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Abstract
Despite various advances in cancer research, the incidence and mortality rates of 
malignant diseases have remained high. Accurate risk assessment, prevention, 
detection, and treatment of cancer tailored to the individual are major challenges 
in clinical oncology. Artificial intelligence (AI), a field of applied computer 
science, has shown promising potential of accelerating evolution of healthcare 
towards precision oncology. This article focuses on highlights of the application of 
data-driven machine learning (ML) and deep learning (DL) in translational 
research for cancer diagnosis, prognosis, treatment, and clinical outcomes. ML-
based algorithms in radiological and histological images have been demonstrated 
to improve detection and diagnosis of cancer. DL-based prediction models in 
molecular or multi-omics datasets of cancer for biomarkers and targets enable 
drug discovery and treatment. ML approaches combining radiomics with 
genomics and other omics data enhance the power of AI in improving diagnosis, 
prognostication, and treatment of cancer. Ethical and regulatory issues involving 
patient confidentiality and data security impose certain limitations on practical 
implementation of ML in clinical oncology. However, the ultimate goal of 
application of AI in cancer research is to develop and implement multi-modal 
machine intelligence for improving clinical decision on individualized manage-
ment of patients.

Key Words: Artificial intelligence; Deep learning; Machine learning; Precision oncology; 
Radiomics; Radiogenomics
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Core Tip: Artificial intelligence represents the future of healthcare particularly precision 
oncology for prevention, detection, risk assessment, and treatment of cancer. 
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Application of machine learning- and deep learning-based algorithms in translational 
research has been demonstrated to improve accuracy of cancer diagnosis and anti-
cancer drug development. Multi-disciplinary collaboration with resolution of ethical 
and regulatory issues of multi-modal machine intelligence are indicated for 
implementation of computer-assisted clinical decision on individualized patient 
management.
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INTRODUCTION
Precision medicine is the new frontier of healthcare and medical research, and it has 
been mainly implemented in oncology. Precision oncology can be defined as an 
approach for treatment and prevention of cancer with the individual variability in 
genes, environment, and behavior taken into account. Accurate risk assessment, 
prevention, detection, and treatment of cancer tailored to the individual are major 
challenges in clinical oncology. Despite various advances in basic, translational, and 
clinical cancer research, the incidence and mortality rates of malignant diseases have 
remained high[1,2]. Artificial intelligence (AI), a field of applied computer science, has 
shown promising potential of accelerating towards the goal of precision oncology. 
Application of AI in oncology involves integrative analysis of “big cancer data” such 
as digitized images, multi-omics, clinical datasets, and population health.

With the advent of electronic health records, bio-banking, multi-omics, and 
digitized radiographic and histological images, we have entered the era of big data 
and team science. AI has emerged as a powerful technology that will transform 
healthcare by multi-disciplinary research to capture and analyze large pools of 
data[3,4]. Application of AI in translational cancer research has shown its potential for 
advancing diagnosis, prognostication, and treatment[5]. This is accomplished by 
integration and analysis of large data sets and generating algorithms-based prediction 
models. Machine learning (ML) is a branch of AI that applies statistical methods to 
detect patterns within datasets[6]. Deep learning (DL), characterized by deep artificial 
neural network, is a sub-branch of ML that utilizes the capability of multi-layered 
networks[7] (Figures 1 and 2). Application of ML and DL approaches has been 
demonstrated to advance translational cancer research in various aspects. These 
include detection and classification of tumor subtypes, diagnosis of cancer, assessment 
of cancer risk, prediction of clinical outcomes, discovery of cancer biomarkers, 
repurposing of drugs for cancer treatment, and predicting drug response of tumors.

ML IN RADIOLOGICAL IMAGES OF CANCER
Classification and early detection of cancer are crucial for accurate diagnosis and 
treatment with curative intent. In “radiomics”, the data based on algorithm for 
extracting and analyzing features from medical images enable improvement of 
accuracy of cancer diagnosis, prognostication, and clinical prediction[8]. Advances have 
been made in research of DL with convolutional neural networks (CNN), an algorithm 
to process and differentiate images, in cancer imaging and help facilitate accurate 
classification and detection of cancer[9] (Figure 3).

