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Abstract
The gastrointestinal microbiota plays a pivotal role in health and has been linked 
to many diseases. With the rapid accumulation of pyrosequencing data of the 
bacterial composition, the causal-effect relationship between specific dysbiosis 
features and diseases is now being explored. The aim of this review is to describe 
the key functional bacterial proteins and antigens in the context of dysbiosis 
related-diseases. We subjectively classify the key functional proteins into two 
categories: Primary key proteins and secondary key proteins. The primary key 
proteins mainly act by themselves and include biofilm inhibitors, toxin degraders, 
oncogene degraders, adipose metabolism modulators, anti-inflammatory 
peptides, bacteriocins, host cell regulators, adhesion and invasion molecules, and 
intestinal barrier regulators. The secondary key proteins mainly act by eliciting 
host immune responses and include flagellin, outer membrane proteins, and other 
autoantibody-related antigens. Knowledge of key bacterial proteins is limited 
compared to the rich microbiome data. Understanding and focusing on these key 
proteins will pave the way for future mechanistic level cause-effect studies of gut 
dysbiosis and diseases.

Key Words: Gut microbiota; Pyrosequencing; Bacteria; Protein; Immune; Dysbiosis
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Core Tip: Revealing the causal-effect relationship between specific dysbiosis features 
and diseases requires understanding the roles of key bacterial proteins that are involved 
in dysbiosis. Some bacterial proteins may affect the microbiome by their inherent 
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functions. Others shape the microbiome mainly by eliciting host immune responses. 
These key proteins warrant attention in future bioinformatic analyses and mechanistic 
studies.
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INTRODUCTION
The gastrointestinal microbiota is linked to numerous diseases, including inflam-
matory bowel disease (IBD), irritable bowel syndrome (IBS), colorectal cancer, 
cirrhosis, and many others. Thanks to the rapid decrease in the cost of pyrosequencing, 
the gut microbiota, often represented by the fecal bacteria composition, is now easy to 
profile by 16S rDNA sequencing and shotgun metagenomic sequencing. With the 
accumulation of known microbiome-disease correlations in many descriptive studies, 
the mechanisms of known dysbiosis features in the pathogenesis of related diseases 
have become a new frontier to be explored. Understanding these mechanisms is a 
prerequisite to developing the precise intervention methods targeting the gut 
microbiome. Thus, it is necessary to review the key microbial proteins involved in gut 
dysbiosis.

The gut microbiome produces numerous products for itself and the host. The 
collection of small molecules produced by the gut microbiota, termed the metabolome, 
represents promising targets for investigation and translation. The methodology and 
findings of studies of the gut metabolome have been reviewed elsewhere[1,2]. In 
addition, the gut microbiota produces exosomes, which have been reviewed by other 
excellent reviews[3]. The virome[4,5], parasitome[6], helminths, and protozoa-omics[6] 
are also recognized by omic-approaches but with less well documented mechanisms. 
In this review, we will focus on the key peptides, proteins, and antigens produced by 
bacteria and fungi in the context of dysbiosis and diseases.

To organize the review, we categorize the bacterial proteins into two groups: (1) The 
primary key proteins, whose action mainly depends on their inherent properties 
(Table 1); and (2) The secondary key proteins, whose action mainly depends on the 
host response to them (Figure 1, Table 2). This classification mainly depends on the 
current knowledge and is relative. Often, the bacteria-host interaction is bilateral. 
Thus, this classification is subjective and only helps navigate the mechanisms. For each 
group, we organize the key proteins according to their functions to assist in navigating 
this field rapidly.

PRIMARY KEY PROTEINS
Biofilm inhibitors
Biofilm formation is a process of extracellular synthesis by bacteria, and it has adverse 
effects on the immune response of the host[7], resulting in dysbiosis[8]. Bacteria are 
found in the intestinal mucosa of humans and clinical observations have revealed 
bacterial biofilms associated with mucosal colonization in patients with IBD[7]. Many 
infections also involve pathogens forming biofilms, including enterohemorrhagic 
Escherichia coli (EHEC)[9]. Probiotics have been documented to produce enzymes 
degrading biofilms of other species. Escherichia coli (E. coli) Nissle 1917 (EcN), a 
probiotic capable of alleviating inflammation, can produce its own biofilm and 
outcompete that of other intestinal pathogens[10]. Fang et al[11] found that DegP, a 
bifunctional (protease and chaperone) periplasmic protein secreted by EcN, 
contributes to the inhibition of EHEC biofilms by directly interacting with the EHEC 
cell surface while not affecting its own biofilm. Another probiotic, Lactobacillus 
rhamnosus GG (LGG), could also disrupt the biofilm formation of pathogenic E. coli and 
Salmonella[12]. This effect is mediated by its lectin like proteins, termed Llp1 (lectin-
like protein 1) and Llp2[12]. Llp2, which is more active than Llp1, showed inhibitory 

https://www.wjgnet.com/2222-0682/full/v11/i4/130.htm
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Table 1 Summary of primary key proteins

Classification Name Function Ref.

