
in constitutive activation of the tyrosine kinase and its 
downstream signaling pathways. Oncogenic KIT  or 
PDGFRA mutations are compelling therapeutic targets 
for the treatment of GISTs, and the KIT/PDGFRA 
inhibitor imatinib is the standard of care for patients 
with metastatic GISTs. However, most GIST patients 
develop clinical resistance to imatinib and other tyrosine 
kinase inhibitors. Five mechanisms of resistance have 
been characterized: (1) acquisition of a secondary point 
mutation in KIT  or PDGFRA; (2) genomic amplification 
of KIT; (3) activation of an alternative receptor tyrosine 
kinase; (4) loss of KIT oncoprotein expression; and (5) 
wild-type GIST. Currently, sunitinib is used as a second-
line treatment for patients after imatinib failure, and 
regorafenib has been approved for patients whose 
disease is progressing on both imatinib and sunitinib. 
Phase Ⅱ/Ⅲ trials are currently in progress to evaluate 
novel inhibitors and immunotherapies targeting KIT, 
its downstream effectors such as phosphatidylinositol 
3-kinase, protein kinase B and mammalian target of 
rapamycin, heat shock protein 90, and histone deace-
tylase inhibitor. Other candidate targets have been 
identified, including ETV1, AXL, insulin-like growth 
factor 1 receptor, KRAS, FAS receptor, protein kinase 
c theta, ANO1 (DOG1), CDC37, and aurora kinase A. 
These candidates warrant clinical evaluation as novel 
therapeutic targets in GIST. 
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kinase inhibitors; KIT ; Platelet-derived growth factor 
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Core tip: Oncogenic KIT  and platelet-derived growth 
factor receptor α (PDGFRA) mutations are compelling 
therapeutic targets in gastrointestinal stromal tumors 
(GISTs), and the KIT/PDGFRA kinase inhibitors imatinib, 
sunitinib, and regorafenib are the standards of care 
for patients with unresectable or metastatic GIST. 
However, most patients eventually develop resistance 
to these kinase inhibitors, resulting in an urgent need to 
identify biologically rational targets for novel therapies. 
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Abstract 
Gastrointestinal stromal tumors (GISTs) are the 
most common type of mesenchymal tumor of the 
gastrointestinal tract. The tumorigenesis of GISTs is 
driven by gain-of-function mutations in KIT or platelet-
derived growth factor receptor α (PDGFRA), resulting 
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Herein, we review advances in the research on GIST 
and the therapies that are used to treat it. Additionally, 
we discuss novel agents, targets, and strategies for the 
future treatment of GIST.

Zhu JQ, Ou WB. Therapeutic targets in gastrointestinal stromal 
tumors. World J Transl Med 2015; 4(1): 25-37  Available from: 
URL: http://www.wjgnet.com/2220-6132/full/v4/i1/25.htm  DOI: 
http://dx.doi.org/10.5528/wjtm.v4.i1.25

INTRODUCTION
Gastrointestinal stromal tumors (GISTs) were originally 
described as smooth muscle or neural tumors of the 
gastrointestinal (GI) tract; however, in 1983, Mazur 
et al[1] referred to GISTs as “stromal tumors”[2,3]. 
Subsequent studies identified the interstitial cells of Cajal 
as the origin of GISTs. In 1998, activating mutations of 
the KIT receptor tyrosine kinase (RTK) were found in 
GISTs[4]. In 2003, platelet-derived growth factor receptor 
α (PDGFRA) mutations, an alternative target, were 
identified in GISTs that lacked KIT mutations[5]. 

GISTs are the most common mesenchymal tumors 
of the GI tract and are frequently seen in the stomach 
(60%), small intestine (25%), colorectum (5%-10%) 
and occasionally in the esophagus and appendix[5]. 
Histologically, GISTs may be composed of spindle cells 
(70%), epithelioid cells (20%), or a mixture of these 
types (10%)[6]. Morphologically, GISTs may be mistaken 
for smooth muscle neoplasms, such as leiomyoma and 
leiomyosarcoma (Figure 1)[6]. Consensus guidelines 
for GIST prognosis, accentuate risk stratification based 
on the tumor volume and mitotic index of the primary 
tumors (Table 1)[2].

