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Abstract
The purpose of this overview is to provide a concise 
introduction to the methodology and current advances 
in molecular dynamics (MD) simulations. MD simula-
tions emerged as a powerful and popular tool to study 
dynamic behavior of proteins and macromolecule 
complexes at the atomic resolution. This approach can 
extend static structural data, such as X-ray crystal-
lography, into dynamic domains with realistic times-
cales (up to millisecond) and high precision, therefore 
becoming a veritable computational microscope. This 
perspective covers current advances and methodology 
in the simulation of protein folding and drug design as 
illustrated by several important published examples. 
Overall, recent progress in the simulation field points 
to the direction that MD will have significant impact on 
molecular biology and pharmaceutical science.
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INTRODUCTION
The understanding of  functions of  biological macro-
molecules has relied not only on the structural data but 
also their dynamical behavior. The early view of  the 
proteins as relatively rigid structures has been replaced 
by a dynamic model. In these models conformational 
changes and motions play an essential role in their func-
tion. In the last 25 years, biomolecular simulations has 
become a powerful tool to trace atomic motions of  pro-
tein and DNA molecules and yielded important insights 
into molecular mechanisms[1-3]. The molecular dynamics 
(MD) simulation is considered a pivotal methodology 
to access dynamical behavior of  macromolecules in 
silico. This technique provides ultimate atomic resolu-
tion details about the dynamic properties of  the system 
as a function of  time. It offers connection between the 
structure and function by enabling the exploration of  
the conformational space and energy landscape available 
to protein molecules. It is not surprising that the term 
“computational microscope” has been accepted by the 
scientific community[4]. 

One of  the first MD simulations of  proteins, bo-
vine pancreatic trypsin inhibitor (BPTI), was reported 
in 1977. This work should be considered as the first at-
tempt to utilize computer simulation to observe protein 
motions at 9.2 picosecond (ps) time scale[5]. In 1988, 
eleven years later, the same protein was simulated for 
210 ps using explicit solvent[6]. The latter work showed 
good correlation between the average structure pro-
duced by simulation and the high-resolution X-ray struc-
ture, emphasizing the importance of  longer simulation 
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time and use of  explicit water molecules. Since then the 
dramatic increase in computational power and significant 
improvement in methodology made the simulation much 
more accurate and stable. It is now routine to run simu-
lations from 100 ns (10-7 s) to several µs (10-6 s) where 
even shorter time scales (10-100 ns) can well describe 
local dynamics of  the proteins structures. Experimental 
measurements show that rotation of  protein side chains 
often occurs around 0.5 ns timescale [“Physical Biology 
of  the Cell”, Rob Phillips, Jane Kondev and Julie The-
riot (2009) and references therein]. However, since many 
functionally important biological events occur on times-
cales of  many microseconds or milliseconds, including 
protein folding, protein-protein or protein-drug interac-
tions, much longer time scales are needed for conforma-
tional sampling. Recently, there were a large number of  
efforts to extend simulations to a longer timescales by 
designing specialized hardware to speed up MD simula-
tions and/or by improving the code[7-9]. The longest MD 
simulation published to date is a millisecond (ms) [1000 
microsecond (µs)] simulation of  the BPTI protein on a 
special-purpose supercomputer (called Anton) designed 
for MD simulations[10-12]. This work showed that BPTI 
transitioned reversibly among a small number of  struc-
turally distinct states with two states in the simulation 
accounting for 82% of  the trajectory which agreed well 
with experimental data. Such behavior could not be ob-
served at shorter (µs) timescales and thus confirms the 
importance of  adequate simulations times.

The MD relies on the solution of  the equations 
that describes the motion of  the molecular system. In 
explicit, all-atom simulations, thousands to millions of  
individual atoms, representing, for instance, all atoms of  
the protein and surrounding water molecules, move in a 
series of  short [e.g., 2 femtoseconds (fs)], discrete time 
steps. The MD trajectory represents the sequential set of  
time-evolved snapshots of  atomic coordinates and gen-
erally provides data only at the level of  atomic positions, 
velocities and single-point energies. The application of  
statistical thermodynamics allows to obtain macroscopic 
properties such as pressure, heat capacity and free ener-
gies of  the system. The product is a detailed “movie” 
of  molecular behavior over time. As a result, MD has 
became a tool for researches to investigate structural 
aspects, kinetics and thermodynamics of  various mac-
romolecule systems, including the dynamics in enzyme 
activity[13-15], transport of  ion and small molecules[16-18], 
protein-protein and protein-DNA interactions [19-21], pro-
tein folding[22,23] and ligand-target interactions[24-27], just to 
mention a few. In general, each step in MD simulations 
consists of  computationally intensive force calculations, 
followed by a less expensive integration step that ad-
vances the positions of  the atoms according to classical 
laws of  motions. Forces for each atom of  the system are 
calculated based on the molecular mechanics equations. 
The functional form of  such equations is shown in Fig-
ure 1. The potential energy parameters (bond lengths, 
vibrational energies, force constants, atomic and partial 
atomic charges, proper van der Waals atomic radii, etc.) 

