transmission is widespread in South of  the Sa-
hara where populations are continuously challenged with 
malaria inoculations from childhood onwards. This con-
tinuous exposure to the infection leads to a partial im-
munity in adults. Unstable malaria transmission is typical 
of  Asia and Latin America, where the populations pos-
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sess no immunity because of  the low rate of  exposure to 
malaria[4]. 

STRATEGY OF CONTROL
In the absence of  an effective vaccine, malaria control 
relies on a dual approach: primarily in mosquito control 
and secondarily in reducing the parasite reservoir in the 
population. World Health Organization (WHO) recom-
mends preventive measures: (1) the use against malaria 
parasites of  insecticide treated nets and indoor residual 
spraying with insecticide; and (2) the employment against 
malaria parasites of  an intermittent preventive treatment 
in travellers in endemic regions, and in vulnerable popu-
lations in high transmission areas.

For the treatment of  uncomplicated malaria WHO 
recommended from 2001 the adoption of  artemisinin-
based combination therapies (ACTs). These therapies 
are now based on the combination of  an artemisinin 
derivative together with a blood schizonticidal drug; the 
most commonly used are combinations of  artesunate-
sulfadoxine/pyrimethamine, artesunate-amodiaquine, 
artesunate-mefloquine, and artemether-lumefantrine[5]. 
In the updated treatment guidelines, WHO strongly rec-
ommends the dihydroartemisinin-piperaquine combined 
therapy as the most effective ACT. In contrast, the treat-
ment of  severe malaria is normally based on the admin-
istration of  parenteral antimalarial drugs, which must 
be immediate, appropriate and effective. Intravenous 
artesunate is recommended as the first choice treatment 
for severe malaria. Quinine constitutes a valid alternative 
when parenteral artesunate is not available. Following 
initial parenteral treatment, it is necessary to continue 
and complete treatment with a full course of  an effective 
ACT.

Unfortunately, malaria parasites develop resistance to 
almost every known antimalarial drug including artemis-
inin derivatives. For this reason, new antimalarial drugs 
synthesized by medicinal chemists are needed, targeting 
metabolic pathways of  the parasite and able to by-pass 
resistance mechanisms enacted by the parasite[6,7].

PATHOPHYSIOLOGY
The pathophysiology of  malaria represents one of  the 
most interesting aspects of  this infectious disease al-
though knowledge of  the complex biochemical mecha-
nisms involved to date remains incomplete. 

In areas where malaria is highly endemic, malarious 
patients can experience an asymptomatic parasitemia 
mainly due to immunological phenomena or manifest 
non-specific symptoms with a gradual or a fulminant 
course. Generally malaria is defined as an acute febrile ill-
ness whose symptoms resemble those of  common viral 
infections (e.g., malaise, dizziness, myalgia, nausea, vom-
iting, and diarrhea). This may lead to a delay in diagnosis 
which is not often available and reliable, particularly in 
rural zones. In addition to fever, typical physical signs of  

malaria infection include chills, headache, tachycardia, 
jaundice, pallor, orthostatic hypotension, hepatomegaly, 
and splenomegaly. Severe malaria may lead to permanent 
cerebral damage, acute anemia, respiratory distress and 
metabolic complications (especially acidosis and hy-
poglycemia), which may develop rapidly and progress to 
death within hours or days[8]. 

All clinical manifestations of  malaria are related to 
the intra-erythrocytic growth phase of  the parasite[9]. 
The so-called “primary attack” is usually atypical and 
may resemble any febrile illness. It occurs after a variable 
prepatent period, which is the time that elapses between 
infected mosquito bite and the appearance of  symp-
toms. During this prepatent period, Plasmodia (injected 
in form of  sporozoites) undergo schizogony in the liver 
(first part of  asexual cycle), evolving into schizonts, then 
into encapsulated merozoites. Following the rupture of  
the hepatocytes, merozoites migrate through the blood-
stream into the erythrocytes where they undergo another 
schizogony cycle (second part of  asexual cycle)[10]. Newly 
formed merozoites rupture the host cell and invade new 
erythrocytes. It is now well known that P. falciparum pro-
teases of  at least two classes (serine and cysteine) play a 
crucial role in host cell invasion and egress processes[11], 
and specific inhibitors are currently the subject of  ex-
tensive research into their role as possible drug candi-
dates[12].

The lysis of  erythrocytes is responsible for fever 
and related symptoms, while during the prepatent pe-
riod some individuals may show no symptoms or only 
vague signs of  illness such as headache, aches and pains, 
nausea. When the infection stabilizes the individual 
manifests “short term relapses” of  symptoms at regular 
intervals of  48-72 h, depending on the P. species. These 
are intervals between two consecutive erythrocyte rup-
tures, corresponding to the erythrocytic phase of  malaria 
parasites. Sporozoites of  P. vivax and P. ovale are able to 
remain in the liver as dormant hypnozoites, capable of  
causing “long term relapses” after an average of  2-3 mo, 
sometimes even after years from the initial infection. In 
cases of  P. falciparum and P. malariae infection, relapses 
from the liver do not occur. However, the blood infec-
tion may remain chronic and, if  untreated, may remain 
chronic for years in case of  P. falciparum and decades in 
case of  P. malariae. Some of  the merozoites do not un-
dergo sporogony but develop into sexual stages micro-
gametocytes (male) and macrogametocytes (female) in-
stead, degenerating within 6-12 h if  they are not ingested 
via another mosquito bite. Finally, the parasite completes 
its life cycle inside the mosquito midgut where a com-
plex process of  differentiation, growth and fertilization 
of  gametocytes takes place, leading to the formation 
of  diploid zygotes. These zygotes further differentiate 
into mobile ookinetes that move to the midgut surface 
and mature into oocysts. Thousands of  sporozoites are 
formed within the oocyst, thereby making their way to 
the salivary glands. The infected mosquito is now able 
to transmit the infection during its next blood meal. The 
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entire Plasmodium life cycle is depicted in Figure 1. 
Cerebral malaria is the most serious complication of  