The majority of GISTs contain oncogenic mutations 
of KIT (approximately 85%) or PDGFRA (approximately 
5%-10%)[2,4-6]. The resulting mutant oncoproteins are 
crucial for GIST oncogenesis, proliferation, and survival, 
as demonstrated by the clinical successes of small 
molecule therapeutics targeting KIT and PDGFRA[7-9]. 
Imatinib, sunitinib, and regorafenib are the standard 
first-, second- and third-line therapies, respectively, 
in patients with inoperable GISTs[10-12], and adjuvant 
imatinib is used in patients with localized GISTs with a 
high risk of recurrence[13]. 

Except from imatinib, sunitinib, and regorafenib, 
which target the activated oncoproteins KIT and 
PDGFRA in inoperable or metastatic GIST, the increasing 
novel drugs are currently in clinical trials, and additional 
potential therapeutic targets have been identified. 
Herein, we summarize these agents, targets, and 
strategies for the future treatment of GIST.

KIT AND PDGFRA ARE MAJOR 
THERAPEUTIC TARGETS IN GISTS 
Oncogenic mutant KIT and PDGFRA play a critical function 
in the initiation of the transformation event that leads to 

GIST. Mutations in KIT are usually found in the regulatory 
and dimerization domains, which are located in the 
extracellular region encoded by exon 9 (approximately 
13% of GISTs), the juxtamembrane region encoded by 
exon 11 (approximately 66% of GISTs), or the tyrosine 
kinase (TK)[Ⅰ] [adenosine triphosphate (ATP) binding 
pocket]; and TK[Ⅱ] (activation loop) domains encoded 
by exon 13 (approximately 1% of GISTs) and exon 
17 (approximately 0.6% of GISTs), respectively[2,14,15]. 
Five percent to ten percent of GISTs contain mutations 
in PDGFRA exon 12 (juxtamembrane region) (1.5%) 
or exon 18 (activation loop) (5.6%). The remainder 
(10%-12%) are wild-type for both KIT and PDGFRA[2,6]. 
The percentage of population of KIT and PDGFRA 
mutations is shown in Figure 2[2].

GISTs harboring insertions, deletions, and missense 
mutations in KIT exon 11 can be found throughout the 
GI tract[16]. A enhanced metastasis and proliferation 
has been associated with loss of heterozygosity at the 
KIT locus[17,18]. The vast majority of GIST cases with 
alterations of KIT in exon 9 involve an insertion of six 
base pairs, resulting in the duplication of Ala and Tyr 
residues. These mutations often occur in high-risk 
primary GISTs of the small intestine[17,19,20], advanced or 
relapsed GISTs[18,21]. A recent study demonstrated that 
GISTs harboring KIT exon 17 and exon 13 mutations 
show slightly overrun population among a subset of 
GISTs. Most of single base pair substitution KIT mutations 
in exon 13 and 17 in small intestinal GISTs, have no 
marked effects on the clinicopathologic characteristics 
when compared to the “average” small intestinal GIST[22]. 

The majority of PDGFRA exon 14 and 18 alterations 
are missense mutations. GISTs harboring PDGFRA 
mutations are confined to the stomach and omentum. 
These tumors are shortage of KIT expression, they 
typically present an epithelioid morphology, and they 
are commonly associated with a benign prognosis[23,24]. 
GISTs harboring a D842V PDGFRA exon 18 mutation 
are resistant to imatinib and other RTK inhibitors[25-28]. 

Inhibition of KIT or PDGFRA kinase activity by 
imatinib results in an objective response in approximately 
80% of metastatic GIST patients (approximately 50% 
partial response, approximately 30% stable) with a 
3-year survival rate of 69%-74%[8]. However, the 
median survival of metastatic GIST patients was 19 mo 
in the pre-imatinib period[10,15]. Constitutive activation of 
KIT or PDGFRA results in the activation of downstream 
signaling intermediates necessary for proliferation, 
survival, adhesion, and blockage of differentiation, 
including the phosphatidylinositol 3-kinase (PI3K)/
protein kinase B (AKT)/mammalian target of rapamycin 
(mTOR) and RAF/mitogen-activated protein kinase 
(MAPK) pathways. Targeting KIT/PDGFRA and its 
downstream intermediates has proven to be an 
effective strategy in the treatment of GISTs[29-32]. 