are derived empirically from experimental techniques 
such as spectroscopy and X-ray crystallography, and also 
from ab initio quantum mechanical calculations. Col-
lectively, these parameters describe the contributions of  
various atomic forces that govern MD and are called 
a ‘force field’. There are several well established force 
fields which are currently being used and continued to 
be developed. The Chemistry at HARvard Macromo-
lecular Mechanics (CHARMM) biomolecular force field 
developed by Karplus et al[28,29] is widely used for the 
simulation of  proteins and other many particle systems 
using CHARMM and NAMD molecular simulation 
programs[30]. The Assisted Model Building with En-
ergy Refinement (AMBER), developed by the Kollman 
group[31], is a set of  molecular mechanical force fields 
for the simulation of  biomolecules, which was initially 
developed for the nucleic acids and now adopted for the 
simulation of  a wide range of  the biomolecules, includ-
ing proteins. AMBER has a package of  molecular simu-
lation programs and can also be used by NAMD. There 
are several others that are available, including the Energy 
Calculation and Dynamics (ENCAD) developed by Lev-
itt [32], the GROMOS and the hydrocarbon force fields 
(MM2-4)[33]. ENCAD and CROMOS force fields are 
available through the Groningen Machine for Chemi-
cal Simulations computational package[7]. In general, the 
force fields express the total force on an atom as a sum 
of  3 major components: bonded forces which involve 
interactions between small groups of  atoms connected 
by one or two covalent bonds; van der Waals forces 
which include interactions between small groups of  at-
oms in the system; and electrostatic forces which include 
interactions between all pairs of  atoms (non-bonded 
pair-wise interactions) (see the functional form of  AM-
BER equation, Figure 1). Chemical bonds and atomic 
charges are modeled using simple harmonic motions, 
and dihedral angles are modeled using a sinusoidal func-
tion that approximates the energy differences between 
eclipsed and staggered conformations. The non-bonded 
forces arise from van der Waals forces and electrostatic 
interactions. The non-bonded energy terms between ev-
ery pair of  atoms increase as the square of  the number 
of  atoms for a pairwise model (N2) and represent largest 
summation term in the potential energy equation. This 
part of  the simulations is the most computationally ex-
pensive. The van der Waals forces fall quickly with the 
distance and in computer simulations are treated with 
12/6 Lennard-Jones potentials. To reduce the cost of  
calculations the contributions from these forces can be 
controlled by the user defined cutoff  distance. The very 
short cutoff  (-4 Å) does not adequately model the prop-
erties of  the system when a very long cutoff  (over 20 
Å) significantly increases simulation time and has been 
shown not to improve fidelity of  the simulation over the 
intermediate values around 9-12 Å which are commonly 
used in the modern simulation[34]. The electrostatic 
forces fall off  slowly with distance and truncation at 
cutoff  distance introduces significant errors in the simu-
lations. Electrostatic forces, modeled using Coulomb’s  
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law, are typically computed using approximate meth-
ods (such as Ewald summations) that account for long-
range effects with the explicit interaction of  all pairs of  
atoms[35,36]. However, recent studies showed that use of  
approximation methods could affect the results of  the 
simulations. For example, in case of  the protein folding 
using short (9 Å) cutoff  distances could shift the balance 
between hydrophobic and hydrophilic interactions lead-
ing to stabilization of  the more compact structures[37]. 
Moreover, the neglect to include long-range compo-
nent of  the Lennard-Jones interactions and the lack of  
highly accurate treatment of  the long-range electrostat-
ics could result in artifacts during the folding pathways. 
In contrary, the free energy of  the protein folding and 
structural properties of  the folded protein are relatively 
unaffected by these approximations[37]. The level of  the 
approximations used in MD simulations should depend 
in part on the goal and questions that these calculations 
are planned to address. 

The common protocol for performing MD simula-
tions consists of  a number of  steps and is shown in 
Figure 2. In simulations of  biomolecules, an X-ray crys-
tal structure or an nuclear magnetic resonance (NMR) 
structure is first obtained from the Brookhaven Protein 
Databank to be commonly used as the initial structure. 
It is also possible to use a theoretical structure developed 
by homology modeling (also known as comparative 
modeling) or extended protein sequence if  the research-
er desires to investigate protein folding. Prior to starting 
MD simulation, it is recommended to perform energy 
minimization of  the structure to remove any strong van 
der Waals interactions which might exist in the initial 
structure. These unwanted interactions can lead to local 
structural distortion resulting in an unstable simulation. 
At this point, explicit water molecules are added to sol-
vate the system. Another energy minimization with the 
macromolecule fixed should follow the solvation step 
to allow the added water molecules to readjust around 
the protein molecule. At this point, the initial velocities 
at a low temperature are assigned to each atom of  the 
system and Newton’s equations of  motion are integrated 
to propagate the system in time. In explicit solvent 
simulation, the protein position is fixed initially to al-
low equilibration of  water molecules. Once that is done, 
the constraints on the protein can be removed and the 
whole system (macromolecule system and waters) can 
evolve in time. At the beginning of  simulations velocities 
are assigned at low temperature and simulation proceeds 
via heating phase. Periodically, if  needed, new veloci-
ties are assigned at a slightly higher temperature and the 
simulation is allowed to continue. This is repeated until 
the desired temperature is reached (commonly around 
300-310 K). Once the desired temperature is reached, 
the equilibration simulation of  the system continues 
and properties such as structure, pressure, temperature 
and energy are monitored. The purpose of  equilibration 
dynamics is to run the simulation until these properties 
become stable with respect to time. If  the temperature 
increases or decreases significantly, the velocities can be 