malaria, and it is caused almost exclusively by P. falciparum 
as a consequence of  the clogging of  the cerebral micro-
circulation. Only a few cases of  severe P. vivax malaria 
in adults have been reported to date[13]. In P. falciparum  
malaria, the infected red blood cells (RBCs) develop 
knobs on their surfaces, which being sticky result in in-
creased cytoadhesion and rosette formation, particularly 
in cerebral vessels. The infected RBCs may also adhere 
to the endothelium of  capillaries and venules, further 
blocking the blood flow. By means of  this immunologi-
cal strategy, the parasite remains within the vascular 
compartment and avoids circulating through the spleen. 
The increased cytoadherence and clumping of  unin-
fected RBCs together with parasitized RBCs culminates 
in damage to vital organs like brain, kidneys, lungs, liver, 
and gastrointestinal tract, leading to the various potental-
ly fatal complications of  P. falciparum malaria[14]. Obstruc-
tion to the cerebral microcirculation results also in hy-
poxia and increased lactate production due to anaerobic 
glycolysis. The process of  adhesion of  infected erythro-
cytes in various tissues is called “sequestration”, and is 
thought to be the result of  interaction between parasite-
encoded variant surface antigens on the outer membrane 
of  infected erythrocytes and a range of  host receptors. 
The process is mediated by the P. falciparum erythrocyte 
membrane protein 1 (PfEMP1) which is expressed on 
the surface of  infected erythrocytes and anchored into 
the knobs, thus representing a key virulence factor for 
this species of  human malarial parasite[15]. 

The rupture of  RBCs by merozoites releases certain 
factors and toxins, which in turn induce the release of  
cytokines such as tumor necrosis factor (TNF) and inter-
leukin-1 from macrophages, resulting in chills and high-
grade fever. The tendency of  erythrocytes to adhere to 

blood vessels is also thought to be related to excessively 
high levels of  TNF. The latter is in turn a potent inducer 
of  nitric oxide (NO) synthase type 2 and a role for NO 
in the pathogenesis of  cerebral malaria has, therefore, 
been suggested[16]. The most sound hypothesis is that 
NO helps the body defend itself  against malaria (either 
killing parasites or interfering with their ability to mul-
tiply), and that NO levels might even be a key factor in 
determining whether an individual will get a milder form 
of  the disease or a life-threatening form[17]. Likewise, 
there is evidence that an excessive production of  NO 
may contribute to the brain damage caused by strokes 
and to the life-threatening plunge in blood pressure, 
known as septic shock, that occurs in some infections. 

Anstey et al[17] demonstrated controversial outcomes 
in a study conducted on a sample of  Tanzanian children 
(with or without parasitemia). The very sickest children 
with cerebral malaria had the lowest levels of  NO, and 
the highest levels were found in the children who re-
mained healthy despite being infected with malaria or-
ganisms. The very sickest children did have high levels 
of  TNF, and the researchers expected this to also lead to 
high NO levels, as previous studies had predicted. They 
hypothesized that the low levels of  NO found in the 
sickest children probably occurred because the children 
had unusually high levels of  interleukin-10, a substance 
made by the immune system that suppresses NO. 

Overall, the immune system of  the person plays a 
crucial role in the clinical response to infection and trans-
mission of  malaria. Humoral antibodies to sporozoites, 
intrahepatic parasites, merozoites, malaria toxins, parasite 
antigens on infected RBCs, intraerythrocytic parasites, 
and, within the mosquito, to parasite fertilization, have 
recently been identified, suggesting that cell-mediated 
immunity plays a role in liver and RBC invasion and par-
asite development. However, they may provide a form 
of  non-sterile and age-dependent immunity termed 
“premunition”, which has to be maintained by almost 
continuous exposure to the parasites, another unique 
feature of  this infectious disease. Individuals in malari-
uos areas may gradually evolve from a state of  immunity 
against clinical malaria to a state of  partial immunity 
against the infection. Continuous exposure may be at-
tained due to the long-term survival of  parasites in the 
host and/or by frequent re-infections[18]. 

Pregnant women constitute a notable exception to 
this, since they are highly vulnerable to infection due 
to general impaired immunity, particularly during a first 
pregnancy. The phenomenon of  the slow acquisition of  
immunity and the sudden reappearance of  susceptibil-
ity during pregnancy are strictly interrelated. In women 
during pregnancy, the placenta expresses a new receptor 
that was previously unavailable for infected RBC adher-
ence[19-21]. This receptor has been identified as a uniquely 
low-sulfated chondroitin sulfate proteoglycan (CSPG) lo-
cated mainly in the intervillous space and to a lesser ex-
tent on the surface of  the syncytiotrophoblast cells[22,23]. 
It has been demonstrated that CSPG has a minimum 

Figure 1  Plasmodium life cycle. A: In the human host, infected female 
Anopheles mosquitoes inject the sporozoite form of the parasite during a 
blood meal. Sporozoites reach the liver through the bloodstream, where they 
proliferate asexually, and then, as merozoites, invade red blood cells, evolve 
and eventually generate male and female gametocytes which are transmitted 
back to the mosquito; B: In the mosquito vector, gametocytes fuse to form zy-
gotes and differentiate to form oocysts that duly divide to create sporozoites 
in the mosquito midgut. These migrate to the salivary glands, where the cycle 
of infection starts again. 
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motif  for optimal infected RBC binding located in its 
polysaccharide part. This binding site is a dodecasac-
charide called “sulfated glycosamino-glycan chondroitin 
sulfate A (CSA)” and it is composed of  a chain of  alter-
nating sugars (n-galactosamine and glucuronic acid) in 
which sulfation of  the n-galactosamine moieties occurs 
at carbon 4 (CSA is therefore also known as chondroi-
tin-4-sulfate)[24-27]. Infected RBCs are tethered to the 
placenta surface through interactions between PfEMP1 
domains and CSA, leading to inflammation and blockage 
of  blood flow to the developing fetus. In this situation 
the host immune system in unable to detect and destroy 
infected RBCs in the spleen. Accumulation of  infected 
RBCs in the placenta engenders monocyte/macrophage 
immune response, which in turn produce proinflamma-
tory mediators[28]. This is associated with all clinical con-
ditions of  placental malaria, including, maternal anemia, 
low birth weight of  babies, premature delivery, sponta-
neous abortion, stillbirth, and can lead to the death of  
mother and child[29-32]. Anti-adhesion antibodies from 
pregnant women (except primigravidas) may offer only 
limited and short-duration protection to the newborn[33]. 
In rural areas with intense malaria transmission, approxi-
mately 30% (depending on the season) of  infants at 
three months of  age are infected by P. species and may 
develop their own partially protective immunity. This 
natural immunity may display a spectrum of  anti-parasite 
activity and be effective in limiting parasite infectivity 
and parasite replication, thus having an impact on actual 
parasite burden in the human host. This may also limit 
infectivity of  gametocytes in the mosquitoes and subse-
quent transmission to other hosts[34].