Enzyme DegP Inhibiting EHEC biofilms. [11]

Enzyme Llp1, Llp2 Inhibiting biofilm formation of pathogen. [12]

Enzyme Protease of S. 
boulardii

Digesting both C. difficile toxin A and its receptor binding sites. [15]

Enzyme Lon protease Degrading the oncogene c-MYC. [19]

Secreted protein P9 Inducing the secretion of GLP-1. Inducing the secretion of IL-6 in macrophages. [21,
22]

Secreted protein Peptide B7 Reducing CCR2 expression on all APCs from health people. [25]

Secreted protein MAM Inhibiting the NF-κB pathway and several cell immune responses. Inducing expression of TGF β. [26-
28]

Surface layer protein MIMP Inducing the secretion of anti- inflammatory cytokines and inhibiting inflammatory cytokines. 
Enhancing the intestinal barrier.

[29]

Enzyme OGA Hydrolysing O-GlcNAcylated NF-κB-p65 and IKKβ to inhibit NF-κB signaling. [30]

Bacteriocins PediocinPA-
1/AcHnisin Z

Reducing colonization of VRE in vivo. [38]

Microcin limiting the expansion of pathogens. [39,
40]

Bacteriocins Enterocins Inhibiting a wide spectrum of Gram-positive bacteria. Inhibiting the growth of cancer cells. [42,
43]

Bacteriocins Bacteriocin A, B Degrading pathogenic biofilm and having antibacterial potential. [36]

Bacteriocins Nisin A Changing the integrity of the cancer cell membrane. [44]

Secreted protein P8 Inducing host cell growth arrest at the G2 phase. [46,
47]

Ribosomal proteins HPRP-A1; HPRP-
A2

Resisting infection. Arresting the cancer cells cycle at the G0/G1 phase and G2/M phase. [48-
53]

Innermembrane protein Pre-FadA Binding host epithelial cells. [54]

Secreted protein m-FadA Inducing the invasion of host cells. [54]

Outer membrane protein Fap2 Leading to colonization of Fn. Facilitating tumor immunity evasion. Binding to and activating 
TIGIT. Inducing host lymphocyte apoptosis.

[55-
57]

Secreted proteins OMVs of Fn Inducing the colonization of host epithelial cells. [58-
60]

Cell envelope-associated 
multiprotein systems

Sus-like systems Inducing the colonization of host epithelial cells. [64]

Pili SpaCBA Inducing the adhesion of mucus. [66,
67]

Secreted proteins EVs Inducing the expression of the TJ protein-encoding genes and regulating the intestinal barrier. 
Inducing the expression of PPARα and PPARγ genes and ANGPTL4 gene. Inhibiting blood lipase 
lipoproteins in the bloodstream.

[71,
72]

Secreted proteins TcpC OMVs of 
EcN

Enhancing epithelial barrier. [77-
81]

EcN: Escherichia coli Nissle 1917; EVs: Extracellular vesicles; OMVs: Outer membrane vesicles.

activity against biofilm formation by various pathogens, including clinical Salmonella 
species and uropathogenic E. coli (UPEC) [12]. Thus, biofilm production and inhibition 
might represent key bacterial events in microbiome evolution, as well as promising 
targets to manage dysbiosis.

Toxin degraders 
Probiotics may degrade pathogenic toxins and thus contribute to the homeostasis of 
gut microbiota. Clostridium difficile (C. difficile) mediates intestinal inflammation and 
mucosal damage by releasing two potent exotoxins, toxin A and toxin B[13], while the 
fungal probiotic Saccharomyces boulardii (S. boulardii) is known as the most efficient 
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Table 2 Summary of secondary key proteins

Classification Name Function Ref.

