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Abstract
Metabolic stress is a physiological process that occurs 
during exercise in response to low energy that leads to 
metabolite accumulation [lactate, phosphate inorganic 
(Pi) and ions of hydrogen (H+)] in muscle cells. Tradi
tional exercise protocol (i.e. , Resistance training) has 
an important impact on the increase of metabolite 
accumulation, which influences hormonal release, 
hypoxia, reactive oxygen species (ROS) production 
and cell swelling. Changes in acute exercise routines, 
such as intensity, volume and rest between sets, are 
determinants for the magnitude of metabolic stress, 
furthermore, different types of training, such as low-
intensity resistance training plus blood flow restriction 
and high intensity interval training, could be used 
to maximize metabolic stress during exercise. Thus, 
the objective of this review is to describe practical 
applications that induce metabolic stress and the 
potential effects of metabolic stress to increase systemic 
hormonal release, hypoxia, ROS production, cell swelling 
and muscle adaptations. 

Key words: Metabolic stress; Muscle mass; Exercise

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: This review aimed to describe practical 
applications for inducing metabolic stress and the 
potential effects on the increase of systemic hormonal 
release, hypoxia, reactive oxygen species production, 
and cell swelling. These effects are responsible for 
enhancing muscle adaptations through changes in 
exercise routines (intensity, volume, rest between sets) 
and training modes (resistance training, low-intensity 
resistance training plus blood flow restriction, and high 
intensity interval training).
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INTRODUCTION
It has been reported that chronic exercise can promote 
changes in many organs because of cellular adaptations. 
Skeletal muscle is extremely adjustable in response 
to contractile activity[1,2], therefore, repeated muscle 
contractions during exercise can lead to numerous 
metabolic modifications[3,4]. Overtime, these adaptive 
responses have shown beneficial effects on health, body 
composition and performance[5-7]. 

During acute exercise, the energy used by skeletal 
muscle contractions are essential in transforming 
organelles, enzymatic activity, intracellular signaling 
and transcriptional responses[8-10]. Metabolic stress is 
a physiological process that occurs during exercise 
in response to low energy which leads to metabolite 
accumulation [lactate, phosphate inorganic (Pi) and 
ions of hydrogen (H+)] in muscle cells[11,12]. Researchers 
have suggested that metabolic stress has an important 
impact on hormonal release, hypoxia, cell swelling and 
production of reactive oxygen species (ROS)[13-15]. All 
of these components can initiate anabolic signaling 
for muscle growth and adaptations on energy meta
bolism[16]. 

In situations with elevated ATP hydrolysis and 
glycolytic flux in muscle cells, there is a great accumu­
lation of adenosine monophosphate (AMP) and meta
bolites[12,17,18]. Furthermore, the reduction of intracellular 
oxygen levels can also lead to hypoxia[19]. All these 
metabolic parameters are a powerful stimulus to activate 
AMP-activated protein kinase (AMPK) and hypoxia-indu
cible factor (HIF-1α) pathway, the main regulators of 
mitochondrial biogenesis and angiogenesis[20,21].

Moreover, metabolite accumulation and hypoxia 
that is produced during exercise may increase ROS 
production through mitochondrial electron transport 
chain[22,23]. It is well established that ROS production by 
endurance exercise has positive effects on mitochondrial 
adaptations because it stimulates peroxisome prolifera
tor-activated receptor gamma coactivator (PGC-
1α) and p38 mitogen-activated protein kinase (p38
MAPK) pathways[24]. Scientific evidence shows that 
suppression of ROS production through the use of the 
antioxidants impairs some adaptive responses to end
urance exercise[25,26], and these results suggest that 
ROS production has positive effects on mitochondrial 
adaptations.

Nevertheless, besides stimulating mitochondrial 
biogenesis and angiogenesis, the metabolic stress 
also has positive effects on muscle hypertrophy. 
Resistance training (RT) has great impact on increasing 
metabolite accumulation, which influences hormonal 

release, hypoxia, ROS production and cell swelling. All 
these processes can mediate anabolic signaling that 
stimulates muscle protein synthesis and activation of 
satellite cells[13-15].