While gradual acquisition of  natural immunity is in-
disputable, the mechanism of  stage-specific partially pro
tective immunity in infants, adults and during pregnancy 
remain rather elusive[34], raising questions around the 
efficacy of  a long-term candidate vaccine that could pro-
vide only partial immunity. Understanding the mecha-
nisms of  immune response and identification of  specific 
immunologic determinants will be fundamental for 
designing and developing promising vaccine candidates, 
including multistage vaccines. More likely, an efficacious 
fight against malaria will depend upon a combination of  
multistage vaccines with other malaria control options, 
including effective chemotherapy and anti-vector pro-
grams limiting host-vector interactions.

Determinants of malaria
The progression of  malaria and the toll of  victims in 
communities and countries depend on several intrinsic 
and extrinsic determinants which often combine in a 
negative way. Of  the intrinsic determinants, host (human) 
immunity, virulence of  parasite species, anopheline lon-
gevity and avidity for humans have the greatest impact 
on the malaria burden[35], and will be herein discussed in 
details. Among extrinsic determinants, climate (mainly 
rainfall), human activities, vector ecology and behaviour, 

political and economic (poverty) conditions as well as 
effectiveness of  control and prevention efforts are the 
most important.

Host 
The role of  host as a medium for parasite development 
is very complex and susceptibility to infection and sever-
ity of  illness of  human populations exposed to malaria 
infection may be influenced by other intrinsic factors 
(e.g., age, genetic disposition). Host immunity is a cru-
cial and poorly understood factor for survival of  people 
infected with the malaria parasite[36]. This is particularly 
true with respect to the P. falciparum parasite which caus-
es severe malaria, wherein many pathological processes 
such as hemostatic dysfunction, sequestration, systemic 
inflammation and neuronal damage are implicated[37,38].

Sickle cell anemia provides the best example of  a 
change in hemoglobin structure that impairs malaria 
parasite growth and development. Sickle cell consists in 
an inherited alteration of  hemoglobin in which RBCs as-
sume an abnormal, rigid, sickle shape. Some people who 
have the sickle cell trait (commonly written HbAS) in-
herit a normal hemoglobin A (HbA) gene from one par-
ent and an abnormal hemoglobin sickle (HbS) gene from 
the other. These individuals are resistant to malaria since 
sickle RBCs are not conducive to the parasites[39]. HbAS 
provides neither absolute protection nor invulnerability 
to malaria. Unlike people with sickle cell disease (who 
have mainly HbS) and people with normal hemoglobin 
genotype (HbAA), individuals (and particularly children) 
with HbAS and infected with P. falciparum are generally 
able to survive their initial acute malarial attacks. They 
are also referred to as “healthy carriers” because have 
neither symptoms and nor sickle-cell disease or sickle-
cell anemia, although they carry one of  the genes that 
cause the disease[40]. This genetic selective scenario is 
termed “balanced polymorphism”, a concept strength-
ened by the observation that the heterozygous (HbAS) 
trait is more prevalent in regions of  endemic malaria[41]. 
Other genetic defects related to hemoglobin structure 
that confer protection against malaria include hemoglo-
bin C (HbC), hemoglobin E (HbE), α+ thalassemia, and 
β-thalassemia[42]. HbS, HbC and HbE arise from a single 
point mutation of  the gene HBB which encodes β-globin 
chains: Glu→Val at codon 6 for HbS, Gln→Lys for 
HbC and Glu→Lys for HbE[43]. Both HbC-heterozy-
totes and HbC-homozygotes are protected against se-
vere malaria with the latter being to a greater extent[44-47], 

whereas a reduced parasite invasion by P. falcipaum has 
been observed only for HbE-heterozygotes[41,48]. In con-
trast, α+ Thalassemia, arises from the disruption of  only 
one of  two identical genes encoding α-globin chains 
(HBA1 and HBA2, located on different chromosomes). 
In this particular condition, homozygous individuals are 
still able to produce α-globin and are only mildly ane-
mic[49]. 

Erythrocyte-membrane proteins represent other key 
factors of  malaria progress since they are extensively 
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involved in the parasite invasion process and host-de-
fensive mechanisms. Ovalocytosis and GYPs-deficit (the 
genes encoding glycophorin A, B and C) are among sig-
nificant hereditary anomalies[50,51]. The former, common 
in parts of  Southeast Asia, consists in a deficit of  an 
anion-exchange protein encoded by the gene SLC4A1, 
known as “band 3 protein”, implicated in P. falciparum 
malaria resistance[52]. Glychoporins are sialoglycopro-
teins essential for host cell invasion. Their genetic de-
ficiency makes erythrocytes resistant to invasion by P. 
falciparum[51]. Innate host resistance towards P. vivax is 
expressed by individuals who possess the Duffy blood 
factor on the surface of  RBCs. The Duffy factor is an 
antigen by which the merozoites of  P. vivax enter RBCs. 
Most of  sub-Saharan Africans lack this antigenic factor, 
therefore P. vivax is essentially absent from most of  this 
area. Among other innate factors associated with de-
creased susceptibility to severe malaria, deficiency in glu-
cose-6-phosphate dehydrogenase is of  great importance. 
This enzyme is responsible for preventing the formation 
of  reactive oxygen species from heme groups, thereby 
slowing down parasite growth[53,54]. On the contrary, a 
deficit of  haptoglobin (a hemoglobin-binding protein 
present is plasma which protects tissue from oxidative 
stress) is associated with an increased susceptibility to se-
vere malaria in specific areas[55,56]. The increased cytoad-
herence of  P. falciparum-infected erythrocytes in small 
vessels plays a critical role in the pathogenesis of  severe 
malaria. Several endothelial cell adhesion molecules are 
implicated in this event, binding mainly PfEMP1. These 
include fatty acid translocase, intracellular adhesion mol-
ecule 1, platelet endothelial cell adhesion molecule 1[57-59]. 
For these host receptors for cytoadherence, a genetic 
polymorphism in the promoter region appears to be 
correlated with the frequency of  severe disease[60-62]. CR1 
is considered the most important surface protein that 
allows infected RBCs to form rosettes and its deficiency 
is also associated with a high level of  genetic polymor-
phism[63].