Flagellin Inducing the secretion of proinflammatory cytokines. [87]

Flagellin Recuiting flagellin specific CD4+ T-cells. [85]

Flagellin Inducing the secretion of flagellin antibodies. [88,89]

Flagellin Inducing the secretion of AMPs. [90]

Flagellin Inducing the secretion of human β-defensin 2. [91]

Flagellin Inducing the expression of lncRNA (HIF1A-AS2) and suppressing NF-kB signaling pathway 
activation.

[92]

Outer membrane protein OmpC, 
OmpW

Adhesion and invasion of the CD-associated Escherichia coli in intestinal epithelial cells. Cross-reactive 
bacterial proteins.

[95-97]

Outer membrane protein FomA Inducing upregulation of CD86, MHC II, and primary B cells. Inducing secretion of antigen-specific 
antibody IgA and IgG.

[99,100]

Bacterial division protein FtsZ Cross-reacting with TBB-5 and mediating the secretion of p-ANCA. [102,
103]

Bacterial heat shock 
protein

GroEL Cross-reacting with Hsp60 and inducing antibodies. [110,
111]

p-ANCA: Perinuclear antineutrophil cytoplasmic antibody.

Figure 1 Summary of the location or form of key bio-active microbiota proteins. FtsZ and outer membrane proteins OmpC and OmpW were testified 
to stimulate perinuclear antineutrophil cytoplasmic antibody (p-ANCA). Flagellin was proved to stimulate p-ANCA, flagellin specific CD4+ T-cells, and flagellin 
associated IgG and IgA.

probiotic to prevent intestinal inflammation and mucosal damage associated with C. 
difficile infection[14]. The protective effect of S. boulardii is dependent on a 54 kDa 
protease, which digests both toxin A and its receptor binding sites[15]. Several human 
studies demonstrated that treatment with S. boulardii CNCM I-745 in dysbiosis leads to 
faster reestablishment of a healthy microbiome[16].

Oncogene degraders
Oncogene c-MYC is associated with oncogenic transcription in malignant tumor 
driven by chronic bacterial infections[17], and the up-regulated c-MYC also indicates a 
poor prognosis in some human cancers[18]. The Lon protease from UPEC shows 
potential for therapeutic targeting of c-MYC in cancers, the degradation of c-MYC is 
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dependent on both direct Lon protease cleavage and Hly-dependent activation of CK1
α1, and UPEC represses transcriptional MYC regulators to inhibit c-MYC expression
[19]. In mice, the recombinant Lon (rLon) protease without major toxicity delayed 
tumor development and increased survival in MYC-dependent bladder and colon 
cancer models[19]. These results indicate that probiotics may block tumor proliferation 
by degrading the oncogene.

Adipose metabolism modulators
Akkermansia muciniphila (A. muciniphila), one of the gut microbiota, is connected with 
metabolic disorders, and it reduces the energy absorption under cold conditions in the 
intestine epithelium[20]. P9 is an 84 kDa protein, which is secreted by A. muciniphila. 
P9 increases the glucagon-like peptide-1 (GLP-1) secretion in a calcium-dependent 
manner and specifically promotes interscapular brown adipose tissue (iBAT) non-
shivering thermogenesis in the gut hormone-releasing L cells and HFD mice[21]. The 
ligand–receptor capture (LRC)-TriCEPS technology shows that the P9 interacts with 
intercellular adhesion molecule 2 (ICAM-2), and ICAM-2 reduces the secretion of the 
P9-induced GLP-1 in a dose-dependent manner[21]. Moreover, P9 induced the 
secretion of interleukin-6 (IL-6) in macrophages[21], and IL-6 can stimulate GLP-1 
secretion by intestinal L cells[22].