In this context, changes in acute exercise routines 
(intensity, volume and rest between sets) are the main 
factors in determining the magnitude of metabolic 
stress[27-29]. Furthermore, blood flow restriction training 
has been considered a tool to maximize metabolic 
stress[30,31]. Studies have reported great effects of this 
training method on aerobic adaptations and muscle 
hypertrophy[32,33].

Therefore, the purpose of this paper is to describe 
practical applications that cause metabolic stress. 
In addition, we will discuss the potential effects of 
metabolic stress on the increase of systemic hormonal 
release, hypoxia, ROS production, and cell swelling for 
enhancing muscle adaptations.

RESISTANCE TRAINING
Skeletal muscle hypertrophy depends on positive 
muscle protein balance (protein synthesis exceeds 
breakdown)[34]. Thus, RT is excellent for the stimulation 
of anabolic signaling and the promotion of muscle 
hypertrophy[35]. Metabolic stress is one of the primary 
mechanisms that makes RT increase muscle mass, 
mainly due to the rise of anabolic hormonal release, 
hypoxia, ROS production and cell swelling[13]. However, 
studies have shown that the magnitude of metabolic 
stress depends on the changes of acute RT program 
variables[14,15]. 

Scientific evidence shows that load, number of 
repetitions, and reset between intervals are important 
factors to induce metabolite accumulation. Gonzalez 
et al[29] found that acute RT with moderate repetitions 
combined with short rest intervals (70% 1RM, 10-12 
repetitions and one minute rest interval) shows an 
increase in blood lactate, serum concentration of 
lactate dehydrogenase, growth hormone (GH) and 
cortisol when compared to higher loads, low repetitions 
combined with longer rest intervals (90% 1RM, 3-5 
repetitions and three minute rest intervals). Concerning 
these findings, duration of rest intervals may reflect 
directly on the magnitude of metabolic stress. In a 
review study, researchers demonstrated that short 
interval sets (less than one minute) are essential in 
increasing blood lactate and GH production, mainly 
because of insufficient recovery of phosphocreatine and 
H+ accumulation[36].

Additionally, Nishimura et al[37] demonstrated higher 
effects of muscle hypertrophy when RT is performed 
during hypoxia, possibly because of the strong influence 
of hormonal release, the recruitment of fast-twitch 
muscle fibers, ROS production and cell swelling[38]. 
During RT, muscle contractions compress blood vessels 
in active muscles, and this occlusion can lead to a 
reduction of oxygen levels and, consequently, resulting 
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in a hypoxic environment[39]. Intramuscular hypoxia 
during exercise can increase the necessity of anaerobic 
latic metabolism by activation of HIF-1α that regulates 
the expression of glycolytic enzymes[40]. Thus, exercise 
that produces high levels of lactate can be associated 
with hypoxia. One study showed that performing 
hypertrophy-type RT (70% 1RM, 10 repetitions and 90 
s rest intervals) induces higher production of lactate 
and reduction in pH than performing a strength-type 
RT (85% 1RM, 4-6 repetitions with five minute rest 
intervals)[41]. In this context, it can be hypothesized 
that RT can generate hypoxia when performed at 
moderate/high repetitions combined with short rest 
intervals, possibly due to a high demand on anaerobic 
metabolism.

Furthermore, another study found that knee ex
tension RT at low intensity (50% 1RM) generates a 
significant decrease in muscle oxygenation when com­
pared to high-intensity (80% 1RM) exercise performed 
with one-second rest between repetitions[42]. These 
findings suggest, keeping continuous tension on muscles 
without relaxation can be essential to reducing oxygen 
levels and maximizing the levels of hypoxia in the 
skeletal muscle. 

Research suggests that ROS production also has 
important implications on muscle hypertrophy[43,44]. 
In addition, studies have shown that utilization of 
antioxidants can modify protein signaling after a RT 
session and impairs muscle mass gains[45,46]. Muscle 
contractions during exercise produces ROS at low 
physiological levels and plays an important role in 
cell signaling to promote beneficial adaptations[47]. 
Researchers have found that the production of ROS has 
an influence in stimulating anabolic signaling, because 
ROS can act with a signaling molecule to activate the 
mammalian target of rapamycin (mTOR) through IGF-1 
and MAPK pathways[48,49]. 