As previously stated, interaction between malaria and 
the immune system is even more complex when immu-
nological responses are directly involved. A large array 
of  proteins responsible for antigen recognition, antibody 
response, inflammatory mediation, as well as other se-
rum factors undergo genetic polymorphism in naturally 
exposed populations. The consequences of  this immune 
gene polymorphism are not always predictable and may 
vary substantially in different malarious regions due to 
many others biological reasons[43]. This issue is the main 
hurdle to the development of  an effective malaria vac-
cine and the main reason why the use of  genotype infor-
mation for improved malaria treatments and prevention 
remains a challenge for the future.

Parasite
Of  the five P. species affecting humans, P. falciparum is 
the most virulent for reasons which are incompletely 
understood. Some genetic studies indicate that it is the 

most recently evolved species, whereas other studies re-
veal a high level of  genetic variation, suggesting a large 
population size that has been maintained for several 
hundred thousand years[64]. 

P. vivax was the most globally widespread and most 
prevalent species, until the middle of  the 1900s. Current-
ly, it still has the most wide geographic distribution and 
constitutes the second most common cause of  malaria 
globally with 90% of  those infections occurring outside 
of  Africa. This is partly because of  its ability to complete 
the sporogonic cycle at a minimum lower temperature of  
16 ℃, compared to 21 ℃ for P. falciparum, but (as men-
tioned above) mainly due to the Duffy polymorphism in 
Africans which results in a phenotype that does not allow 
P. vivax to invade RBCs. Although P. vivax, which can 
cause relapses months after an infection due to the pres-
ence of  liver hypnozoites, accounts for 65% of  malaria 
cases in Central and South America and Asia[65], it causes 
substantial morbidity with debilitating symptoms but it is 
rarely fatal. Generally, patients infected with P. vivax die as 
a consequence of  splenomegaly. In relation to pregnancy, 
P. vivax (unlike P. falciparum) is not associated with shorter 
gestation or with an increased rate of  miscarriage or still-
birth, is instead associated with an increased risk of  low 
birth weight[66].

P. falciparum and P. vivax, which represent the two 
principal human malaria parasites, seem to be very dif-
ferent in origin and in phylogenetic relationship to other 
P. species[67]. P. malariae is the causative agent of  quartan 
fever. It occurs in various tropical regions throughout 
the world and causes low, yet significant, morbidity and 
mortality levels in humans which are associated with re-
nal complications (quartan malarial nephropathy, more 
common in adults than children)[68]. Patients may remain 
parasitemic and asymptomatic for as much as 50 years 
or more, even in the absence of  reinfection. They usu-
ally have relapses at irregular intervals, which are actually 
recrudescences due to the subpatent parasitemia[69]. The 
reason of  the long duration of  P. malariae infection may 
be explained by the slow rate of  erythrocytic schizogony 
of  the parasite, and by the inefficacy of  common anti-
malarial drugs with blood schizonticidal action in eradi-
cating it. Another reason for such a long duration of  
infection arises because P. malariae is the species that has 
been infecting humans for the longest time. As a conse-
quence, this species has adjusted to the human immune 
system, which is unable to completely eliminate the para-
site.

P. ovale, also a relapsing species, is a rare (0.5%) cause 
of  infection. It is found principally in sub-Saharan Af-
rica and some islands of  the western Pacific[70]. P. ovale 
infections generally follow a benign course, though rare 
complications may arise due to spleen rupture[69]. This 
species was the last of  the malaria parasites of  humans 
to be correctly described. It was considered for long time 
a variant form of  P. vivax due to the fact that both were 
found in enlarged and stippled infected erythrocytes. In 
1922, Stephens named the parasite P. ovale in recognition 
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of  the oval shape of  the infected erythrocytes, particu-
larly those containing younger stages of  the parasites, 
which may also show “spiking” or fimbriation[70]. How-
ever, ovalization and fimbriation do not occur spontane-
ously and cannot be detected by examination of  infected 
blood samples: these transformations are artificially 
induced at the time of  the smear and constitute the best 
diagnostic tool for species identification[69].

The fifth P. species affecting humans is P. knowlesi, 
an intracellular malaria parasite whose natural vertebrate 
host is Macaca fascicularis (the ‘kra’ monkey). It is now 
increasingly recognized as a significant cause of  malaria 
in humans, particularly in South East Asia[71,72]. From a 
phylogenetic point of  view, P. knowlesi and P. vivax are 
closely related[73], although there are important pheno-
typic differences between them, such as their host blood 
cell preference, the absence of  a dormant liver stage 
or ‘hypnozoite’ in P. knowlesi, and length of  the asexual 
cycle. Recently the P. knowlesi [H strain, Pk1(A+) clone] 
nuclear genome sequence has been described[74], and it 
provides an opportunity for comparison with the P. vivax 
genome[73] and other sequenced P. genomes[75-77].

Evidence is accruing that malaria parasites exhibit a 
wide range of  inter-strain variation within species, pa-
tients, and localities, probably because they are exposed 
to strong selection from the human immune response 
and treatment with antimalarial drugs. Such a vast strain-
specific diversity has a strong impact on clinical manifes-
tations in various age groups and on malaria transmis-
sion[78,79]. However, detecting and understanding parasite 
maintenance in populations is complicated due to the fact 
that different evolutionary forces, such as copy number 
polymorphism and transcriptional variation, help in main-
taining the genetic diversity in the parasite genome[80,81]. It 
is now quite clear that both P. falciparum and P. vivax use 
the genetic diversity they possess to fight against the an-
timalarial drugs and host immunity although the mecha-
nism of  maintenance of  such diversity is unknown[67]. In 
cases of  P. falciparum malaria, people living in endemic 
countries develop only partial immunity, and this im-
munity correlates with acquisition of  strain-specific an-
tibodies that recognize PfEMP1 proteins[33,82]. The host 
immune system counters the obstruction of  the micro-
circulation by producing antibodies that interfere with 
the adhesion of  infected RBCs and increase their detect-
ability. The genome of  the 3D7 strain of  P. falciparum 
contains 59 genes for PfEMP1 proteins[76]. One gene is 
expressed at a time, and the parasite avoids detection by 
varying which PfEMP1 is produced[83,84]. This ability to 
switch among a large array of  different adhesion ligands 
is almost certainly the reason why it takes children several 
years, and many disease episodes, to acquire substantial 
protective immunity to P. falciparum malaria[21]. Vaccina-
tion represents the most direct way to achieve host im-
munity prior to pathogen exposure. Unfortunately, the 
malarial parasite constantly changes its immune makeup 
in every stage of  its life cycle, thereby frustrating efforts 
to produce an effective vaccine.