Anti-inflammatory peptides
The mucosal immune response plays an important role in IBD pathogenesis, and 
perturbations of the gut microbiota are a key element[23]. Probiotics can modulate the 
intestinal cytokine milieu to treat IBD[24] and other diseases. Peptide B7 from the 
probiotic Bifidobacterium longum decreases CCR2 expression on all antigen presenting 
cells from healthy controls but not from active IBD patients[25]. Although this 
bioactive peptide is useless for the treatment of active IBD patients, we cannot ignore 
its potential to prevent inflammation flares in the quiescent phase[25]. Another 
probiotic, Faecalibacterium prausnitzii (F. prausnitzii), one of the most abundant species 
in the human gut microbiota, possesses a 15 kDa protein with anti-inflammatory 
properties, termed a microbial anti-inflammatory molecule (MAM)[26]. The inflam-
matory suppressive role of MAMs from F. prausnitzii may be related to their effects on 
the inhibition of the NF-κB pathway, several cell immune responses such as Th1, Th2, 
and Th17 cells, and the expression of TGF-β[27,28]. The micro integral membrane 
protein (MIMP) identified from Lactobacillus plantarum was found to decrease 
proinflammatory cytokines (IFN-γ, IL-17 and IL-23), increase anti-inflammatory 
cytokines (IL-4 and IL-10), and fortify the intestinal barrier in a dextran sulphate 
sodium induced colitis model[29]. Probiotics have been documented to produce 
enzymes hydrolyzing key proteins in the NF-κB pathway[30]. O-GlcNAcase (OGA) is 
rich in Bacteroidetes and Firmicutes, the major probiotics distributed in the human gut, 
and reduced expression of bacterial OGA genes has been found in ulcerative colitis 
(UC)[30]. Bacterial OGAs are an advanced therapeutic strategy in UC that act by 
hydrolyzing O-GlcNAcylated NF-κB-p65 and IKKβ to inhibit NF-κB signaling in both 
immune cells and intestinal epithelial cells[30].

Bacteriocins
Bacteriocins are ribosomally synthesized bactericidal or bacteriostatic peptides[31,32]. 
Bacteriocins from probiotics maintain the microbial population-level and community-
level dynamics and inhibit other strains[33]. Bacteriocins are mainly divided into two 
classes: Posttranslationally modified class I and unmodified class II[34,35]. In a 
previous study, pediocin, enterocin-A, and enterocin-B were regarded as class II 
bacteriocins[31], and nisin belonged to class I bacteriocins[36,37]. Pediocin PA-1/AcH 
secreted by Pediococcus acidilactici (P. acidilactici) MM33 and nisin Z secreted by 
Lactococcus lactis (L. lactis) MM19, have been proven to reduce colonization of 
vancomycin-resistant enterococci (VRE) in vivo[38]. Microcin-producing EcN limits the 
expansion of competing Enterobacteriaceae, including commensal E. coli, adherent-
invasive E. coli, and Salmonella enterica in the inflamed gut[39] by utilizing catecholate 
siderophores[40]. Enterococcus faecium produces two synergistic bacteriocins, enterocin-
A (a pediocin-like bacteriocin) and enterocin-B. Although the inhibitory spectra of 
enterocins A and B have small differences, both enterocins from Enterococcus faecium 
TI36 inhibit a wide spectrum of Gram-positive bacteria but not Gram-negative bacteria
[41]. With a similar inhibitory spectrum, enterocin A has lower minimum inhibitory 
concentration (MIC) values than enterocin B[41].

Furthermore, the bactericidal effect is drastically increased when a mixture of the 
two bacteriocins is used[41]. The findings of a previous study suggested that the 
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heterodimer of bacteriocin A and B from Enterococcus faecium por1 had antibacterial, 
pathogenic biofilm degradation potential but did not result in haemolysis of human 
red blood cells[42]. A cancer cell growth inhibitory potential of enterocins has been 
demonstrated, and apoptotic makers were observed in enterocin treated cancer cells 
including HeLa, HT-29, and AGS cells[42]. The mechanism of their effects on cancer is 
that cancer cells have more microvilli on their surface, which allows the membrane of 
cancer cells to bind large quantities of bacteriocins[43]; thus, Nisin A from L. lactis 
changes the integrity of the cancer cell membrane and obstructs the rearrangement of 
phospholipids, resulting in increased ion permeability[44]. These bacteriocins enable 
probiotics to treat enterobacterial infections in the gut and even some cancers.

Host cell circle regulators
Some oral bacteria disseminate into the colon and alter the composition of the 
microbiota in the colon, resulting in intestinal dysbiosis and possibly leading to 
colorectal cancer (CRC)[8]. FadA from Fusobacterium nucleatum drives CRC prolif-
eration through E-cadherin and increases the expression of transcription factors and 
inflammatory genes via activation of β-catenin signaling[45]. Some bacterial proteins 
provide new strategies to treat cancer. An 8 kDa protein called p8 was isolated from 
Lactobacillus rhamnosus (LR) KCTC 12202BP, which regulates the p53-p21-Cyclin 
B1/Cdk1 signaling pathway and causes cell growth arrest at the G2 phase in a dose-
dependent manner[46]. Bacterial drug delivery systems are being applied to treat CRC. 
The p8 protein from Pediococcus pentosaceus SL4 (PP-p8) showed antiproliferative 
activity in a mouse CRC model[47]. Moreover, endogenous p8 expression was much 
more effective than exogenous recombinant- p8 expression. This makes gene therapy 
possible[47].