MECHANISMS OF IMATINIB RESISTANCE 
Imatinib, an ATP-competitive inhibitor of KIT and 
PDGFRA, is the first-line therapy for patients with 
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advanced GIST or primary GIST with a significant risk 
of recurrence after surgery[28,33-35]. Among patients with 
advanced GIST, 75% to 90% will show a response 
to imatinib[15]. Analysis of the crystal structure of 
the KIT-imatinib complex reveals that the drug fills 
a hydrophobic region of the ATP binding pocket, 
effectively blocking ATP binding and inactivating KIT 
and its downstream signaling[36,37]. 

Despite the dramatic clinical success of imatinib, 
most inoperable GIST patients eventually develop 
resistant to imatinib. Imatinib resistance in GIST is 
classified as either primary or secondary imatinib 

resistance. Approximately 10% of GISTs demonstrate 
primary imatinib resistance of clinical progression 
within 3 to 6 mo of the start of treatment[28,38]. Primary 
imatinib resistance is usually observed in tumors that 
lack KIT or PDGFRA mutations (wild-type GISTs), but 
it is also common in tumors harboring KIT exon 9 
mutations[28,38]. Approximately 40% to 50% of GIST 
patients experience secondary imatinib resistance 
of clinical progression after 12-36 mo of response or 
disease stabilization. Molecular studies showed that 
activated KIT expression in imatinib-resistant tumors 
was similar to or greater than those typically found in 
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Figure 1  Morphologic similarities of low-risk gastrointestinal stromal tumor and leiomyoma and of a high-risk gastrointestinal stromal tumor and 
leiomyosarcoma. GIST cells can divided into 3 types: spindle cell (70% of cases), epithelioid cell (20% of cases), and mixed cell (containing a mixture of spindle and 
epithelioid cells). GIST: Gastrointestinal stromal tumor.

GIST-low risk                                                                             GIST-high risk

Leiomyoma                                                                              Leiomyosarcoma

Ex 11 (approximately 66%)

Ex 13 (approximately 1%)

Ex 17 (approximately 0.6%)

Ex 9 (approximately 13%)

Ex 12 (1.5%)

Ex 14 (< 1%)

Ex 18 (approximately 5.6%)

EC domain

 

Transmembrane domain

JM domain

TK[Ⅰ]

TK[Ⅱ]

Figure 2  Schematic structure of KIT and platelet-derived growth factor receptor α receptor tyrosine kinases and distribution of KIT mutations in 
gastrointestinal stromal tumor. EC: Extracellular; JM: Juxtamembrane; TK[Ⅰ]: Tyrosine kinase domain Ⅰ; EX: Exon.
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kinase[63]. Sunitinib is approved for use as a second-line 
therapy for patients with imatinib-resistant GIST[9,64,65]. 
A clinical benefit of sunitinib was seen in common 
primary GIST with KIT exon 9 (58%), KIT exon 11 
(34%), and wild-type KIT/PDGFRA (56%)[9]. Pro-
gression-free survival (PFS) was greater improvement 
for patients with a wild-type genotype (P = 0.0356) or 
with primary KIT exon 9 mutations (P = 0.0005) than 
for those with KIT exon 11 mutations. Overall survival 
(OS) showed the similar pattern. The PFS and OS 
were greater improvement for patients with secondary 
KIT exon 13 or 14 mutations than for those with 
exon 17 or 18 mutations[9]. The safety and efficacy 
of regorafenib in metastatic or unresectable GIST 
patients after failure of imatinib and sunitinib were 
evaluated in phase Ⅲ, and the results showed that 
regorafenib can markedly improve PFS compared with 
control in metastatic GIST patients with progression 
after standard treatments[12,66]. Currently, regorafenib 
has been approved for patients whose tumors are 
progressing on both imatinib and sunitinib. A large 
number of therapies are in various stages of pre-clinical 
and clinical trial development and are summarized in 
Table 2[10,13,14,21,30,64,67-84]. These therapies can be divided 
into four groups: TKIs, PI3K/mTOR inhibitors, heat 
shock protein 90 (HSP90) inhibitors, and others.