scaled such that the temperature returns to near its de-
sired value. The final step of  the simulation is to run the 
simulation in “production” phase for the desired time 
length. This can be from several to 106 ns. The MD tra-
jectories from the production dynamics can be analyzed 
and post-processed to obtain conformational dynamics, 
thermodynamic parameters and free energy values for 
the system of  interest. There are many modifications of  
the procedure described above using different protocols 
to control the temperature and generate MD trajectories. 
The additional details on MD procedures and theory 
can be found elsewhere[38-40]. The new methods such as 
replica-exchange MD (REMD) have been developed and 
employed for the simulation of  macromolecules[41]. A 
series of  replicas are run in parallel at temperatures rang-
ing from a desired temperature to a high temperature at 
which the replica can easily overcome small energy barri-
ers[42]. The REMD approach can overcome the multiple-
minima problem known to trap structures in the local 
conformational minimum by exchanging non-interacting 
replicas of  the system at several temperatures.

The vast increase in the number of  MD papers 
published in the last 10 years, including publications in 
those highly respected journals such as Nature and Sci-
ence, is a clear evidence that MD simulations become a 
widely accepted tool for investigation of  conformational 
features for biological macromolecules. The number of  
publications using MD is now in tens of  thousands. For 
example, using “molecular dynamics” and “proteins” as 
topic words to search ISI “web of  science” (http://apps.
webofknowledge.com/) yielded almost 4000 papers in 
2011 vs about 1200 articles in 2001. Therefore, it is im-
possible for such a short review to adequately describe 
all major work done using MD simulations. Here we 
chose to describe a small number of  specific examples 
to illustrate the use of  the MD simulations to obtain 
functionally relevant information.

MD AND PROTEIN FOLDING
Understanding the protein folding or how the polypep-
tide chain is able to fold to its native conformation is 
essential to the description of  the function of  the pro-
tein. It is well established that misfolding is present in 
a variety of  diseases[43]. One of  the key aspects of  the 
protein folding is the mechanisms by which the protein 
finds the native conformation despite enormous number 
of  statistically possible conformations. In addition, the 
folding is slow on the simulation time scale with many 
proteins taking microseconds to fold. So far only small 
sized proteins (10 to 80 amino acid residues), with no di-
sulfide bonds or prostatic groups, have been successfully 
folded to its native conformation. The small sizes and 
rather short folding times of  such proteins make them 
good candidates for MD simulation using all-atom mod-
els in explicit solvent since the native conformation of  
these proteins is determined solely by the protein amino 
acid sequence[44]. The recent work from the DE Shaw 
group[45] summarized the simulations of  12 proteins 
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which represent three major structural classes (α-helical, 
β-sheet and mixed α/β). All simulations started from 
extended conformations to avoid bias toward the native 
state. In that work total of  approximately 8 ms of  MD 
simulations were collected. Figure 3 shows the represen-
tative structures of  those 12 proteins. For each protein 
MD folded structure is shown in blue and superimposed 
on the experimental determined structure. For most of  
the structures (8 out of  12) the root mean square devia-
tions of  Cα atoms (Cα-RMSDs) between the two struc-
tures, which includes flexible tails residues, were below 2 
Å, indicating an excellent agreement between experiment 
and simulation. To confirm the finding of  this work, 
simulations were performed near the melting tempera-
ture, at which both unfolding and folding could be ob-
served repeatedly bringing total to 10 unfolding and 10 
folding events for each protein[45]. The authors collected 
about 400 folding and unfolding events for a total of  8 
ms of  simulation. The proteins exhibiting larger RMSD 
values (BBL, protein B, homeodemain and α3D) all con-
tain 3 α-helices. It is possible to suggest that this could 
indicate minor imperfections of  the force-field, how-
ever, it is also possible to assume that the experimentally 
determined conformations for these proteins depend 
on experimental conditions[46,47]. Deviations between the 
MD and experimental data might represent differences 
between the protein’s structure at the simulated tempera-
ture and the lower temperatures used for experimental 
structure determination. Based on the MD simulations 
reported by Lindorff-Larsen et al[45], the authors were 
able to propose general principles that underline protein 
folding. They concluded that the pathway toward the na-
tive conformation occurs via formation of  the key long-
range contacts at the early stages of  the folding. These 
contacts support secondary structure elements which 
are only formed in the unfolded state. Nine out of  11 
proteins simulated in that work share more than 60% of  
the native contacts formed at any given time during the 
folding process. The formation of  number of  structural 
elements was observed in the similar order, suggesting 
a common folding pathway for the proteins studied. 
It is reasonable to propose that heterogeneous folding 
process for various proteins share a large fraction of  