HPRP-A1 and its enantiomer HPRP-A2 are derived from ribosomal protein L1 
(RpL1) of Helicobacter pylori[48]. These proteins can resist infection including fungi, 
bacteria, and parasites[49,50]. Moreover, they have anticancer potential, and both 
peptides lead to apoptosis via caspase-3-, caspase-8-, and caspase-9-dependent 
pathways and inhibit cancer cell growth by arresting the cell cycle at the G0/G1 phase 
and G2/M phase. HPRP-A1 and its enantiomer HPRP-A2 play an important role in 
the inhibition of gastrointestinal cancer[51-53].

Adhesion and invasion molecules
Fusobacterium nucleatum (Fn) is associated with CRC and promotes tumor formation. 
Fn is able to adhere to and invade intestinal endothelial cells by binding to adhesin 
FadA, a virulence factor from Fn[54]. FadA from E. coli enhances the connection 
between host epithelial cells and bacteria. FadA has two forms, anchored form (pre-
FadA) and secreted form (mature FadA), thus the pre FadA-mFadA complex is 
regarded as a unique adhesin/invasin[54]. Fusobacterial lectin (Fap2) might mediate 
the binding of Fn to the host factor Gal-GalNAc in CRC, and Gal-GalNAc is highly 
expressed in human colorectal adenocarcinoma and metastases[55]. Other findings 
support that Fap2 of Fn not only leads to colonization but also facilitates tumor 
immunity evasion[55]. Fap2 directly binds to and activates TIGIT (an inhibitory 
receptor on human natural killer cells and different T cells), and the interaction 
between these two molecules inhibits the cytotoxicity of NK cells and the activities of 
cytotoxic T lymphocytes and T helper cells, increasing the immune evasion of tumor 
cells[56]. Fap2, as an apoptosis-inducing protein, also induces host lymphocyte 
apoptosis and destroys the host immune response, facilitating Fn survival[57]. Liu et al
[58] identified outer membrane vesicles (OMVs) in Fn by LC/MS/MS analysis and 
identified several pathogenic proteins in OMVs, including FadA, Fap2, MORN2, YadA 
(Yersinia adhesin)-like protein, and autotransporter proteins[58]. The MORN2 
domains of Fn may contribute to adhesion and active invasion[59]. Two YadA-like 
proteins exist in OMVs and outer membrane fractions, which reveal great adhesion 
ability[58]; therefore, YadA-like proteins are involved in resisting host immune 
defenses dependent on resisting serum killing activity and phagocytosis[60]. OMVs 
provide new insight into the research and development of vaccines against Fn[58].

Bacteroidetes is one of the most numerous Gram-negative bacteria in the mammalian 
gastrointestinal tract[61]. Cell envelope-associated multiprotein systems, namely, Sus 
(starch utilization system)-like systems[62], are abundant in Bacteroides. Polysaccharide 
utilization loci (PULs) in Sus-like systems are not only used to bind to and degrade 
dietary sugar[63], but they also encode a unique pathway, the ccfA–E genes, called 
commensal colonization factors (CCF systems) for species-specific saturable niche 
colonization[64]. Moreover, the CCF system is medicated by B. fragilis colonization 
during infection with Citrobacter rodentium and antibiotic treatment[64].
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LGG has a very good mucus adhesive capacity compared to another Lactobacillus 
strains[65].The LGG-specific SpaCBA pili are long and thin proteinaceous protrusions 
on bacterial surface, which involved in three pilin monomers: SpaA , SpaB, and SpaC
[66]. The SpaCBA pili mediate adhesive capacity to mucus and contribute to biofilm 
formation[67]. Moreover, the SpaCBA pili may also regular immune response. The 
spaCBA knockout LGG had twofold increased IL-8 and some pro-inflammatory 
markers in Caco-2 cells compared to wild-type[67].