DL with CNN and its variants has been applied for classification and detection of 
cancer in different organs. Several studies using DL in radiological images as input 
data are described as follows. Using a dataset of about 130000 clinical images of skin 
lesions, a trained CNN is capable of a dermatologist-level classification of keratinocyte 
carcinoma and malignant melanoma[10]. As shown in a systematic review of eleven 
studies, CNN enables accurate diagnosis of hepatocellular carcinoma by recognizing 
specific features in computed tomographic (CT) or magnetic resonance images[11]. 
Based on retrospective datasets of 2652 digital mammography, 653 of which showed 
malignancy, the AI system using DL CNN algorithms to detect calcifications and soft 

https://www.wjgnet.com/2220-6132/full/v9/i1/1.htm
https://dx.doi.org/10.5528/wjtm.v9.i1.1
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Figure 1 Artificial intelligence, machine learning, and deep learning. Artificial intelligence is a field of applied computer science that mimics human 
cognition to complete a task. Machine learning is a branch of artificial intelligence that manually extract features from input data to create a model that categorizes the 
object. Neural network is a set of machine-based learning algorithms to learn labeled datasets and perform classification tasks, and it comprises an input layer, a 
hidden layer of interconnected nodes, and an output layer. Deep learning is a machine learning technique that uses neural network architectures, and the term “deep” 
refers to the number of hidden layers (more than three) in the neural network.

Figure 2 A neural network in machine learning. Neural network is a set of machine-based learning algorithms, and it comprises an input layer (red circles), a 
hidden layer of interconnected nodes (blue circles), and output layer (green circle). The function of a neural network is to extract and process features from labeled 
datasets and perform classification tasks. A representative hidden layer of interconnected nodes (blue circles) is shown. A deep learning node (blue circle) is a 
computational unit that combines input data with weights (assigned significance) and generate an output layer. For deep learning, a neural network contains more 
than three hidden layers.

tissue lesions showed an accuracy for detection of breast cancer comparable to an 
average breast radiologist[12]. Using two independent datasets for training and 
validating the AI algorithm, the accuracy of a DL-based model for screening breast 
cancer by mammography is superior to that of expert radiologists, with the area under 
the receiver operating characteristic curve (AUC-ROC) for the AI system greater than 
that for the average radiologist by 11.5%[13]. By combining 3-dimensional deep CNN 
with cloud computing for analysis of the datasets of lung nodules on chest CT 
imaging, lung cancer can be accurately detected with a sensitivity of 98.7% at 1.97 false 
positives per scan[14].

Results of these studies demonstrate the power of AI using DL CNN algorithms for 
accurately detecting cancer in different organs (Figure 3). Future investigation by 
clinical trials is indicated to improve the accuracy and efficiency of cancer detection 
using the AI systems. Multi-disciplinary and coordinated research efforts are 
necessary to determine how the DL-based models can be potentially integrated into 
clinical practice.
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Figure 3 A neural network in deep learning of radiological images. The input consists of data derived from radiological images from individuals with 
cancer or without cancer. The output includes detection and classification of tumors.

ML IN HISTOLOGICAL IMAGES OF CANCER
Microscopic analysis of tumor histopathology with immunohistochemistry has been 
the standard practice for diagnosis and grading of cancer. With the advent of scanning 
technology, digitization of whole slide images of biopsied or resected tumor specimens 
has enabled computer-assisted analysis to improve accuracy and efficiency of 
diagnosis. ML/DL for analysis of digitalized images of tumor histopathology has been 
demonstrated to have potential for improving diagnosis of cancer, identifying tumor 
and lymph node metastasis, predicting genetic mutation and clinical outcomes[15] 
(Figure 4).

Here are a few examples that illustrate the power of ML in digitized images of 
cancer for improving accuracy of pathological diagnosis. Using DL with CNN 
technique for analysis of biopsied tissue specimens, prostate cancer as well as micro- 
and macro-metastases of breast cancer in sentinel lymph nodes could be automatically 
identified without the need for immunohistochemistry[16]. Similarly, using DL-based 
approaches to train a CNN to discriminate tumor from normal tissue, metastatic breast 
cancer could be automatically detected in images of biopsied sentinel lymph 
nodes[17,18].

Moreover, DL-based algorithms can be trained to analyze histopathological images 
and predict mutation and clinical outcomes. A deep CNN was trained to analyze 
whole slide images obtained from The Cancer Genome Atlas (https://portal.gdc.
cancer.gov). The DL method could automatically classify the tissues as lung 
adenocarcinoma, squamous cell carcinoma, or normal lung tissue. In addition, the 
trained CNN could accurately predict some of the commonly mutated genes in lung 
adenocarcinoma including EGFR, KRAS, TP53, FAT1, SETBP1, and STK11[19]. A novel 
DL-based approach to train a deep network was used to analyze digitized tissue 
microarray specimens of colorectal cancer from 420 patients, along with their 
clinicopathological features and clinical outcomes. Results of this study show that DL-
based prediction of 5-year disease specific survival is superior to that by visual 
evaluation of histology by expert pathologists[20].

DL with CNN approaches have shown promising potential for improving digitized 
histopathology-based diagnostics (Figure 4). In order to apply for diagnosis and 
classification of cancer in clinical practice, the utility of ML/DL in analyzing digital 
tumor histopathology will need to be assessed and validated in prospective clinical 
trials involving a large number of patients. Furthermore, combination of ML in 
digitized histopathology with other datasets such as tumor omics can enhance the 
predictive capability and accuracy.