structural features and could belong to the same folding 
“route”. The examination of  the thermodynamics and 
kinetics of  the folding process showed the absence of  a 
distinct free-energy barrier for folding and the analysis 
yielded multiple barriers along the folding path which 
were less than 4.5 kBT. Under experimental conditions 
corresponding to those used in above simulations fold-
ing of  the protein was also not determined by single, 
well-defined free-energy barrier. 

Recently, an all-atom MD simulations in explicit sol-
vent, were used to describe the folding path of  the 80 
amino acid λ-HG mutant of  λ-repressor fragment[48]. 
Using the temperature-dependent MD runs the authors 
showed that the folding of  the λ-repressor is not a two-
state process as suggested before. In addition, the au-
thors proposed possible mutation sites which could lead 
to a fast -folding mutant.

The results described above demonstrated that the 
current molecule mechanics force fields and simulations 
protocols are accurate and reliable to make long-time 
scale MD simulations as a powerful tool for character-
izing large conformational changes in proteins.

MD AND DRUG DISCOVERY
For the past 20 years drug discovery has already heavily 
relying on the computational methods. It is reasonable to 
predict that computational methods, such as MD simula-
tion, will further advance drug-optimization and enhance 
our ability to select and design better molecules for the 
interaction with specific protein targets. It is well estab-
lished that molecular recognition and drug binding are 
a very dynamic process. In solution, when a small mol-
ecule approaches a target, it deals with the macromol-

Figure 1  An example of the equation used to calculate atomic forces. 
The equation describes potential energy in the Assisted Model Building with 
Energy Refinement force field. The first summation term represents the energy 
between the covalently bonded atoms. Summing of the angles, second term, 
represents the energy due to the angle geometry. Third term represents the 
energy of the torsion angles. Forth term accounts for the energy of the non-
bonded interactions between all pairs of atom. This term can be decomposed 
into van der Waals and electrostatic energies. The subscript zero represents 
equilibrium values. The energy terms are parameterized to fit experimental (for 
example, spectroscopic) data and/or quantum-mechanical calculations.

Initial atomic model (experimental data, homology models, etc. )

Structure minimization followed by assignment of initial velocities

Heating dynamics (0 K to 300-310 K)

Equilibration dynamics (rescaling velocities if needed)

Production dynamics (currently up to ms, ~4 × 104 atoms)

Trajectory analysis and post processing

Figure 2  General steps used in molecular dynamics simulations. During 
the simulations molecular focus on each atom are calculated based on the 
equation shown in Figure 1. During dynamics calculations (heating, equilibra-
tion and production) the positions of atoms are moved according to Newton’
s law of motion. The simulation time is advanced, and the process is repeated 
numerous times to generate molecular dynamics rajectory. The longest trajec-
tory is generated during the production run.
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ecule in constant motions. Given that the static models 
produced by X-Ray crystallography and time-averaged 
structures by NMR tell little about protein dynamics, 
MD simulation can provide the dynamic picture of  the 
interaction between the small molecule (such as a drug) 
and the target molecule. Upon binding, the ligand mole-
cule may further induce conformational changes that are 
not typically sampled when the ligand is absent[49]. There 
are a number of  examples in which binding pathways 
were successfully reproduced using MD simulations. 
The complete reconstruction of  the binding process of  
the benzamidine molecule (a known inhibitor of  serine 
proteases) to trypsin was achieved using 495 MD simula-
tions of  100 ns each[50]. Out of  495 trajectories, 187 (37% 
of  total) produced binding events with RMSD less than 
2 Å from the crystallographic pose. The obtained bind-
ing paths revealed two metastable intermediate states (S2 
and S3, Figure 4). The simulation showed that the inhibi-
tor rolls on the surface of  the protein prior to entry into 
the binding pocket (S3 to S4 transition, Figure 4). Using 
MD simulations the authors estimated the standard free 
energy of  binding which was within 1 kcal/mol from 

the experimental value. Reconstruction of  the protein-
ligand binding process and identification of  the transi-
tion states suggest that mutations to the transition-state 
residues may alter the binding kinetics of  the inhibitor. 
Simulations of  the binding of  several β-blockers to two 
β-adrenergic receptors (G-protein-coupled receptor 
modulators, which constitute one-third of  all marketed 
drugs) showed the atomic details of  this pharmaceuti-
cally critical process in which drug molecules spontane-
ously bind to the G-protein-coupled receptors to achieve 
final poses matching those determined crystallographi-
cally[51]. The MD revealed dehydration of  the ligand 
and receptor along the binding pathway that represents 
unexpected kinetic barrier to binding. Such work sug-
gested how receptor/ligand dehydration, known to be a 
major factor for ligand affinity, might be modulated to 
affect drug binding kinetics. MD simulation can also be 
used to determine relative binding free energies between 
the drug candidate and target protein using Poisson-
Boltzmann surface area methods[52,53].