Intestinal barrier regulators
Under dysbiosis, increased permeability of the intestinal epithelium leads to low-
grade inflammation and metabolic dysfunctions[68]. However, according to the leaky 
gut hypothesis, if only the F. prausnitzii is present as a probiotic, it will not beneficial to 
the intestine health and dysbiosis-induced diseases but enter the bloodstream by 
passing though the gut barrier and may cause systemic consequences because of 
obesity and a high-fat diet (HFD)[69,70]. Moosavi et al[71] show that F. prausnitzii
–derived extracellular vesicles (EVs) contain different proteins with a molecular 
weight of 11 to 245 kDa. Compared with F. prausnitzii, its EVs in the Caco-2 cell line 
significantly regulate the intestinal barrier permeability due to increasing the 
expression of the tight junction (TJ) protein encoding genes ZO1 and OCLN, as well as 
PPARα and PPARγ genes and their targeted gene ANGPTL4 at the mRNA level[71]. TJ 
proteins connect the adjacent epithelial cells and block the paracellular space in order 
to obstruct pathogens[72]. ANGPTL4 inhibits blood lipase lipoproteins in the 
bloodstream, which reduces the intake of free fatty acids and cholesterol into the 
tissues[73-76].

TcpC from EcN enhanced the intestinal barrier function by increasing the expre-
ssion of the TJ proteins ZO-1, ZO-2, and claudin-14[77-79]. Moreover, the positive 
strains ECOR63 and ECOR57 increased the transepithelial electrical resistance (TER) in 
T-84 monolayers to strengthen the intestinal barrier[80]. In addition, OMVs and other 
soluble factors from these probiotic bacteria increase the upregulation of ZO-1 and 
claudin-14, but downregulation of claudin-2[81]. Raising claudin-2 levels lead to 
increased barrier permeability[82] and result in CD and UC[83,84]. OMVs and soluble 
factors, rather than TcpC, are able to strengthen the intestinal barrier[81].

SECONDARY KEY PROTEINS
Flagellin
Flagellin is a common conserved component of bacteria, and it induces both innate 
and specific immunity, showing a close relationship between dysbiosis and IBD[85], 
but flagellin of some probiotics has anti-inflammatory effects[86]. Flagellin is regarded 
as the major antigen in pathogenic bacteria. Flagellin binds with the pattern-
recognition receptor Toll-like receptor 5 (TLR5), inducing the secretion of proinflam-
matory cytokines[87]. Compared with healthy controls, both Crohn’s disease (CD) and 
UC patients have a relative increase in the proportion of flagellin specific CD4+ T-cells. 
Cook et al[85] found a positive correlation between the relative abundance of bacteria [
Escherichia/Shigella and (Ruminococcus) gnavus group] in IBD patients and high concen-
trations of flagellin antibodies, including anti-Fla2 IgG and anti-Fla2 IgA[88]. 
Specifically, CBir1 flagellin has been associated with complicated CD, and enzyme-
linked immunosorbent assays proved that anti-CBir1 IgG is independently associated 
with CD[89]. Flagellin may provide a clinically novel approach to prevent pathogen 
infections, including vancomycin-resistant Enterococcus (VRE). Intestinal epithelial 
cells and Paneth cells secrete the antimicrobial protein (AMP) RegIIIγ to kill microor-
ganisms and directly respond to flagellin via the Toll-like receptor (TLR)–myeloid 
differentiation factor 88–mediated pathway[90]. Flagellin of EcN stimulates intestinal 
epithelial cells to produce human β-defensin 2 via three main MAP kinase pathways, 
including ERK1/2, JNK, and p38[91]. Bacterial flagellin also induces negative 
regulation of inflammation. Roseburia intestinalis (R. intestinalis), a dominant symbiotic 
microbiota in the intestine, suppresses inflammation by inducing Treg cells and 
upregulating anti-inflammatory cytokines. However, R. intestinalis is significantly 
reduced in CD patients[86]. Flagellin in R. intestinalis induces the expression of 
lncRNA (HIF1A-AS2) in a dose- and time-dependent manner via p38 STAT1 
activation, and HIF1A-AS2 inhibits the expression of inflammatory genes by 
suppressing NF-kB signaling pathway activation[92].
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Outer membrane proteins
Some evidence linking intestinal dysbiosis with autoimmune diseases has shown that 
they are both associated with increased inflammation[93,94]. Bacterial outer membra-
ne proteins are more likely to trigger an immune response, and the perinuclear 
antineutrophil cytoplasmic antibody (p-ANCA) present in many autoimmune diseases 
cross-reacts with outer membrane proteins. P-ANCA autoantibody is associated with 
UC. A p-ANCA monoclonal antibody detects outer membrane porins OmpC and 
OmpW expressed by colonic bacteria Bacteroides caccae and E. coli[95,96]. A structural 
relationship of the cross-reactive bacterial proteins and the p-ANCA autoantigen has 
been observed in IBD[95,96]. OmpC also enhances the adhesion and invasion of the 
CD-associated E. coli strain LF82 in intestinal epithelial cells through the sigma (E) 
regulatory pathway[97]. Fusobacterium nucleatum (Fn) has been found to be increased 
in the microbiota of diarrhea dominant IBS. The FomA protein is a major outer 
membrane protein of Fn[98]. The FomA of Fn is an immune adjuvant, which is a Toll-
like receptor 2 (TLR2) agonist that induces upregulation of CD86 and MHC II in mice 
and primary B cells in vitro and antigen-specific antibody IgA and IgG secretion in vivo
[99]. These characteristics enhance inflammation in the small intestine epithelium in 
both cell and mouse experiments[99]. Fn causes microbial dysbiosis, exacerbates 
visceral hypersensitivity in a colonization-independent manner, and induces the 
specific IgA agonist FomA[100]. Moreover, FomA has been proven to be an antigen 
that stimulates the secretion of symptom-associated antibodies[100].