The development of  P. falciparum resistance to the 
most commonly used anti-malarial drugs has been a 
major cause of  failure of  any malaria control program 
and of  increasing malarial burden[85]. Generally, resist-
ance depends on the chemical class of  the antimalarial 
and its mode of  action[86]. Resistance to 4-aminoquino-
lines, cinchona alkaloids and highly hydrophobic arylmi-
noalcohols, arises from mutations of  genes encoding 
vacuolar trans-membrane proteins which regulate the 
influx/efflux of  the drug at the target[87], whereas there 
are no well-documented reports on development of  
resistance against 8-aminoquinolines. Chloroquine (CQ) 
resistance in P. falciparum is primarily attributable to sin-
gle nucleotide polymorphisms in pfcrt (CQ resistance 
transporter)[88]. Mutations in P. falciparum multidrug re-
sistance 1 (PfMDR1), the gene encoding the P. falciparum 
P-glycoprotein homologue-1, seem to be the main cause 
of  resistance to mefloquine but are also implicated in 
CQ resistance[89,90]. Resistance to antifolates is quite com-
mon worldwide and apparently depends on a stepwise 
accumulation of  single point mutations of  genes pfdhps 
and pfdhfr encoding the drug targets, dihydropteroate 
synthase and dihydrofolate reductase, respectively[91]. 
Atovaquone resistance is associated with single point 
mutations in the cytochrome b gene of  P. falciparum[92]. 
Although artemisinin derivatives represent the most 
efficacious class of  antimalarial drugs, some cases of  
resistance have been recently detected. This may be due 
to mutations or amplifications of  the gene encoding a 
PfMDR1 or mutations in the gene encoding sarco-en-
doplasmic reticulum calcium ATPase6[93,94]. Resistance to 
one chemical class of  antimalarial drugs may cross-react 
with the others and this is the main reason for the poor 
efficacy of  multi-target antimalarial chemotherapy. This 
capacity of  the malaria parasite to counter the multi-
target therapy arises from the fact that gene mutations 
usually do not act in isolation and act synergistically to 
encode or enhance resistance. Both mutations in differ-
ent genes and sequential accumulation of  mutations in a 
single gene may determine cross-resistance[95].

Mosquito 
All human malaria is transmitted through bites by female 
mosquitoes of  genus Anopheles (An.), but not all anoph-
elines can be considered vectors of  malaria. To become 
a vector, a mosquito has to be susceptible to malaria 
sporogony, be anthropophagic and have enough longev-
ity to become infective to humans. Mosquito longevity 
is particularly important because parasite sporogony 
takes place inside the mosquito midgut over a time span 
that can vary from 8 d to 30 d, depending on ambient 
temperature. Usually, sporogony within the mosquito 
does not occur at temperatures below 16-18 ℃. The 
tropical regions provide ideal living and breeding condi-
tions for the An. mosquitoes since temperature, rainfall 
and humidity are important factors for their survival 
and distribution. Specific breeding sites in rural areas 
are bodies of  fresh water that are usually large, open, 
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sunlit and more or less permanent, e.g. swamps (near 
the edges if  deep), weedy sides of  streams and channels, 
rivers, ponds, tanks, wells, furrows or ditches, protected 
portions of  lake shore, rice fields, or water seepages, 
which are fed from underground permanent sources. In 
urban and peri-urban areas the preferred breeding sites 
are building-constructions sites, wells, garden ponds, 
cisterns, overhead tanks, ground level cement tanks, 
water coolers[96-98]. Altitude is another limiting factor for 
the development of  anopheline mosquitoes as, with the 
exception of  a few species, they are generally unable to 
infect at above 2000 m[99].

Some An. species may be affected by environmental 
drivers and display behavioural variation (also known as 
behavioural resistance) within the same species. The lat-
ter may determine their occurrence, vectorial status and 
adaptation to a changing environment. This been recent-
ly assessed for An. sundaicus, an important malaria vec-
tor in coastal areas in Southeast Asian region which can 
has adapt to breed in a wide range of  salinity conditions 
from fresh water to brackish water[100]. Behavioural varia-
tion has alos been observed in the An. dirus complex, 
which includes efficient malaria vectors of  the Asian for-
ested zone. Although forest seems essential for survival 
of  this species, adaptations to orchards and wells have 
been recorded[101].

Information on the vectors and their precise role in 
malaria transmission is unclear as all the major malaria 
vectors are species complexes, which are morphologi-
cally indistinguishable but differ significantly in biologi-
cal characteristics that are vital for malaria control. These 
include vectorial potential, host-preference, distribution 
pattern, resting behavior and response to insecticides. 
These sibling (or cryptic) species can be recognized only 
through chromosomal studies or biochemical analysis[102]. 
For instance, the An. culicifacies complex, which consti-
tutes the main vector system in Indian with an overall 
rate of  60%-65% of  malaria cases[103], comprises five 
sibling species provisionally designated as species A, B, C, 
D and E. Among them, species B holds special features: 
(1) it is the only member of  culicifacies complex regarded 
as a non-vector; (2) it is found in isolation in eastern 
India, while in other areas of  Indian sub-continent it is 
found in association with species C, D or E[104]; (3) it has 
the ability to kill malaria parasites in the midgut during 
early sporogony by a process of  encapsulation[105]; and (4) 
it develops resistance towards insecticides [dichlorodi-
phenyltrichloroethane (DDT) and malathion] at a faster 
rate than species A and/or sympatric species B[106-108]. 
An. anthropophagus and An. sinensis constitute another 
example of  cryptic species which are morphologically 
indistinguishable. They are the main vectors in central 
China where they mostly occur in symmetricity. Identi-
fication of  their genetic diversity could facilitate studies 
on malaria transmission and the development of  preven-
tion strategies for malaria control[109]. 