Multiple TKIs, including nilotinib, sorafenib, dasatinib, 
vatalanib, and motesanib, are being investigated as 
potential therapies for GIST. Nilotinib, an inhibitor 
of KIT, PDGFRA and BCR-ABL, has been shown to 
be active in a small series of imatinib-resistant and 
sunitinib-resistant GIST patients in a phase Ⅰ study[67,

71,74,85]. Sorafenib, an inhibitor of RAF kinase, VEGFR, 
PDGFR, and KIT, inhibited KIT activity in some KIT 
primary and secondary mutations in a phase Ⅱ trial 
in imatinib- and sunitinib-resistant GIST[69,80,86,87]. 
Dasatinib, a dual SRC/ABL kinase inhibitor, binds and 
inactivates wild-type and mutant KIT regardless of the 
conformation of the KIT activation loop[42,43]. Linsitinib 
(OSI-906) is a selective inhibitor of insulin-like growth 
factor receptor (IGFR)/insulin receptor. The combination 
of imatinib and linsitinib has been shown to be effective 
in wild-type GIST with insulin-like growth factor 1 
receptor (IGF1R) overexpression or amplification[88]. 
Vatalanib (PTK787) and motesanib (AMG706), multi-
kinase inhibitors, have been evaluated in phase Ⅱ 
trials for patients who are resistant to both imatinib and 
sunitinib[89,90]. Vatalanib has shown activity in patients 
with imatinib-resistant or both imatinib- and sunitinib-
resistant GIST[89,90]. Motesanib treatment was shown 
to have acceptable toxicity, and it resulted in disease 
stabilization in GIST patients[82]. 

The PI3K/AKT/mTOR pathway is crucial for pro-
liferation and survival in GIST[29,30,68,91-93]. Preclinical 
experiments have confirmed that targeting the PI3K/
AKT/mTOR pathway is a rational therapeutic strategy. 
Early studies with mTOR inhibitors have shown limited 
success, possibly due to feedback activation of AKT 

untreated GISTs[15]. Secondary KIT mutations were 
rare in GISTs with primary resistance but often found 
in GISTs with secondary resistance (10% vs 67%; 
P = 0.002). Polyclonal secondary kinase mutation 
was detected in 18.8% patients. The secondary 
kinase mutations were nonrandomly distributed and 
were associated with attenuated imatinib sensitivity 
compared with KIT exon 9 and exon 11[15]. Mechanisms 
of acquired resistance include secondary mutations 
in KIT or PDGFRA, genomic amplification of KIT, or 
activation of an alternative RTK[6,14,39-46]. An even 
more challenging resistance mechanism, seen in 
approximately 5%-10% of clinically progressing KIT-
mutant GISTs involves a transition from dependence 
on oncogenic KIT to a new imatinib-insensitive 
oncogenic driver, accompanied by the loss of former 
KIT expression[39,40]. 

NOVEL INHIBITORS IN PRE-CLINICAL 
MODELS AND CLINICAL TRIALS
Tumorigenesis is a complex, multi-step process, and 
oncogenic RTK proteins frequently play key roles[47] 

(Table 2). Oncogenic RTK mutations can lead to 
constitutive kinase activation and thereby enhance 
growth and survival in cancer cells[48,49]. Tyrosine 
kinases can be divided into two categories: receptor 
tyrosine kinases and non-receptor tyrosine kinases. At 
present, approximately 90 types of TK members have 
been identified, including 58 RTKs, such as PDGFR, 
epidermal growth factor receptor (EGFR), fibroblast 
growth factor receptor, and 32 non-RTKs[50]. Oncogenic 
RTK mutants are useful therapeutic targets, as shown 
by the clinical benefit of small molecular inhibitor 
therapies in chronic myeloid leukemia (BCR-ABL)[51], 
metastatic breast cancer [human epidermal growth 
factor receptor 2 (HER2)][52], GIST (KIT/PDGFRA)[8], 
and non-small-cell lung cancer [EGFR, hepatocyte 
growth factor receptor (MET), anaplasticlymphoma 
kinase, HER2][47,53-62].