Other autoantibody-related antigens 
Primary sclerosing cholangitis (PSC) and autoimmune hepatitis (AIH) are frequently 
associated with chronic IBD, including UC and CD[101]. The immune reaction in PSCs 
is mediated by autoantibodies, including pANCA, that recognize both β-tubulin 
isotype 5 (TBB-5) and the bacterial antigen cell division protein FtsZ[102]. Human 
TBB-5 and FtsZ share a high degree of structural homology in evolutionarily 
conserved epitopes[103]. Moreover, B cells respond directly to microbial constituents 
in PSCs and AIH[104].

Helicobacter hepaticus (Hh) can induce intestinal inflammation in DC-LMP1/CD40 
mice[105]. These immunodeficient mice lost intestinal CD103+ DCs and IL-10+ 
Helios−induced Tregs (iTregs) but had increased IL17+ IFNγ+ Th17/Th1 cells and 
pathogenic IFNγ+ Th1 cells[106,107]. They developed fetal colitis similar to human 
IBD, because CD40-CD40L interactions are connected with the pathogenesis of IBD
[108,109].A 60 kDa Hh-protein, GroEL, as the main antigen recognized by antibodies 
in an iTreg-free setting, triggers fatal colitis[110]. The bacterial GroEL and human heat 
shock protein 60 (Hsp60) share a high similarity and molecular mimicry[111,112], 
hence the antibodies cross-react with Hsp60 and GroEL, which contribute to IBD and 
autoimmune diseases[110].

CONCLUSION
Understanding the key bacterial proteins is significant to both the diagnosis and 
management of dysbiosis related diseases. For the incendiary proteins involved in 
autoimmune diseases and tumors, the presence of the specific marker in the 
microbiota or its specific antibodies might indicate the prognosis of diseases. The 
therapeutic value of targeting these markers would also be tempting. Knowing the key 
elements of microbiota could provide much more specific target than generally 
modulating the microbiota, which is super-high dimensional in taxonomy.

The current mainstream microbiome manipulation approaches are intensively 
investigated, including supplement of probiotics and prebiotics, and fecal microbiota 
transplantation (FMT). However, the probiotics should be strain-defined to gain 
standardized safety, dose, and effect; the adverse events associated with FMT have 
been found recently. The transplanted probiotics met indigenous microbiome-
mediated mucosal colonization resistance in mice and even a specific colonization 
resistance in a person-, strain-, and region- dependent manner in humans[113]. Our 
recent mathematical model studies also suggested intriguing behavior of microbiome 
in response to probiotic supplement[114]. For FMT, the risk of unknown infections is 
still inevitable even after rigorous tests on the donors. The specific microbial proteins 
are easier to be cloned, purified, tested, optimized, and standardized, which is crucial 
for the pharmacology. Furthermore, the natural beneficial bacterial proteins can be 
artificially engineered and optimized to maximum their mechanism. This review 
summarizes the pathogenic and therapeutic mechanisms of some bioactive microbial 
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proteins. This field is cutting edge, and there is a need for further studies to explore the 
role of the key gut microbial proteins in dysbiosis associated diseases.
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