Besides identification of  pathways and kinetics of  
binding, MD simulation can be used to obtain the struc-

Chignolin 106 µs
cIn025 1.0 Å 0.6 µs

Trp-cage 208 µs
2JOF 1.4 Å 14 µs

BBA 325 µs
1FME 1.6 Å 18 µs

Villin 125 µs
2F4K 1.3 Å 2.8 µs

Homeodomain 327 µs
2P6J 3.6 Å 3.1 µs

NTL9 2936 µs
2HBS 0.5 Å 29 µs

BBL 429 µs
2WXC 4.8 Å 29 µs

Protein B 104 µs
1PRB 3.3 Å 3.9 µs

Protein G 1154 µs
1MIO 1.2 Å 65 µs

a3D 707 µs
2A3D 3.1 Å 27 µs

l-repressor 643 µs
1LMB 1.8 Å 49 µs

WW domain 1137 µs
2F21 1.2 Å 21 µs

Figure 3  Representative structures of 12 proteins used in molecular dynamics simulation studies[42]. Experimentally determined structures are shown in red 
and superimposed onto the structures obtained from molecular dynamics simulations (shown in blue). Protein Databank (PDB) entry, root mean square deviations of 
Cα atoms between two structures and simulation times (total and needed for folding) are displayed for each protein under the superimposed structures.  For Protein 
G the PDB entry was used for the closest homolog, since the structure for the simulated sequence has not been solved experimentally. Reproduced with permission 
(Copyright 2011, Science publishing group).
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ture of  the target using folding simulations, especially 
in cases where the structure of  the target can not be 
obtained experimentally. Alternatively, simulation may be 
used to prepare homology models. 

FUTURE DIRECTIONS 
Since the millisecond barrier has been broken in MD, it 
is more than likely that we will be able to make testable 
predications about the key molecular processes at the 
atomic levels. Based on the current progress of  all-atom 
MD simulations, a dramatic increase in the length of  the 
generated trajectories should be expected in the nearest 
future. Parallel to the increase in the timescales accessible 
to the simulations, there has also been a growth in the 
size of  the systems that can be studied. Much larger sys-
tems than those mentioned above have been already test-
ed using MD simulations. These systems are comprised 
of  several million atoms, such as bacterial ribosomes and 
viruses. In recent studies explicit solvent MD simula-
tions showed essential conformational motions in the 
ribosome needed for the binding of  aminoacyl-tRNA[54]. 
Such a system consists of  3.2 million atoms. This work 
showed that conformational motions of  the 3’-CCA 
end of  aminoacyl-tRNA resists simple accommodation 
(single lock-step mechanism), leading to a multistep ac-
commodation process. The proposed mechanism and 
observed interaction pathways help to interpret large 

number of  biochemical data and demonstrate that con-
formational changes during translation occur through 
a trial-and-error process, rather than in concerted lock-
step motions. The 1 million atoms simulation of  satellite 
tobacco mosaic virus (STMV) showed that the empty 
STMV capsid is not stable, thus explaining the failure of  
experimental efforts to prepare such empty capsids[55]. 

Although the conformational changes in the smaller 
system can be well described using MD simulations, 
the larger systems (5 millions of  atoms or more) still 
pose many challenges. First, the biologically relevant 
timescales tend to increase as the system size increases. 
Second, the high-resolution structures are only avail-
able for relatively few very large macromolecule com-
plexes[56]. The computational power to carry out simula-
tion increases can be related to the Moore’s law. This 
law describes how the performance of  processors has 
been increasing exponentially over the last 50 years by 
doubling approximately every 2 years. Based on the ap-
plication of  the Moore’s law to biological systems and 
without taking into account the design of  special hard-
ware architecture for MD, it has been proposed that for 
every 10-15 years in the past there was an increase of  
about three orders of  magnitude in the timescale and 
about one and half  orders of  magnitude in the system 
size used by MD simulations[57] . Continuation of  Moor’s  
law suggests that processor computational power may 
increase by 1000 fold in the next 10-15 years. In addition 