Although it is becoming clear that ROS has a 
profound impact on muscle hypertrophy, the limits 
of these adaptations are not clear. Hornberger et 
al[50] observed that selenium-deficient transgenic 
mice (animals with decreased protein expression of 
antioxidant enzymes containing selenium) exhibited 
an increased muscle hypertrophy when stimulated by 
synergist ablation (a muscle overload model), compared 
to other animals. In this study, rapamycin treatment (a 
pharmacological inhibitor of mTOR) completely abolished 
the hypertrophy effect, thus proving that mTOR is 
necessary for hypertrophy. It is interesting to note that, 
contrary to this study (where muscle antioxidant defense 
was decreased and muscle hypertrophy was optimized), 
other studies evaluating the impact of antioxidants in 
humans (through vitamin E and C supplementation) 
were shown to impair muscle hypertrophy response and 
cell signaling leading to muscle hypertrophy[45,46]. Several 
studies have observed that RT increases hypoxia, 
metabolite accumulation and ROS production, which 
seems to be strictly related[22,23,51,52]. In this context, we 

can hypothesize that RT with moderate/high repetitions 
and short rest intervals can be a stimulus to produce 
ROS. 

Another potent anabolic signaling event produced by 
RT is cell swelling. Studies have demonstrated that cell 
swelling mediated by hydration can lead to an increase 
in protein synthesis and a decrease in proteolysis 
mainly through the activation of MAPK pathway[53-55]. 
During intense muscle contractions, veins are obstru
cted but the arterial system keeps the delivery of 
blood active[13]. This process can increase intracellular 
swelling, which leads to an increased pressure against 
the cytoskeleton. Thus, the cell perceives a threat and 
initiates an anabolic signaling response to promote 
reinforcement of its ultrastructure[56]. Studies indicate 
that cell swelling occurs during metabolite accumulation 
(lactate, H+ and Pi) which leads to additional intracellular 
fluid[57,58]. Therefore, it seems reasonable to conclude 
that RT during hypertrophy causes high metabolite 
accumulation and can promote more cell swelling than 
strength RT.

Finally, another aspect that we should consider, 
especially among well-trained subjects, is RT with 
moderate/high repetitions until failure. Recent studies 
show that, when RT is executed with low load (30%-50% 
1RM and 25-35 repetitions) until failure, hypertrophy is 
similar when compared to high load (70%-90% 1RM 
and 8-12 repetitions)[59-61]. Although no studies have 
confirmed this hypothesis, we believe that muscular 
failure can exert additional metabolic stress and then 
induce anabolic signaling. These findings suggest that 
the greater time under tension with moderate/high 
repetitions without relaxation combined with short rest 
interval and muscular failure can generate a strong 
hypertrophic response similar to RT with high loads. 
However, caution should be taken, because restricting 
rest periods would cause a reduction in the volume 
performed during a RT session, thus affecting hypertro
phy process negatively[62]. 

This effect can be caused by high metabolic stress, 
leading to anabolic signaling through hypoxia, hormonal 
release, ROS production and cell swelling (Figure 1).

LOW-INTENSITY RESISTANCE TRAINING 
PLUS BLOOD FLOW RESTRICTION
During the last decade, blood flow restriction training 
(BFRT), also known as KAATSU or occlusion[63], com
bined with low-intensity strength training (20%-30% 
1RM), has been shown to increase strength and muscle 
size among trained/untrained athletes[64-66] injured[67] 
and the elderly[68]. This training model requires the use 
of cuffs that are placed at the proximal ends of the upper 
arms or thighs reducing blood flow from the muscle 
(approximately 100-200 mmHg). Thus, the external 
pressure applied maintains arterial inflow while blocking 
venous outflow of blood[69], resulting in an ischemic/
hypoxic environment that enhances the training effect[70].
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Suga et al[77] investigated metabolic stress (intramu
scular phosphocreatine (PCr), Pi, Diprotonated phos
phate-H2PO4 and Intramuscular pH) in subjects that 
performed four unilateral plantar flexion (two min of 30 
repetitions/min) using three different intensities (20%, 
30% and 40% 1RM) with two resistance exercises (20% 
1 RM and 65% 1RM) without BFRT. They concluded 
that 30% of 1RM induced a similar intramuscular 
metabolites and pH response than high-intensity RT 
without BFRT. In addition, Suga et al[31] also showed 
that multiple low-intensity BFRT sets increase fast-
twitch fiber recruitment that could assist the slow twitch 
fiber to keep the strength during training, however, the 
authors did not observe statistical significance between 
multiple sets of high intensity exercise without BFRT. 
Therefore, these results suggest that multiple-set 
exercise are more effective than single-set RT. 