Sunitinib is an oral multi-target tyrosine kinase 
inhibitor (TKI) with activity against KIT, PDGFRA, FMS-
Like Tyrosine Kinase 3, Vascular endothelial growth 
factor receptor (VEGFR), and orphan receptor tyrosine 
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Table 1  Risk stratification of primary gastrointestinal stromal 
tumor by mitotic index, size and anatomic location[2]

Prognosis of primary GIST

Risk Size (cm) Mitotic count (per 50 HPF)
Very low risk < 2 < 5
Low risk 2-5 < 5
Intermediate risk < 5   6-10

  5-10 < 5
High risk > 5 > 5

  > 10 > Any mitotic rate
Any tumor   > 10

HPF: High power fields; GIST: Gastrointestinal stromal tumor.
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after mTORC1 inhibition. Simultaneous targeting 
of multiple nodes in the PI3K/AKT/mTOR pathway 
prevents feedback activation and may translate into 
more complete pathway inhibition. A few therapies 
targeting this pathway are currently being evaluated 
in phase Ⅰ and Ⅱ clinical trials[94]. A number of drugs 
currently in development include inhibitors of pan-
Class Ⅰ PI3K (BKM120 and GDC0941), PI3K/mTOR 
(BEZ235, SF1126 and GDC0980), AKT (Perifosin), 
and mTOR (Everolimus/RAD001 and Temsirolimus). 
Additionally, combined inhibition of KIT and PI3K/AKT/
mTOR results in a greater response compared to either 
intervention alone[73,94-97].

Heat shock proteins control the proper folding, 
function, and stabilization of various client proteins. 

HSP90 optimizes and maintains the folding and 
localization of many activated tyrosine kinases and 
also prevents proteasomal degradation[98]. HSP90 
is abundant in eukaryotic cells, comprising up to 
1%-2% of total cellular protein, and it plays key roles 
in regulating cell proliferation, differentiation, and 
apoptosis[99,100]. The HSP90 inhibitor 17-allylamino-17-
demethoxygeldanamycin (17-AAG), a geldanamycin 
derivative[101], binds a ATP-interaction pocket in the 
HSP90 NH2-terminal domain[102] and shows anti-
proliferative effects in various human cancers, where 
it can degrade HSP90-client oncoproteins with high 
selectivity[103,104]. Whereas the clinical application of 
17-AAG has been hampered by its low water solubility, 
IPI-504, a 17-AAG derivative, exhibits improved 
aqueous solubility while maintaining the biological 

HSP90-inhibitory properties of 17-AAG[105]. Furthermore, 
clinical trials with new-generation synthetic HSP90 
inhibitors are ongoing in various cancer types. HSP90 
is an attractive target in GIST as it is a key chaperone 
for KIT and PDGFRA[79,106]. Targeting HSP90 results in 
pro-apoptotic and anti-proliferative effects in GIST and 
is associated with the inhibition of KIT and PDGFRA 
signaling[72,79,107,108]. Other HSP90 inhibitors are in 
development (NVP-AUY922, AT-13387, KW-2478, and 
SNX-5422) and show promise for GIST treatment, 
particularly in combination with TKI[109]. 

Other drugs are in various stages of development 
for the treatment of GIST. Flavopiridol, a transcription 
inhibitor, has been evaluated in an ongoing phase Ⅰ trial 
in combination with doxorubicin[110]. Histone deacetylase 
inhibitors (HDACIs) alone or in combination with 
imatinib have shown pro-apoptotic and anti-proliferative 
effects in GIST and are associated with inhibition of 
KIT and a reduction in the expression and activities of 
downstream pathways[111].

NOVEL CANDIDATE THERAPEUTIC 
TARGETS
Other therapeutic targets have been identified for 
the treatment of GIST, including Ets Variant 1 (ETV1), 
AXL, FAS, IGF1R, protein kinase c theta (PKCθ), RAS, 
CDC37, cyclin D1, Dog1, and aurora kinase A. Inhibitors 
targeting these candidates are being developed, and 
some are being evaluated in clinical trials.
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Table 2  Novel agents are being developed for gastrointestinal stromal tumor therapy[10,13,14,21,30,64,67-84]