Although there are 444 formally named species and 
40 unnamed members of  species complexes recognized 

as distinct morphological and/or genetic An. species[110], 
only 60 of  them transmit malaria under natural condi-
tions, and only 30 are of  major importance[111]. Of  these, 
the An. gambiae complex and An. funestus are the most 
efficient vectors of  P. falciparum malaria in Sub-Saharan 
Africa[112]. An. gambiae exhibits the highest rates of  spo-
rozoite development, thus it represents one of  the prime 
targets for genetic modification projects[113]. This species 
complex consists of  six sibling species (An. arabiensis, 
An. bwambae, An. merus, An. melas, An. quadriannulatus, 
An. gambiae sensu stricto) with different behavioural 
traits[114]. Within this species complex, An. gambiae s. str. 
and An. arabiensis are the major vectors of  human malaria 
in sub-Saharan Africa, with An. merus and An. melas be-
ing intermediate in importance[115]. This last two species 
are associated with salt-water with a localized distribution 
along the eastern and western coasts of  Africa, respec-
tively[116,117]. An. bwambae and An. quadriannulatus (species 
A, found in south-east Africa, and species B, which has 
been described in Ethiopia) are highly zoophilic and are 
never or rarely exposed to the human P. falciparum, thus 
they are not considered vectors of  human malaria[115,118]. 
An. bwambae (which has only been found breeding in 
mineral springs) has the most restricted range, limited to 
the Semliki Forest of  Uganda[119]. An. gambiae s. str. is cur-
rently in a state of  diverging into different species - the 
Mopti (M) and Savannah (S) strains - though as of  2007, 
the two strains were still considered to be a single species. 
The An. gambiae s. str. genome has been sequenced by 
Holt et al[120] and revised by Sharakhova et al[121], though 
there is controversy over the choice of  strain used, which 
is considered a hybrid of  two different strains.

In the Pacific area An. farauti complex, An. maculatus 
and An. flavirostris play a predominant role in malaria 
transmission. These species are geographically isolated, 
with the latter confined mainly to the Philippines, much 
of  Indonesia, and Sabah, Malaysia[122-124]. Actually, An. 
flavirostris is considered a subspecies of  An. minimus, a 
complex that counts five sibling species and represents 
one of  the most important vectors of  human malaria in 
East Asian countries (Nepal, Bangladesh, north Thai-
land, Indonesia, south China and also in the Yaeyama 
Island of  Japan)[125]. The An. farauti complex belongs 
to the An. punctulatus group, which includes at least 12 
sibling species and is widespread in northern Australia 
(wherein it is not a malaria vector) and the islands of  
the south-west Pacific[126]. Four of  the twelve species 
have been implicated as malaria vectors in Papa New 
Guinea[127]. An. albimanus is the primary coastal vector in 
South America, Central America and the Caribbean[128]. 
An. aquasalis is a coastal Neotropical species, considered 
to be the primary coastal malaria vector of  P. vivax in 
Venezuela[129]. Another important malaria vector with a 
broad geographical distribution ranging from southern 
Mexico to northern Argentina is An. darlingi. Its degree 
of  involvement in human malaria transmission seems 
to differ among localities[130]. Besides its morphologi-
cal, behavioral and genetic diversity, An. darlingi spread 
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throughout the Amazon basin (where it is considered 
the main vector) has been recently associated with the 
uncontrolled rate of  deforestation[131]. An. nuneztovari is 
considered an important vector of  human malaria in 
areas of  Venezuela and Colombia, although populations 
of  this species occupy large geographic areas (northern 
South America, eastern Panama, Brazil and Amazon 
region states)[132]. Among the dominant Anopheles vectors 
of  human malaria in the Americas it is worth noting the 
An. pseudupunctipennis complex since it can survive and 
transmit malaria at altitudes up to 3000 m[133]. The geo-
graphic distribution of  the mentioned human malaria 
vectors is depicted in Figure 2.

Vector control has had limited success in areas where 
malaria is heavily endemic, primarily due to the lack of  
resources for disease management. The options available 
for vector control are mainly, insecticides, personal pro-
tection measures, larval control, biological control and 
environmental management. Pyrethroids are the only in-
secticides that have been used for impregnation of  bed-
nets because of  their very low mammalian toxicity. Tri-
als of  long-lasting insecticide-treated nets impregnated 
with permethrin, deltamethrin and alphacypermethrin 
are underway[134]. Unfortunately, there is an increasing 
resistance in vectors towards pyrethroids and a well es-
tablished resistance towards other older insecticides used 
as indoor residual sprays or in public health. Mosquitoes 
exhibit a broad armamentarium for physiological de-
fense. Their major mechanisms of  resistance include: 
glutathione-S-transferase-based degradation of  DDT, 
carboxyl esterase-dependent hydrolysis of  malathion, al-
tered acetyl cholinesterase activity to organophosphates 
and carbamates, cytochrome P-450 monooxygenase and 
kdr type resistance against pyrethroids[135]. Larval control 
may represent an alternative strategy for mosquito abate-

ment, but it is a laborious challenge that requires practi-
cal environmental and entomological skills at all levels, 
and thus is only achievable in urban and peri-urban 
situations. Environmental control is used to prevent 
breeding, nesting, and feeding of  vectors and, as for lar-
val control, requires community participation and inter-
sectoral collaboration. All these prevention measures 
will have a paltry impact on transmission and a limited 
success in decreasing the malaria burden when applied 
alone. Thus, newer and more advanced vector-focused 
approaches are needed[136].

PLASMODIUM METABOLISM AND 
POSSIBLE DRUG TARGETS
The malaria parasite possesses unique mechanisms for 
the synthesis of  biomolecules and a better understanding 
of  its metabolic pathways may lead to the development 
of  novel therapeutic strategies.

Hemoglobin degradation pathway
The malaria parasite grows rapidly during many stages of  
its life cycle within the human host and exhibits a high 
multiplication rate. This necessitates a constant source of  
nutrients, both for protein biosynthesis and energy me-
tabolism, which mainly come from ingested hemoglobin 
during the morphologically separate phases inside the 
erythrocyte (ring stage, trophozoite stage, and schizont 
stage)[137,138]. The parasite degrades a large amount of  host 
cell hemoglobin by means of  a variety of  proteases which 
are thought to act in semi-ordered fashion[139], and whose 
importance as a drug targets is well-documented[140,141]. 
This massive digestive process (up to 65% of  the total 
host hemoglobin) occurs in a specialized organelle, the 
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Figure 2  Map of the world showing the distribution of the most important anthropophilic Anopheles mosquitoes which are currently considered vectors of 
malaria. An.: Anopheles; s.s.: sensu stricto
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food vacuole, which requires a pH optimum in the range 
4.5-5.0[142].

