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Abstract

In this editorial, we comment on the article by Wang et al "Significant risk factors for
intensive care unit-acquired weakness (ICUAW): A processing strategy based on
repeated machine learning” published in a recent issue of the World Journal of Clinical
Cases 2024. The article addresses the challenge of predicting ICUAW, a neuromuscular
disorder affecting critically ill patients, by employing a novel processing strategy based
on repeated machine learning. The editorial presents a dataset comprising clinical,
demographic, and laboratory variables from Intensive care unit (ICU) patients and
employs a multilayer perceptron neural network model to predict ICUAW. The authors
also performed a feature importance analysis to identify the most relevant risk factors
for ICUAW. This editorial contributes to the growing body of literature on predictive
modeling in critical care, offering insights into the potential of machine learning
approaches to improve patient outcomes and guide clinical decision-making in the ICU

setting.
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Core Tip: Predicting intensive care unit-acquired weakness (ICUAW) is crucial for
improving patient outcomes. This editorial presents the potential of machine learning,
specifically the multilayer perceptron neural network model, in predicting ICUAW.
Insights into ICUAW risk factors and guides clinical decision-making in critical care are
offered. The importance of developing accurate and reliable predictive models to

improve patient outcomes in the intensive care unit setting is also emphasized.

INTRODUCTION

Intensive care unit-acquired weakness (ICUAW) is a neuromuscular disorder that
affects patients who have been admitted to an intensive care unit (ICU) for an extended
periodlll. Tt is characterized by a generalized weakness that can affect both the
respiratory and limb muscles, leading to difficulties in breathing, moving, and
performing activities of daily living(t2. ICUAW can result from a combination of
factors, including immobility, prolonged use of mechanical ventilation, and systemic
inflammationll,

ICUAW is a significant concern in critical care medicine for several reasons
including prognostic indicators, impact on functional outcomes, resource utilization,
and clinical decision-making/!-3l.

The development of ICUAW is associated with increased morbidity and mortality
rates among ICU patients. Patients with ICUAW are at higher risk of complications
such as pneumonia, sepsis, and prolonged hospital stays. Predicting the development of
ICUAW can help clinicians identify high-risk patients early and implement preventive
measures to mitigate its impactl'2l. ICUAW can have long-term consequences on a
patient's functional status and quality of life. It can lead to muscle wasting, weakness,

and difficulty in performing basic activities, which can impair the patient's ability to
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return to their pre-ICU level of functioning. Predicting ICUAW can help clinicians
develop targeted rehabilitation programs to improve patient outcomesl!?l. ICUAW can
increase the need for prolonged mechanical ventilation, rehabilitation services, and
long-term care, leading to increased healthcare costs and resource utilization. Predicting
ICUAW can help healthcare providers allocate resources more efficiently and improve
the cost-effectiveness of care deliveryl'?l. Predicting ICUAW can inform clinical
decision-making regarding the use of sedation, mechanical ventilation, and physical
therapy interventions. Early identification of patients at risk of developing ICUAW can
guide the implementation of preventive strategies and optimize patient carel23l.

Overall, predicting the performance of ICUAW is important for improving patient
outcomes, optimizing resourcwtilization, and guiding clinical decision-making in the
critical care setting. It allows healthcare providers to identify high-risk patients early
and implement targeted interventions to mitigate the impact of ICUAW on patient
morbidity and mortality. However, predicting ICUAW is challenging due to its
multifactorial nature and the lack of a gold standard diagnostic test(1-3l.