Figure 4  Five different metastable states (S0 to S4) identified for the benzamidine-trypsin complex[47]. The relative free energy between the unbound S0 and 
the bound S4 states is -6 kcal/mol. The most probable transition to the bound state S4 is from S3, since the barrier between two states is just 1.5 kcal/mol. In states 
S1 and S2, benzamidine is stabilized by π-π stacking interactions with Y151 and Y39 side chains. In S3, a hydrogen bond may be formed between the NH2 groups 
of benzamidine (only heavy atoms shown for clarity) and Q175 side chain, or by a cation-π interaction between the Q175 side chain and the benzamidine’s benzene 
ring. Reproduced with permission (Copyright 2011, PNAS). 
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to enhanced processor integration, software and hard-
ware advances will yield further increases. For example, 
recent application of  the Graphic Processing Units 
(GPUs), together with the development of  the general 
purpose GPU programming model called NVIDIA’
s Compute Device Architecture, can significantly in-
crease simulation times at fraction of  CPU’s cost and 
energy consumption. GPUs have been an integral part 
of  personal computers for decades and their develop-
ment and low cost has been strongly influenced by the 
entertainment industry. It has recently been shown that 
GPUs, due to their unique multiprocessor architecture, 
can greatly outperform their CPU equivalents. MD 
simulations can take advantage of  GPU acceleration and 
achieve performance levels up to hundred times better 
than a single CPU core[58,59]. Based on the time frames 
obtained in the benzamidine binding studies, nowadays 
it is possible to reconstruct those binding pathways of  5 
to 10 ligands per week on a moderately sized cluster of  
32-64 GPUs[50]. 

It can be expected that within next 20-25 years it 
will be possible to simulate all-atom dynamics of  a small 
bacterium and describe the complete set of  processes 
within[25]. Such simulations can be probably performed 
for only few milliseconds or even less and would not 
provide much information due to large timescales 
needed for diffusions of  macromolecules in bacterial 
processes. However, simulation of  the part of  a cell or 
fundamental pathways in molecular biology, such as pro-
tein synthesis, would be possible on the several seconds 
time-scales in the nearest future. It is obvious that mac-
romolecule-macromolecule interactions are essential for 
biological processes. One major task in MD simulations 
is to carry out large-scale simulations of  protein-protein 
and protein-DNA interactions. MD simulations will ad-
dress the binding pathways between the macromolecules 
and how the ligand binding sites created, at the interface 
or at allosteric sites? Simulations can be expected for 
very large complexes such as the nuclear pore. Based on 
generated trajectories from such simulations it will be 
possible to observe passage of  the delivery protein as 
it transits through a nuclear pore. In addition, MD will 
impose significant impact on the proteomics since the 
protein folding will be possible for larger proteins. Based 
on the current state of  the MD simulations extrapola-
tion suggests that folding of  the 300 residues protein 
(over 10 ms simulation of  approximately 100 000 atoms) 
will be possible within 10 years. Folding of  the larger 
proteins, consisting of  multiple subunits and over 1000 
residues, will be still challenging and likely be achievable 
within 25 years[25]. Significant improvement of  the time-
scales might come from omitting some motions in MD 
simulations. It might be possible to adequately sample 
conformational space without resolving all fast motions, 
thus reducing the computational power needed for the 
simulation of  the particular system. 

With constant gains in both computer power and 
algorithm design, MD simulation is expected to play an 

increasingly important role in the modern science from 
investigating the local motions in the biological macro-
molecules to the development of  novel pharmacologi-
cal therapeutics. This methodology has emerged as an 
integral part of  molecular biology studies, providing a 
fundamental and reliable tool for experimentalists.

REFERENCES
1	 Stout RD, Herzenberg LA. The Fc receptor on thymus-

derived lymphocytes. I. Detection of a subpopulation of 
murine T lymphocytes bearing the Fc receptor. J Exp Med 
1975; 142: 611-621

2	 Karplus M, McCammon JA. Molecular dynamics simula-
tions of biomolecules. Nat Struct Biol 2002; 9: 646-652

3	 Sotomayor M, Schulten K. Single-molecule experiments in 
vitro and in silico. Science 2007; 316: 1144-1148

4	 Lee EH, Hsin J, Sotomayor M, Comellas G, Schulten K. 
Discovery through the computational microscope. Structure 
2009; 17: 1295-1306

5	 McCammon JA, Gelin BR, Karplus M. Dynamics of folded 
proteins. Nature 1977; 267: 585-590

6	 Berger R, Bernheim A. A comment on the paper: reciprocal 
translocation and the Philadelphia chromosome by Jessie L. 
Watt and Brenda M. Page, Hum. Genet. 42, 163--170 (1978) 
Hum Genet 1978; 44: 357-358

7	 Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 
4: Algorithms for highly efficient, load-balanced, and scal-
able molecular simulation. J Chem Theory Comput 2008; 4: 
435-447

8	 Freddolino PL, Liu F, Gruebele M, Schulten K. Ten-micro-
second molecular dynamics simulation of a fast-folding 
WW domain. Biophys J 2008; 94: L75-L77

9	 Power SG, Challis JR. The effects of gestational age and 
intrafetal ACTH administration on the concentration of pro-
gesterone in the fetal membranes, endometrium, and myo-
metrium of pregnant sheep. Can J Physiol Pharmacol 1987; 65: 
136-140

10	 Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE. Long-
timescale molecular dynamics simulations of protein struc-
ture and function. Curr Opin Struct Biol 2009; 19: 120-127