ML IN MULTI-OMICS DATASETS OF CANCER
Research on molecular characterization of tumors has generated a wealth of data on 
genetic and epigenetic alterations that control carcinogenesis[21]. Tissue-based omics 
have yielded tremendous number of clinically useful cancer biomarkers and targets. 

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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Figure 4 A neural network in deep learning of digital histopathology. The input consists of digital histopathological data derived from individuals with or 
without cancer. The output includes classification and diagnosis of cancer as well as predicting genetic mutations and prognosis of patients with cancer.

These include data derived from genomics, epigenomics, transcriptomics, proteomics, 
metabolomics, phenomics, and metagenomics [Genomic Data Commons Data Portal (
https://portal.gdc.cancer.gov)][22]. These omics data have been used to classify tumor 
types, identify and develop cancer biomarkers, and drug discovery and development. 
Moreover, ML/DL may help improve the efficiency and accuracy omics-based 
therapeutic strategies[23](Figure 5).

DL algorithms for analysis of omics data have been demonstrated to facilitate 
classification and detection of cancer as well as stratification of risk in patients with 
cancer. Using a DL approach, termed Stacked Denoising Autoencoder, to extract 
features from RNA sequencing (RNA-seq) expression in The Cancer Genome Atlas 
(TCGA) database, breast tissues can be classified into cancer or non-cancer and the 
involved genes can be identified as potential cancer biomarkers[24]. By application of 
CNN for analysis of RNA-seq data in Pan-Cancer Atlas, tissue samples have been 
classified with accuracy into 33 different types of cancer[25]. Besides gene expression 
data, DL analysis of epigenetics data particularly DNA methylation in the context of 
CpG islands has also been shown to classify cancer types. A deep neural network 
(DNN) was developed to extract the deep features of DNA methylation data, and this 
method can differentiate patients with breast cancer from healthy individuals[26]. 
Similarly, a CNN-based DL model can classify different types of cancer by analysis of 
the patterns of DNA methylation[27]. Furthermore, an advanced DNN-based model, 
DeepGene, was developed to analyze somatic point mutation data, and it was 
demonstrated to improve classification of 12 selected types of cancer[28]. Recently, the 
power of DL and traditional ML methods in cancer classification using TCGA datasets 
was compared, and results of the study indicate that the DL method, termed Multi-
Layer Perceptions, outperforms the other approaches in discrimination of samples 
with cancer from non-cancer[29].

In addition to classification of cancer types, DL and ML have been exploited to 
predict patient prognosis and investigate gene regulation. By DL-based analysis of 
multi-omics data, including RNA-seq, microRNA sequencing (miRNA-seq), and DNA 
methylation data, patients with hepatocellular carcinoma can be classified into 
subgroups with difference in survival[30]. DL autoencoder algorithm for analysis of 
multi-omics datasets comprising mRNA, miRNA, and DNA methylation from TCGA 
can also predict the survival subtypes of patients with urinary bladder cancer[31]. 
Besides, ML-based integrative analysis of multi-omics data on the cloud has been 
demonstrated to improve the accessibility and productivity of cancer research for 
discovery of gene regulatory subnetwork, analysis of disease subtype, analysis of 
survival, prediction of clinical outcome, and visualization of multi-omics results[32].

By application of DL for integrative analysis of omics data, prediction models can be 
generated for discovering biomarkers and repurposing drugs[33,34]. In a proof-of-
principle study using transcriptomic profiles of cancer cells treated with a variety of 
drugs at different concentrations, DNNs were trained to classify those drugs into 
therapeutic categories[35]. Using chemical and genetic information, a DL approach was 
shown to model and predict synergistic actions of novel combinations of anti-cancer 
drugs[36]. A DNN-based framework, termed PADME (Protein And Drug Molecule 
interaction prediction), was developed to predict drug-target interaction with input of 

https://portal.gdc.cancer.gov
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Figure 5 A neural network in deep learning of cancer-derived multi-omics. The input consists of multi-omics data derived from various cancers. The 
output includes classification and risk stratification of cancer, predicting prognosis, and investigating gene regulation/biomarkers/biological mechanism, as well as 
drug discovery and development.

information on compounds and protein[37].
Application of ML/DL in analyzing multi-omics has shown utility for classification 

of cancer and its risk stratification prognosis, demonstrated the power of investigating 
gene regulation, biomarkers, and biological mechanism, and created ample 
opportunity for drug discovery and development (Figure 5). Emerging studies have 
explored the potential of DL in omics-based training for prediction of tumor response 
to therapy, monitoring tumor response during treatment, and patient prognosis. 
Various bioinformatics tools have been developed and applied in the analysis of omics 
and inter-omics data in cancer. These approaches may improve diagnosis of breast 
cancer[38], enhance classification of cancer[39], identify cancer-associated sub-path-
ways[40], and provide insight into the oncogenic mechanisms and molecular biomarkers 
in malignant gliomas[41]. Further application of ML/DL in omics datasets in 
combination with other input data such as radiological images and digitized 
histopathology has been shown to enhance the power of AI for precision oncology.