Agent Molecular target Phase

Kinase inhibitors
Nilotinib KIT, PDGFRs, BCR-ABL Ⅰ 
Sorafenib Raf, KIT, PDGFRB, VEGFR, FLT3, RET 71%
Dasatinib Src, ABL, KIT, PDGFRs Phase Ⅱ ongoing in advanced sarcomas and accepting patients
Cediranib (AZD2171) VEGFR, KIT, PDGFRs Phase Ⅱ ongoing 
OSI-930 VEGFR, KIT Phase Ⅱ ongoing, not recruiting
Linsitinib (OSI-906 ) IGF1R Phase Ⅲ 
Vatalanib (PTK787) VEGFR, KIT, PDGFRs 67%
Motesanib (AMG706) VEGFR, KIT, PDGFRs, RET 24%-27% 
XL820 KIT, PDGFRB, VEGFR Phase Ⅱ ongoing, not recruiting
mTOR and AKT inhibitors
Perifosine AKT Phase Ⅱ ongoing in combination with imatinib
Everolimus mTOR 26%
Temsirolimus mTOR Phase Ⅱ ongoing, closed recruitment
Hsp90 inhibitors
17-AAG Hsp90 Phase Ⅱ/Ⅲ 
Ganetespib (STA-9090) Hsp90 Phase Ⅱ
AUY922 Hsp90 Phase Ⅱ
AT13387 Hsp90 Phase Ⅱ ongoing in combination with imatinib
IPI-504 Hsp90 78%, phase Ⅲ ended due to safety concerns 
Others
Flavopiridol Transcription inhibitor Phase Ⅰ ongoing in combination with doxorubicin
Clinical benefit is defined as complete or partial response or stable disease

PDGFRs: Platelet-derived growth factor receptors; PDGFRA: Platelet-derived growth factor receptor α; PDGFRB: Platelet-derived growth factor receptor β; 
VEGFR: Vascular endothelial growth factor receptor; FLT3: FMS-Like Tyrosine Kinase 3; IGF1R: Insulin-like growth factor 1 receptor; AKT: Protein kinase B; 
mTOR: Mammalian target of rapamycin; Hsp90: Heat shock protein 90; RET: Orphan receptor tyrosine kinase.
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The E26 transformation-specific family member 
ETV1 is overexpressed in the GIST and is required 
in the development of both imatinib-sensitive and 
imatinib-resistant GIST[112-114]. ETV1 enhancer binding is 
a master regulator of an ICC-GIST-specific transcription 
network. Activated KIT cooperates with ETV1 to induce 
development of GIST, regulating the ETV1 transcriptional 
program by prolonging ETV1 protein stability through 
MAPK signaling[112,114]. Inhibition of ETV1 reduces the 
expression of KIT, reduces mutagenesis, and stabilizes 
the GIST genome, thereby inhibiting GIST growth and 
progression and inducing apoptosis.

AXL (UFO/ARK/Tyro), an RTK stimulated by its 
ligand growth arrest-specific 6, shows potent onco-
genic and transforming activity in normal and cancer 
cells[115-117]. AXL also plays a role in tumor cell invasion, 
metastasis, and survival[41,118,119]. AXL is active in GIST 
metastases that lose KIT expression at the time of 
clinical progression on imatinib[41,120]. In KIT-independent 
GISTs, AXL knockdown results in upregulation of 
p21, p27 and p53 protein expression and shows anti-
proliferative effects[120]. MP470, a KIT/AXL inhibitor, 
shows a synergistic cytotoxic effect in GIST cells when 
combined with docetaxel (taxotere)[41].

Fas and its ligand FasL belong to the tumor 
necrosis factor family of death receptors. Activation of 
Fas by FasL induces cell apoptosis through caspase 8 
signaling. Down-regulation of Fas is associated with 
tumorgenesis[121,122]. Fas and FasL expression were 
positively correlated in primary GISTs, but there was 
no association KIT mutation status[123]. MegaFasL, a 
hexameric form of soluble FasL, is an active apoptosis-
inducing agent and potentiated the apoptotic effects of 
imatinib in GIST cell lines[123].

The IGF/IGF1R signaling system has been implicated 
as a relevant therapeutic target in a variety of cancers. 
When IGF1 binds with IGF1R, it activates downstream 
signaling cascades, such as the PI3K/AKT/mTOR and 
RAF/MEK/MAPK pathways, to trigger protein synthesis, 
and it also activates anti-apoptotic and proliferative 
pathways[124-126]. Recent reports have shown that IGF1R 
is amplified in a subset of GISTs[127] and over-expressed 
in wild-type and pediatric GIST[88,128,129]. Recent studies 
have shown that the IGF/IGF1R pathway may be a 
promising therapeutic target for GIST[127,130-135]. 