However, several methods have been used to assess the risk of ICUAW and predict
its development including clinical assessment, electrophysiological testing, biomarkers,
muscle ultrasound, and machine learning models'#°l. Clinicians often use a
combination of clinical signs and symptoms to assess the risk of ICUAW. These may
include muscle weakness, difficulty weaning from mechanical ventilation, and
prolonged ICU stay. However, clinical assessment alone may not be sensitive or specific
enough to accurately predict ICUAWI-4. Electrophysiological tests, such as
electromyography and nerve conduction studies, can assess the function of the
peripheral nerves and muscles. These tests can detect abnormalities in nerve conduction
and muscle activation, which may indicate the presence of ICUAW. However, these
tests are invasive, time-consuming, and may not be feasible in critically ill patients(!->>71,
Biomarkers, such as creatine kinase and myosin light chain, have been investigated as
potential indicators of muscle injury and ICUAW. Elevated levels of these biomarkers

may suggest muscle damage, but their specificity for ICUAW is limited, and they may
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also be elevated in other conditions/3¢8l, Muscle ultrasound can assess muscle
thickness and echogenicity, which may be altered in patients with ICUAW. However,
the interpretation of ultrasound findings can be subjective, and the technique may be
operator-dependent!’-39. Table 1 illustrates the strengths and weaknesses of these
methods for predicting ICUAW.

Recent studies have explored the use of machine learning models, such as artificial
neural networks, to predict ICUAW. These models can analyze large datasets and
identify patterns that may be predictive of ICUAW. However, the performance of these

models may vary depending on the quality and size of the dataset used for trainingl!-

3,89,

THE MULTILAYER PERCEPTRON (MLP) NEURAL NETWORK MODEL.
The MLP neural network model is a type of artificial neural network that has been

widely used in various fields, including healthcare, for predictive modeling tasks('0l. It
is a feedforward neural network with multiple layers of nodes (neurons) that are
interconnected by weighted edges. Each node in the input layer represents a feature of
the input data, and each node in the output layer represents a prediction
classification label. The nodes in the hidden layers perform nonlinear transformations of
the input data, allowing the model to capture complex patterns and relationships in the
datal®ll.

The MLP model has several advantages that make it a potential solution to
improve prediction accuracy for ICUAW. The MLP model can capture nonlinear
relationships between input features and the target variablel'll, which is essential for
predicting complex medical conditions like ICUAW that may involve multiple
interacting factors. The MLP model can automatically learn relevant features from the
input data, reducing the need for manual feature engineering and potentially capturing
subtle patterns that may be missed by traditional statistical models('2l. The MLP model
can be easily scaled to handle large datasets with many features, making it suitable for

analyzing electronic health record data and other healthcare datasets('3l. The MLP
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model can generalize well to new data, making it suitable for predicting ICUAW in
different patient populations or healthcare settings(1%l. Although MLP models are often
considered "black box" models, techniques such as feature importance analysis and
model visualization can help interpret the model's predictions/'4! and understand the
factors that contribute to ICUAW risk. There are several open-source libraries and tools
available for building and training MLP models, making them accessible to researchers
and clinicians without extensive machine-learning expertisell5l.

Overall, the MLP neural network model is a promising approach for predicting
ICUAW, and its flexibility, scalability, and ability to capture complex patterns in the
data make it a potential solution to improve prediction accuracy for this condition.
However, further research is needed to validate the model's performance in larger

patient populations and to identify the most effective predictive variables.

ICU PREDICTION MODELS THAT HAVE USED NEURAL NETWORK AND
MACHINE LEARNING MODELS

Several studies have investigated the use of prediction models, including those based
on neural networks and machine learning models to assess the risk of ICU and improve

patient outcomes.

Neural network-based models

The study by Benyo et all'®l focuses on computational glycemic mechanism (GM) used
to manage stress-caused hyperglycemia in ICUs. The Stochastic-TARgeted GM
procedure, employed in ICUs across several countries, is a simulation-driven GM
procedure that utilizes a personalized, algorithmic insulin sensitivity to explain the
individual's current condition. The research presents two methodologies rooted in
neural networks for forecasting the individual's insulin sensitivity factor: a deep neural
network for classification and a technique based on Mixture Density networks. These
methods are trained using treatment data from three distinct patient cohorts. The

precision of the neural network forecasts is contrasted with the existing computational
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model predictions employed in clinical practice, and it is found to be either matching or
surpassing the benchmark. The authors propose that these approaches could present a
hopeful substitute in computational treatment planning for individual health status
prognosis, but they emphasize the need for further research, including in-silico
simulations and clinical validation trials, to validate these findingsl1°l.