MULTI-MODAL ML FOR PRECISION ONCOLOGY
ML by integrative analysis of large data pools combining different types of inputs has 
been demonstrated to improve accuracy for prediction of diagnosis and clinical 
outcomes. This involves multi-modal ML in combination of radiological images, 
digitized histopathology, and omics in conjunction with electronic clinical data. These 
algorithm-based network models help support and facilitate clinical decision on 
diagnosis, prognostication, treatment, and patient stratification (Figure 6).

The power of multi-modal ML for precision oncology has been demonstrated by a 
“holomics” approach that combines medical images, histology, multi-omics, and 
clinical parameters[42]. By associating radiographic features with patterns of gene 
expression, a method known as “radiogenomics”, the algorithm-based data produce 
information on the underlying disease processes and enable prediction of molecular 
subtypes. Radiomic features can also been linked with other omics data such as 
proteomics, metabolomics, and immunomics. The radiomic biomarkers being 
generated can serve as surrogates that help facilitate diagnosis, prognostication, and 
prediction of tumor response to treatment[43]. In a recent article, a large number of 
studies in radiogenomics across a variety of tumor sites was reviewed[44]. These include 
tumors in the brain, lung, breast, ovary, liver, colon/rectum, prostate, and kidney. In 
these radiogenomics studies, the imaging features of the tumors can be linked with 
specific cancer genetic mutations. Results of these studies suggest imaging signatures 
can be developed as predictive biomarkers of genetic alterations in the tumor.

Besides radiogenomics, multi-modal ML of other types of input data have been 
combined to generate prediction models of clinical outcomes. A computational 
approach using DL-based CNN combines learning of digitized images of 
histopathology and genomic biomarkers along with clinical data of patients with 
glioma. This inter-modal ML-based algorithm has led to development of a predictive 
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Figure 6 Multi-modal deep learning for precision oncology. The input comprises clinicopathological datasets from healthy individuals and patients with 
cancers. The output includes a variety of predicted outcomes that form the basis of precision oncology.

model for determining patient survival[45]. By combined analysis of radiomic features 
of prostate gland with radiologist’s evaluation, prostate specific antigen density, and 
digital rectal examination, models were developed to characterize prostatic lesions as 
benign, clinically significant or insignificant cancer. The ML-based models help 
facilitate selection of patients for MRI-guided biopsy for detection of prostate tumor[46].

Multi-modal ML approaches in combining radiomics and genomics as well as other 
omics have held great promise for improving capability and accuracy of prediction 
models in clinical oncology (Figure 6). Application of multi-modal ML for various 
aspects of translational cancer research is expected to continue to expand. The 
technical and personnel limitations of this evolving field will need to tackled and 
resolved. Standardization of ML-based tools along with concerted efforts through 
collaboration among clinicians and information technologists will help accelerate 
implementation of multi-modal ML in diagnosis and treatment of cancer.

CONCLUSION
Medical application of AI technology has been revolutionizing healthcare. ML and DL 
algorithms create powerful tools and opportunities for advancing translational cancer 
research. Accumulating evidence has begun to demonstrate the value for improving 
various aspects of clinical oncology such as diagnosis and treatment of cancer. In 
particular, advances have been made by DNN-based analysis of “big cancer data” 
towards the goal of precision oncology (Figure 7).

A number of hurdles will need to be resolved in order to move toward 
implementation of multi-modal ML in clinical practice. Limitations in radiomics may 
include inter-observer variability of data processing, reproducibility of radiomic 
features, tumor heterogeneity, and difference in radiomics approach among 
researchers[8,44]. Large infrastructural networks and platforms for collection, processing, 
storage, sharing, and accessing medical images, histopathology, and clinical data 
across institutions may impose challenges[47]. Due to access of personal information 
and cloud-based storage of data, ethical and regulatory issues concerning patient 
confidentiality and data security are non-trivial[48-50].

However, multi-modal ML approaches that integrate large datasets, including 
medical images, digitalized pathology, holomics, and clinical features will continue to 
evolve. Emerging applications of AI in oncology involve ML in selection of 
treatment[23], palliative care and hospice[51], and design of clinical trials[52]. Multi-
disciplinary collaboration for development and adoption of multi-modal ML is 
expected to accelerate healthcare evolution towards precision oncology through 
computer-aided clinical decision on individualized management of patients.
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Figure 7 Machine intelligence in translational cancer research for precision oncology.
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