Two closely related aspartic proteases, termed plas-
mepsin (PM) Ⅰ and Ⅱ, are involved in the early events 
of  hemogloglobin degradation, promoting unfolding of  
globin chains and release of  the heme moiety. Further 
digestion of  globin chains is carried out by at least other 
two aspartic proteases, PM Ⅳ and histo-aspartic protei-
nase[140,143], and three cysteine proteases termed falcipains 
(FPs)[141,144-146]. The cysteine proteases involved in the 
hemoglobin catabolism are two nearly identical copies 
of  FP-2 (FP-2 and FP-2’, also known as FP-2A and FP-
2B respectively)[146,147], and FP-3[144]. Both PMs and FPs 
are synthesized as membrane-bound proforms that are 
transported to the food vacuole and activated by means 
of  overlapping, redundant mechanisms[148].

A zinc metalloprotease (named falcilysin) intervenes 
later in this digestive process since it is able to cleave 
only small polypeptides (up to 20 amino acids)[149] that 
are eventually shortened further by a dipeptidyl amino-
peptidase 1[150]. Oligopeptides are then pumped out of  
the food vacuole and an amino peptidase activity within 
the parasite cytoplasm provides amino acids essential for 
parasites survival[151,152]. Despite this substantial proteoly-
sis, malaria parasites employ only 16% of  the digested 
hemoglobin for biosynthesis of  proteins[153]. Most of  
newly obtained amino acids are effluxed from the infect-
ed erythrocyte to provide space for the growing parasite 
and maintain osmotic stability[154].

Massive degradation of  hemoglobin also leads to ge
neration of  a large quantity of  heme that is toxic to the 
parasite, promoting membrane damage due to its per-
oxidative properties[155]. Released hematin is detoxified 
to a cyclic dimer, β-hematin. The low digestive vacuolar 
pH promotes crystallization and polymerization of  these 
dimers to give hemozoin pigment[156,157]. This defense 
mechanism from oxidative stress is most pronounced 
during the trophozoite stage of  the parasite develop-
ment[158]. More recent studies indicate that the crystalliza-
tion process from β-hematin dimers to hemozoin takes 
place in, or closely associated with, neutral lipid nano-
spheres in the aqueous content of  the vacuole[159]. De-
spite accumulating heme derived from RBC hemoglobin, 
malarial parasites synthesize heme de novo for metabolic 
use. The heme biosynthetic pathway of  the parasite is 
similar to that of  humans and animals, using glycine and 
succinyl-CoA to make δ-aminolevulinic acid (ALA), the 
committed precursor for heme biosynthesis. However, 
while the parasite makes its own ALA, it has to import 
ALA dehydratase and ferrochelatase from host RBC to 
complete the pathway[160,161]. 

Purine pathway
Plasmodium does not manifest the de novo pathway for pu-
rine nucleotide biosynthesis and depends on the salvage 
pathway for its supply of  purine[162]. Purine uptake into 
the intraerythrocytic malaria parasite involves four differ-
ent nucleobase/nucleoside transporters localized to the 

parasite plasma membrane, two with a high substrate af-
finity and two with a low substrate affinity[163-166]. The first 
comprehensive model for purine uptake by P. falciparum 
has been proposed by Quashie et al[167]. Their studies 
report on the presence of  a low affinity adenosine trans-
porter, a high affinity adenine transporter, a low affinity 
uptake route for adenine and a high affinity hypoxan-
thine/purine nucleoside transporter (PfNT1, also known 
as PfENT1). Recently, the role of  PfNT1 in the purine 
salvage pathway has been called into question by other 
authors who assert that the high-affinity uptake compo-
nents characterized by Quashie et al[167] are strictly related 
to the high-affinity intracellular metabolism (and per-
haps sequestration) of  purines carried out by Plasmodium  
rather than the presence of  high-affinity transporters, 
reaffirming a low-affinity system for PfNT1[168,169]. Stud-
ies on PfNT1 knock-out parasites have also indicated, 
one or more additional transport pathways (of  unknown 
affinity) for the uptake of  adenine[170]. Hypoxanthine is 
regarded as the key metabolic precursor of  all other pu-
rines. The source of  hypoxanthine is believed to be the 
adenosine triphosphate present in the infected erythro-
cytes, which is catabolized to hypoxanthine via adenosine 
diphosphate, adenosine monophosphate, adenosine 
and inosine[171]. In Plasmodium, adenosine is converted 
to inosine by adenosine deaminase[172], which is further 
metabolized to hypoxanthine by purine nucleoside phos-
phorylase[173].

Pyrimidine and co-factors of the B-complex vitamin 
pathway
Unlike purine biosynthesis, the malaria parasite lacks the 
salvage pathway for pyrimidines and synthesizes them de 
novo[174]. To accomplish this, the parasite usually synthe-
sizes itself  the required folate co-factors (vitamin B9), 
starting with the condensation of  pteridine with para-
aminobenzoic acid to form dihydropteroic acid. The lat-
ter is then condensed with glutamic acid to dihydrofolic 
acid and lastly reduced to tetrahydrofolic acid, which is 
the active form of  vitamin B9 essential in one-carbon 
transfer reactions[175]. Humans only have the ability to 
convert folic acid into tetrahydrofolic acid and this is the 
basis of  the selective toxicity of  type-Ⅰ antifolates (di-
hydropteroate synthase inhibitors) used occasionally as 
antimalarial drugs in association with type-Ⅱ antifolates 
(dihydrofolate reductase inhibitors)[176]. Among the six 
enzymes involved in pyrimidine biosynthesis, dihydro-
orotate dehydrogenase (the fourth one) is the most ex-
ploited as a drug target[177]. 