The study by Pappada ef all'”l emphasizes the critical importance of achieving
glycemic control in patients in ICUs, as it has been associated with reduced mortality,
shorter ICU stays, and lower risks of complications such as infection. However,
maintaining glycemic control in this setting is challenging due to the diverse range of
illnesses and patient conditions. The study collected continuous glucose monitoring
(CGM) data and other relevant measures from the electronicdnedical records of 127
patients for the first 72 h of ICU care. These patients had either type 1 or type 2 diabetes
or had a glucose value >150 mg/dL upon admission to the ICU. The researchers
developed a neural network-based model to predict a complete trajectory of glucose
values up to 135 minutes in advance. The model's accuracy was validated using data
from 15 patients not included in the training set, simulating real-world healthcare
settings. The predictive models showed improved accuracy and performance compared
to previous models developed by the research team. The model error, expressed as the
mean absolute difference percent, was 10.6% for interstitial glucose values and 15.9%
for serum blood glucose values collected 135 minutes in the future. A Clarke Error Grid
Analysis of model predictions concerning the reference CGM, and blood glucose
measurements revealed that over 99% of model predictions could be considered
clinically acceptable and would not lead to inaccurate insulin therapy or treatment
recommendations. This high level of clinical acceptability suggests that these models
could be valuable tools within a clinical decision support system to assist healthcare
providers in optimizing glycemic management in critical care patients!!7l.

The study by Wang et all’l recently published in the World Journal of Clinical
Cases, focuses on identifying significant risk factors for ICUAW and offering

recommendations for its prevention and treatment. The study utilized a multilayer
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perceptron neural network model to analyze ata from the initial 14 days of ICU stay,
including age, comorbidities, sedative and vasopressor dosages, duration of mechanical
ventilation, length of ICU stays, and rehabilitation therapy. The relatignships between
these variables and ICUAW were examined. The study found that age, duration of
mechanical ventilation, lorazepam and adrenaline dosages, and length of ICU stay were
significantly higher in the ICUAW group. Additionally, several comorbidities and
conditions were significantly more prevalent in the ICUAW group. The most influential
factors contributing to ICUAW were identified as the length of ICU stay and the
duration of mechanical ventilation. The neural network model developed in the study
predicted ICUAW with high accuracy, sensitivity, and specificity. These findings
highlight the importance of minimizing both ICU stay and mechanical ventilation

duration as primary preventive strategies for [CUAW.

Machine learning models
The study by Chang et all’®l focuses on predicting the need for ICU admission in
patients with myasthenia gravis (MG), an autoimmune neuromuscular disorder
characterized by muscle weakness. Although specialized neuro-intensive care can lead
to good long-term outcomes, predicting the need for ICU care is critical for optimizing
patient management. The study used three machine learning-based decision tree
algorithms to predict ICU admission in 228 MG patients admitted between 2015 and
2018. The C5.0 decision tree outperformed the other models and identified several
significant risk factors for ICU admission, including the Myasthenia Gravis Foundation
of America clinical classification at admission, thymoma histﬁy, azathioprine treatment
history, disease duration, sex, and onset age. The developed decision tree can serve as a
supportive tool for clinicians to identify MG patients who require intensive care,
thereby improving the quality of care and potentially reducing morbidity and mortality.
The study by Tran et all’l concentrates on crafting a clinical tool grounded in
machine learning to anticipate muscle ailment subcategories utilizing multi-cohort

microarray expression information. The information was curated from 42 separate
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cohorts with expression outlines in publicly available gene sources, encompassing a
diverse spectrum of subject ages and muscle tissue samples from non-central regions.
The research classified cohorts into five categories of muscle disorders: limited mobility,
inflammatory muscle diseases, ICU-acquired weakness, congenital conditions, and
chronic systemic illnesses. The dataset includes evidence on 34.099 genes, and
procedures to augment the information was employed to rectify imbalances in subtype
representation within muscle disorders. Support direction mechanism algorithms were
trained on two-thirds of the 1260 samples using the most significant gene signatures
identified through statistical tests. Validation of the model was conducted on the
residual testers utilizing the area under the receiver operator curve (AUC). The study
found that chronic systemic disease was the best-predicted class with an AUC of 0.872,
while ICUAW and immobility were the least discriminated classes with AUCs of 0.777
and 0.789, respectively. Condition-particular gene set enhancement findings revealed
that the genetic profile exhibited improvement in biological pathways such as
proliferation of neural progenitor cells for ICU-acquired weakness and aerobic
metabolism for congenital conditions. The research concludes that the devised
molecular categorization instrument featuring the chosen genetic indicators for
categorizing muscle disorders fills a notable void in the literature on muscular ailments
and introduces a potentially valuable diagnostic aid for discerning muscle disorder
variety in clinical practice.