11	 Shaw DE. Anton: A specialized machine for millisecond-
scale molecular dynamics simulations of proteins. Abstr Pap 
Am Chem S 2009; 238: 154-COMP

12	 Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror 
RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y, 
Wriggers W. Atomic-level characterization of the structural 
dynamics of proteins. Science 2010; 330: 341-346

13	 Wang W, Donini O, Reyes CM, Kollman PA. Biomolecular 
simulations: recent developments in force fields, simula-
tions of enzyme catalysis, protein-ligand, protein-protein, 
and protein-nucleic acid noncovalent interactions. Annu Rev 
Biophys Biomol Struct 2001; 30: 211-243

14	 Warshel A. Computer simulations of enzyme catalysis: 
methods, progress, and insights. Annu Rev Biophys Biomol 
Struct 2003; 32: 425-443

15	 Gokey T, Baird TT, Guliaev AB. Conformational dynam-
ics of threonine 195 and the S1 subsite in functional trypsin 
variants. J Mol Model 2012; 18: 4941-4954

16	 Bond PJ, Sansom MS. The simulation approach to bacterial 
outer membrane proteins. Mol Membr Biol 2004; 21: 151-161

17	 Zhu F, Tajkhorshid E, Schulten K. Pressure-induced water 
transport in membrane channels studied by molecular dy-
namics. Biophys J 2002; 83: 154-160

18	 Han BG, Guliaev AB, Walian PJ, Jap BK. Water transport 
in AQP0 aquaporin: molecular dynamics studies. J Mol Biol 
2006; 360: 285-296

19	 Heninger GR, Mueller PS, Davis LS. Depressive symptoms 

Guliaev AB et al . Protein dynamics via  computational microscope



49 December 26, 2012|Volume 2|Issue 6|WJM|www.wjgnet.com

and the glucose tolerance test and insulin tolerance test. J 
Nerv Ment Dis 1975; 161: 421-432

20	 Almind G, Bundgaard E, Larsen BS, Schoubye G. [Case 
finding by health visitors. Visits to 80-year-old persons liv-
ing at home]. Ugeskr Laeger 1979; 141: 465-469

21	 Stephens MK. Handicapped children in Denmark. Queens 
Nurs J 1976; 19: 193, 196

22	 Liu YH, Wang XG, Wang QN, Qian MX, Wang RQ, Lu SZ, 
Liu J, Li GH, Chen YD. Efficacy of single oral doses of pra-
ziquantel in treatment of schistosoma japonicum infection. 
Chin Med J (Engl) 1986; 99: 470-472

23	 Daggett V. Protein folding-simulation. Chem Rev 2006; 106: 
1898-1916

24	 Wong CF, McCammon JA. Protein flexibility and computer-
aided drug design. Annu Rev Pharmacol Toxicol 2003; 43: 
31-45

25	 Borhani DW, Shaw DE. The future of molecular dynamics 
simulations in drug discovery. J Comput Aided Mol Des 2012; 
26: 15-26

26	 Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, 
Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, 
Weis WI, Wess J, Kobilka BK. Structure and dynamics of 
the M3 muscarinic acetylcholine receptor. Nature 2012; 482: 
552-556

27	 Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Ar-
low DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, 
Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey 
M, Gmeiner P, Kobilka BK. Structure and function of an ir-
reversible agonist-β(2) adrenoceptor complex. Nature 2011; 
469: 236-240

28	 Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swami-
nathan S, Karplus M. Charmm - a program for macromo-
lecular energy, minimization, and dynamics calculations. J 
Comput Chem 1983; 4: 187-217

29	 Karplus M. Molecular dynamics of biological macromol-
ecules: a brief history and perspective. Biopolymers 2003; 68: 
350-358

30	 Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, 
Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. Scalable 
molecular dynamics with NAMD. J Comput Chem 2005; 26: 
1781-1802

31	 Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham 
TE, Debolt S, Ferguson D, Seibel G, Kollman P. Amber, a 
package of computer-programs for applying molecular 
mechanics, normal-mode analysis, molecular-dynamics and 
free-energy calculations to simulate the structural and en-
ergetic properties of molecules. Comput Phys Commun 1995; 
91: 1-41

32	 Levitt M. Molecular dynamics of native protein. I. Com-
puter simulation of trajectories. J Mol Biol 1983; 168: 595-617

33	 Allinger NL, Chen KS, Lii JH. An improved force field 
(MM4) for saturated hydrocarbons. J Comput Chem 1996; 17: 
642-668

34	 Beck DA, Armen RS, Daggett V. Cutoff size need not 
strongly influence molecular dynamics results for solvated 
polypeptides. Biochemistry 2005; 44: 609-616

35	 Darden T, York D, Pedersen L. Particle Mesh Ewald - an 
N.Log(N) Method for Ewald Sums in Large Systems. J Chem 
Phys 1993; 98: 10089-10092

36	 Adcock SA, McCammon JA. Molecular dynamics: survey 
of methods for simulating the activity of proteins. Chem Rev 
2006; 106: 1589-1615