Previous studies have shown that metabolic stress 
induced by low-intensity plus BFRT increases GH secre
tion and muscle hypertrophy[64,65,78], furthermore, this 
could stimulate metabolic stress markers, such as 
IL-6[79,80]. The recovery process is initiated by IL-6 by 
modulating muscle regulatory genes (i.e., MyoD)[81-83] 
and activating muscle satellite cells[80], and therefore may 
play a role in regulating muscle growth/hypertrophy[80]. 

An acute increase in anabolic hormones (e.g., testo
sterone, GH) has been found during short rest periods 
(30 to 60 s)[84], however, regarding cytokine production, 

Several studies have compared low-intensity 
strength training with BFRT and high-intensity without 
BFRT and demonstrated a significant increase in muscle 
cross-section area in both exercise protocols[64,69,71,72]. 
However, RT performed with moderate/high intensities 
seems to lead to similar degrees of muscle hypertrophy 
when combined with BFRT. It is not clear if the maximal 
degree of muscle hypertrophy can be optimized by 
increasing external loads or if the ceiling for maximal 
hypertrophy is achieved with low-moderate loads[73]. 

Cumming et al[74] performed a study with nine 
healthy volunteers performing five sets of unilateral 
knee extension at 30% of 1RM until failure combined 
with BFRT and the same workout without BFRT. Analysis 
of muscle biopsies revealed a rapid translocation of 
heat-shock proteins (HSP27 and aB-crystallin) from 
cytosol to cytoskeletal structures, both of which have 
been identified as important HSPs for repair and 
stabilization of stressed and damaged proteins[75]. 
This indicates that cytoskeletal proteins are stressed 
during BFRT even without myofibrillar disruptions. 
Thus, muscle hypertrophy induced by BFRT seems 
to be mediated by metabolic stress and mechanical 
tension, and sarcolemmal-bound mechanosensors (i.e., 
integrins) stimulate intracellular anabolic and catabolic 
pathways, which convert mechanical energy into 
chemical signals, promoting protein synthesis instead of 
degradation[76].
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      Blood flow
      restriction training
 Approximately 100-200 mmHg
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Figure 1  Role of metabolic stress induced by different kinds of training (resistance, blood flow restriction and high intensity interval intraining) for 
enhancing muscle adaptations. ROS: Reactive oxygen species.
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a recent study compared 30 s vs 90 s of rest after four 
sets of squat and four sets of bench press with 70% 
of 1RM until failure without BFRT in healthy adults and 
observed higher IL-6 levels when 90 s rest was used[85]. 
In addition, Phillips et al[86] reported greater post-exercise 
IL-6 concentrations with 65% of 1RM compared to 85% 
of 1RM with two minutes of recovery. Thus, short rest 
period induce an acute increase in anabolic hormones, 
however, it seems that longer recovery intervals 
combined with higher loads contribute to an increase in 
IL-6 concentration during RT.

Therefore, changes in variables, such as recovery 
intervals, volume, intensity, and repetition speed, could 
be used to optimize the specific adaptation during low-
intensity RT plus BFRT.

HIGH-INTENSITY INTERVAL TRAINING
Studies have investigated the benefits of metabolic 
stress on skeletal muscle remodeling, angiogenesis, 
mitochondrial biogenesis, performance, and high-
intensity interval training (HIIT) has shown to be a pro
mising training routine. This exercise/training routine 
is based on high-intensity exercise sets with passive or 
low-intensity intervals between them. Endurance training 
adaptations have been found with HIIT[87,88].

The HIIT configuration allows intervals of effort 
and pause, and the various forms of stimuli can cause 
adaptations, such as: (1) mechanical stretching and 
muscle tension; (2) increase of ROS; (3) increase of 
intramuscular calcium concentrations and (4) changes 
of energy “status” in the cell.