PKCθ, a member of the protein kinase C family 
commonly expressed in T cells and myogenic cells[136,137], 
is expressed at high levels and activated in GIST 
irrespective of the KIT or PDGFRA status. Therefore, 
PKCθ serves as a diagnostic marker of GIST[138-141]. PKCθ 
knockdown is accompanied by inactivation of KIT in 
KIT+/PKCθ+ GIST cell lines. PKCθ knockdown resulted 
in inhibition of PI3K/AKT signaling, upregulation of 
pro-apoptotic proteins p21 and p27, cell cycle arrest, 
and apoptosis, recapitulating the effect of direct KIT 
targeting[142]. PKCθ is a compelling therapeutic target 
in GISTs, including those with mutations that confer 
resistance to KIT/PDGFRA inhibitors.

Wild-type GISTs often demonstrate primary imatinib 

resistance. In some cases, these tumors are succinate 
dehydrogenase (SDH)-deficient GISTs with mutations 
in SDHA, SDHB, or SDHC[143,144], while others have no 
known genetic mutations. A recent report suggested 
that KRAS mutations might confer imatinib resistance 
in GIST, and although rare, KRAS gain-of-function 
mutations contribute to clinical imatinib resistance[145,146]. 
Serrano et al[145] used a Sequenom panel to screen 
for RAS, BRAF, and PI3KCA mutations in 27 wild-type 
GIST patients. Only one of these 27 GISTs contained a 
mutation in this pathway, harboring concomitant HRAS 
G12V and PIK3CA H1047R mutations[145]. KRAS and 
HRAS can contribute to GIST oncogenesis and indicate 
the importance of the PI3K/AKT and RAS/RAF pathways 
in GIST tumorigenesis.

As discussed previously, HSP90 inhibitors strongly 
inactive KIT kinase activity, but clinical applications in 
GIST patients have been prevented due to the toxicity 
resulting from inactivation of HSP90 client proteins 
beyond KIT and PDGFRA. Genome-scale short-
hairpin RNA (shRNA) screening identified CDC37, an 
HSP90 cofactor, as an essential GIST-specific gene[147]. 
Validation studies in treatment-naive and imatinib-
resistant GIST cell lines demonstrated that CDC37 is 
a viable therapeutic target in GIST, recapitulating the 
effect of HSP90 inhibition while remaining selective 
for KIT/PDGFRA and a limited number of other HSP90 
clients[147]. CDC37 inhibition represents a potential 
HSP90 targeting strategy that limits toxicity for GIST 
patients. 

The strongly expressed DOG1 (ANO1/TMEM16A) 
has been used as a diagnostic marker to differentiate 
GIST from other sarcomas[148-151]. Loss of DOG1 
expression occurs together with loss of KIT expression 
in a subset of GISTs that are resistant to imatinib. 
Although DOG1 inhibition do not inhibit cell growth in 
vitro, DOG1 knockdown delays the growth of xenograft 
models of GIST and is associated with the up-
regulation of insulin-like growth factor binding protein 
5, a potent antiangiogenic factor implicated in tumor 
suppression[152]. These findings suggest that DOG1 
is a potential target in GIST through its role in IGFR 
signaling.

A recent analysis of the prognostic significance of 
aurora kinase A (AURKA) in imatinib-treated patients 
with advanced GIST suggested that the expression of 
AURKA may predict recurrence in patients with primary, 
surgically resected GISTs[153,154]. AURKA overexpression 
is a prognostic factor of poor PFS and OS. Inhibition of 
AURKA suppresses the growth of both imatinib-sensitive 
and imatinib-resistant GIST cells in a concentration-
dependent manner, and it results in a synergistic 
cytotoxicity with imatinib[154].

CONCLUSION
Oncogenic KIT or PDGFRA receptor tyrosine kinase 
mutations are compelling therapeutic targets in 
GISTs, and the KIT/PDGFRA kinase inhibitors imatinib, 
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sunitinib, and regorafenib are standards of care 
for patients with unresectable or metastatic GIST. 
However, most patients eventually develop resistance 
to KIT/PDGFRA kinase inhibitors, indicating that there is 
an urgent need to identify novel therapeutic strategies. 
A number of novel drugs are undergoing clinical trials, 
and several novel therapeutic targets have been 
identified, showing promise for the future treatment of 
GIST.
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