37	 Piana S, Lindorff-Larsen K, Dirks RM, Salmon JK, Dror RO, 
Shaw DE. Evaluating the effects of cutoffs and treatment 
of long-range electrostatics in protein folding simulations. 
PLoS One 2012; 7: e39918

38	 Sagui C, Darden TA. Molecular dynamics simulations of 
biomolecules: long-range electrostatic effects. Annu Rev Bio-
phys Biomol Struct 1999; 28: 155-179

39	 Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz 
KM, Onufriev A, Simmerling C, Wang B, Woods RJ. The 
Amber biomolecular simulation programs. J Comput Chem 
2005; 26: 1668-1688

40	 Cerutti DS, Freddolino PL, Duke RE, Case DA. Simulations 
of a protein crystal with a high resolution X-ray structure: 
evaluation of force fields and water models. J Phys Chem B 
2010; 114: 12811-12824

41	 Chaudhury S, Olson MA, Tawa G, Wallqvist A, Lee MS. Ef-
ficient Conformational Sampling in Explicit Solvent Using 
a Hybrid Replica Exchange Molecular Dynamics Method. J 
Chem Theory Comput 2012; 8: 677-687

42	 Zhou R. Replica exchange molecular dynamics method 
for protein folding simulation. Methods Mol Biol 2007; 350: 
205-223

43	 Dobson CM. Protein folding and misfolding. Nature 2003; 
426: 884-890

44	 Anfinsen CB. Principles that govern the folding of protein 
chains. Science 1973; 181: 223-230

45	 Lindorff-Larsen K, Piana S, Dror RO, Shaw DE. How fast-
folding proteins fold. Science 2011; 334: 517-520

46	 Settanni G, Fersht AR. Downhill versus barrier-limited 
folding of BBL 3. Heterogeneity of the native state of the 
BBL peripheral subunit binding domain and its implications 
for folding mechanisms. J Mol Biol 2009; 387: 993-1001

47	 Huang F, Rajagopalan S, Settanni G, Marsh RJ, Armoogum 
DA, Nicolaou N, Bain AJ, Lerner E, Haas E, Ying L, Fersht 
AR. Multiple conformations of full-length p53 detected with 
single-molecule fluorescence resonance energy transfer. Proc 
Natl Acad Sci USA 2009; 106: 20758-20763

48	 Liu YX, Strumpfer J, Freddolino PL, Gruebele M, Schulten 
K. Structural characterization of lambda-repressor folding 
from all-atom molecular dynamics simulations. J Phys Chem 
Lett 2012; 3: 1117-1123

49	 Durrant JD, McCammon JA. Molecular dynamics simula-
tions and drug discovery. BMC Biol 2011; 9: 71

50	 Buch I, Giorgino T, De Fabritiis G. Complete reconstruc-
tion of an enzyme-inhibitor binding process by molecular 
dynamics simulations. Proc Natl Acad Sci USA 2011; 108: 
10184-10189

51	 Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, 
Shan YB, Xu HF, Shaw DE. Pathway and mechanism of 
drug binding to G-protein-coupled receptors. P Natl Acad 
Sci USA 2011; 108: 13118-13123

52	 Rastelli G, Del Rio A, Degliesposti G, Sgobba M. Fast and 
accurate predictions of binding free energies using MM-
PBSA and MM-GBSA. J Comput Chem 2010; 31: 797-810

53	 Brown SP, Muchmore SW. Large-scale application of high-
throughput molecular mechanics with Poisson-Boltzmann 
surface area for routine physics-based scoring of protein-
ligand complexes. J Med Chem 2009; 52: 3159-3165

54	 Whitford PC, Geggier P, Altman RB, Blanchard SC, Onuchic 
JN, Sanbonmatsu KY. Accommodation of aminoacyl-tRNA 
into the ribosome involves reversible excursions along mul-
tiple pathways. RNA 2010; 16: 1196-1204

55	 Arkhipov A, Freddolino PL, Schulten K. Stability and dy-
namics of virus capsids described by coarse-grained model-
ing. Structure 2006; 14: 1767-1777

56	 Robinson CV, Sali A, Baumeister W. The molecular sociol-
ogy of the cell. Nature 2007; 450: 973-982

57	 Vendruscolo M, Dobson CM. Protein dynamics: Moore’s 
law in molecular biology. Curr Biol 2011; 21: R68-R70

58	 Buch I, Harvey MJ, Giorgino T, Anderson DP, De Fabritiis 
G. High-throughput all-atom molecular dynamics simula-
tions using distributed computing. J Chem Inf Model 2010; 
50: 397-403

59	 Stone JE, Hardy DJ, Ufimtsev IS, Schulten K. GPU-acceler-
ated molecular modeling coming of age. J Mol Graph Model 
2010; 29: 116-125

S- Editor  Zhai HH    L- Editor  A    E- Editor  Xiong L

Guliaev AB et al . Protein dynamics via  computational microscope