Two HIIT routines that are commonly used are: four 
sets of 30 s at 100%[88] and four sets of four minutes[89] 

at 90%-95% of the maximum power (Pmax), velocity 
(Vmax) or maximum heart rate (HR max). Wahl et al[90] 
compared the acute responses of these two routine 
with another routine done continuously (two hours at 
55% Pmax) in triathlon athletes and found that the 
most intense stimulus (four sets of 30 s at 100%) 
generated higher metabolic acidosis (pH) and higher 
concentrations of anabolic hormones (testosterone and 
GH) after the session. Supporting these results, Wahl 
et al[91] compared the use of buffer solution (sodium 
bicarbonate) and placebo with HIIT (four sets of 30 s at 
100%), and showed a significant decrease in pH in the 
placebo group with increases in GH compared to the 
buffer group. The elevation of these hormones mean 
hypertrophic adaptations and also important stimuli 
expression of oxidative enzymes and erythropoiesis, 
promoting improvements in aerobic performance. This 
can be explained by the direct stimulation of bone 
marrow by testosterone, supporting the synthesis of 
erythropoietin in kidney cells[92].

Mitochondrial biogenesis is another adaptation 
of great importance in this process and one of the 
most studied. A key molecule for this adaptation is 
PGC-1α, a coactivator of several transcription factors 

related to metabolic and mitochondrial adaptations[93]. 
Burgomaster et al[87] found that six weeks of HIIT (three 
times per week, four to six sets of 30 at 100%) and 
continuous training (five times per week, 40 to 60 min 
at 55% VO2max) showed significant improvements in 
mitochondrial functions with optimization lipid oxidation, 
increased activity of oxidative enzymes (citrate synthase 
and 3-hydroxyacyl CoA dehydrogenase) and contents 
of PGC-1α. The important finding of this study was the 
difference in the duration of training sessions, ranging 
from approximately 1.5 h to 4.5 h per week for HIIT 
and continuous training, respectively.

Due to the importance of PGC-1α, the expression 
and activation of proteins that stimulate it has great 
relevance. Two proteins, which are unquestionably 
stimulated by metabolic stress, are p38MAPK and 
AMPK[94-96]. Gibala et al[97] showed a significant increase 
in phosphorylation of AMPK and p38MAPK after acute 
sessions of HIIT (four sets of 30 s at 100%), and 
despite a great increase in mRNA of PGC-1α, its protein 
content did not change. Additionally, Little et al[98], using 
the same protocol of exercises, showed significantly 
higher values of p38MAPK after exercise, as well as an 
increase of 750% of mRNA PGC-1α and 66% of protein 
already in the nucleus of muscle cells, confirming the 
potential of these training routine.

Mitochondrial biogenesis and angiogenesis are 
essential for aerobic adaptations and improvement of 
performance. Considering the efficiency of HIIT (short 
training repetitions and metabolic stress), with BFRT 
seems to be beneficial to increase vascular adaptations. 
Consequently, Taylor et al[32] compared acute HIIT 
(four sets of 30 s at 100%), with HIIT + BFR (cuff in 
the thigh, two minutes, 130 mmHg). The results of 
these biopsies (vastus lateralis) showed a significant 
increase in p38MAPK after HIIT and HIIT+BFRT, with no 
differences between them. After three hours of exercise, 
a significant increase in mRNA PGC-1α was observed, 
vascular endothelial growth factor (VEGF) and its 
receptor (VEGFR-2), however mRNA of HIF-1α only 
increased in HIIT + BFRT. These results indicate that 
HIIT by itself is capable of stimulating angiogenesis, but 
the fact that only HIIT + BFRT increased HIF-1α cannot 
be overlooked, because it is a key factor for hypoxia 
and metabolic stress. Low PO2 increases concentrations, 
favoring translocation to the nucleus and subsequent 
activation of VEGF in the human skeletal muscle[99].

CONCLUSION
Changes in acute exercise routine variables, such as 
intensity, volume, recovery interval and type of training 
are determinants that influence the magnitude of 
metabolic stress. Despite, traditional training protocol, 
such as RT, increase metabolite accumulation and 
influence hormonal release, hypoxia, ROS production 
and cell swelling. In this review, we discussed that low-
intensity RT plus BFRT and HIIT are alternative exercise 
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routines that increase metabolic stress and muscle 
adaptation among different populations. However, the 
difference between exercise protocols used in literature 
and different levels of physical fitness should be con
sidered when interpreting the results.
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