In addition to vitamin B9, the malaria parasite is able 
to achieve de novo synthesis of  other important co-factors 
of  B complex (B1 and B6) which do not occur in humans 
and therefore represent potentially powerful drug tar-
gets[178]. Biosynthesis of  thiamine pyrophosphate (the 
active form of  vitamin B1) takes place via two branches, 
the thiazole and pyrimidine pathways, which join to form 
the key intermediate thiamine monophosphate. Two dif-
ferent distinct pathways, generate pyridoxal 5-phosphate 
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(the active form of  vitamin B6). One is related to the 
pentose phosphate shunt and glycolysis, while the other 
depends on the salvage of  B6 vitamins[179]. Both vita-
mins B1 and B6 are transported primarily in erythrocytes, 
raising the question of  why Plasmodium uses energy to 
produce its own co-factors. For vitamin B6, the reason 
resides in the fact that it is tightly bound to serum albu-
min and hemoglobin and thus might not be available to 
the parasite[179]. However, it has been demonstrated that 
the de novo synthesis of  vitamins B1 and B6 by the parasite 
is not sufficient for its survival during erythrocytic schi-
zogony[180-182]. Vitamin B1 is an essential co-factor of  en-
zyme complexes such as pyruvate dehydrogenase, 2-oxo-
glutarate dehydrogenase, branched-chain 2-oxo acid 
dehydrogenase and transketolase, thus involving diverse 
and connected metabolic pathways. Vitamin B6 acts as 
a carbonyl-reactive co-factor for more than 140 distinct 
enzymatic reactions, all involved in the conversion of  
amino acids via processes such as decarboxylation and 
transamination[179].

Lipid pathway
P. species, like other apicomplexan parasites, have a 
special type Ⅱ fatty acid biosynthetic pathway (FASⅡ) 
whose enzymes are localized in the apicoplast[183]. This 
organelle is a plastid of  cyanobacterial origin and it is 
closely associated with the mitochondrion at all stages 
of  parasite development[184]. The apicoplast-mitochon-
drion association is also involved in other biosynthetic 
processes such as isoprenoid and ubiquinone biosyn-
thesis[174]. Plasmodium FASⅡ consists of  a chain elonga-
tion pathway which depends on four key enzymes (in 
sequence: FabB/F, FabG, FabZ and FabI) and leads to 
the formation of  fatty acids with between 10 and 14 car-
bons linked to an acyl carrier protein[185]. All the four key 
enzymes of  Plasmodium FASⅡ represent promising drug 
targets because of  their bacterial origin[186]. Although as 
a rule the malaria parasite scavenges fatty acids from its 
host, it has been recently demonstrated that FASⅡ is es-
sential for its liver-stage development[187].

During the erythrocyte stage, the rapid growth of  
the parasite is fueled by other precursors such as serine, 
ethanolamine, and choline which represent the major 
building blocks for the de novo synthesis of  structural and 
regulatory phospholipids. The enzymes involved in these 
biosynthetic pathways are either absent from humans, or 
markedly different from their human counterparts, and 
thus represent other important drug targets[186].

Glucose pathway
In the P. falciparum the mitochondrion is atypical. During 
the asexual stage, it lacks cristae, but possibly develops 
cristae in the gametocyte stage[188]. The role of  the para-
site mitochondrion has not yet been completely clarified, 
though the main functions of  a typical mitochondrion 
have been assessed. It is involved in energy generation 
through glycolysis, electron transport via flavin adenine 
dinucleotide-linked tricarboxylic acid cycle enzymes, 

and intermediary metabolism[189]. Glucose is the primary 
source of  energy but the metabolic steps involved in the 
conversion of  glucose to lactate (approximately 85%) 
are essentially the same as that found in other organisms. 
Therefore, the glycolytic pathway of  Plasmodium has not 
been investigated as a potential drug target as much as 
other pathways. In this context, a parasite-derived carrier 
protein called P. falciparum hexose transporter is more 
important as a drug target due to its superior affinity for 
glucose as compared to human Glucose transporter 1[190]. 

Other pathways under evaluation
There are several other secondary metabolic pathways 
of  the malaria parasite that are currently under consider-
ation as valid drug targets[191]. 

Antioxidant enzymes in the redox pathway, such as 
glutathione reductase, glutathione S-transferase, and 
thioredoxin reductase can be exploited as antimalarial 
drug targets since they differ sufficiently from the host 
enzymes.

Staines et al[192] have reported the induction by the 
parasite of  new permeability pathways towards the mem
brane of  infected RBCs. These pathways are mainly anion 
specific channels that also increase the influx of  cations 
and small electroneutral solutes (although at a lower rate).

Plasmodial cyclin-dependent kinases are highly con-
served and play a pivotal role in parasite growth and 
development, and are currently being exploited for the 
development of  selective inhibitors[193].

The shikimate pathway is absent in human and all 
other mammals, but it is essential for parasite growth. 
Thus, it is being thoroughly investigated for the devel-
opment of  new antimalarial agents[194]. This pathway is 
an important metabolic route that links carbohydrate 
metabolism to the biosynthesis of  aromatic compounds 
such as aminoacids and precursors of  other essential co-
factors (ubiquinone and folic acid). 

Aquaporins are integral membrane proteins that re
gulate the flow of  water or uncharged polar solutes. 
They protect the parasite from the osmotic stress en-
countered during its development inside the erythrocyte 
as well as during its passage through the kidney of  the 
human host. Moreover, they help the parasite to acquire 
nutrients from the host organism and to eliminate me-
tabolites. The structure of  plasmodial aquaporins differs 
from from that of  human aquaporins at the level of  the 
accessible pore mouth. Therefore, aquaporins represent 
a valid alternative target for the development of  new 
antimalaial agents[195].

CONCLUSION
In spite of  the significant recent advances in antimicro-
bial chemotherapy, supportive care and vector control 
strategies, malaria still represents a serious threat to hu-
man heath, killing about one million people per year 
worldwide. Part of  the inability to combat this disease is 
attributed to an incomplete understanding of  its patho-
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genesis and pathophysiology. Improving the knowledge 
of  the underlying pathogenic mechanisms of  malaria 
transmission and of  the exclusive metabolic pathways 
carried out by the parasite, should promote the efficiency 
of  the treatment of  disease and help the identification 
of  novel targets for potential therapeutic interventions. 
Moreover, the elucidation of  determinants involved in 
the spread of  malaria - which we have hopefully suf-
ficiently covered within this review - will provide impor-
tant information for efficient planning of  strategies for 
targeted control.
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