In summary, these investigations underscore the promise of prediction models in
evaluating risk and enhancing patient outcomes. Nonetheless, additional research is
required to validate these models across larger patient cohorts and to pinpoint the most

efficacious predictive variables.

DATASET USED TO TRAIN AND TEST THE MULTILAYER PERCEPTRON
MODEL

The dataset used to train and test the MLP model for predicting ICUAW would

typically consist of a variety of clinical and demographic variables collected from
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patients admitted to the ICU. The variables that could be included in the model are
presented in Table 2.

The dataset would typically be divided into two subsets: a training set and a test
set. The training set would be used to train the MLP model, while the test set would be

d to evaluate the model's performance. The dataset may also be divided into a
validation set, which is used to tune the model's hyperparameters and prevent
overfitting. It is important to note that the dataset should be large enough to adequately
represent the patient population and include enough patients who develop ICUAW to

allow for meaningful analysis. Additionally, missing data and outliers should be

carefully handled to ensure the reliability of the model's predictions.

SPECIFIC FEATURES AND PARAMETERS OF THE MLP MODEL FOR
PREDICTING ICUAW

The specific features and parameters of the MLP model for predicting ICUAW can vary
depending on the dataset and the specific implementation of the model. However, some
common features and parameters must be included, such as the number of layers,
activation functions, optimization algorithm, regularization, batch size, learning rate,
and dropout rate.

The MLP model typically consists of an input layer, one or more hidden layers, and
an output layer. The number of hidden layers and the numgber of nodes (neurons) in
each layer are hyperparameters that need to be determined based on the complexity of
the dataset and the desired level of prﬁiction accuracy!(11-13.19],

Activation functions are used to introduce nonlinearity into the model, allowing it
to capture complex patterns in the data. Common activation functions used in MLP
models include the sigmoid function, the hyperbolic tangent function, and the rectified
linear unit (ReLU) function(!!-14].

The optimization algorithm is used to update the weights of the model during
training to minimize the loss function. Common optimization algorithms used in MLP

models include stochastic gradient descent (SGD), Adam, and RMSpropl11-14].
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Regularization techniques, such as L1 and L2 regularization, are used to prevent
overfitting by penalizing large weights in the model. Dropout is another regularization
technique that randomly drops a fraction of the nodes in each layer during training to
prevent co-adaptation of neurons!!1-13].

The batch size is the number of samples used to compute the gradient of the loss
function during each iteration of training. A smaller batch size may lead to faster
convergence but may result in noisy updates, while a larger batch size may lead to more
stable updates but may require more memory (1114

The learning rate is a hyperparameter that determines the size of the step taken by

optimization algorithm during each iteration of training. A higher learning rate may
lead to faster convergence but may resuﬁ_n overshooting the minimum of the loss
function, while a lower learning rate may lead to slower convergence but may result in
more stable updates(!1-14],

The dropout rate is the fraction of nodes that are randomly dropped during
training. A higher dropout rate may lead to more regularization but may result in
slower convergence, while a lower dropout rate may lead to faster convergence but may
result in overfitting[12-151.

These are just some of the features and parameters that can be used in an MLP

del for predicting ICUAW. The specific choices of features and parameters should be

based on the characteristics of the dataset and the desired level of prediction accuracy.

PROCESS OF TRAINING AND VALIDATING THE MLP MODEL FOR
PREDICTING ICUAW

The process of training and validating the MLP model for predicting ICUAW involves
several steps, including data preprocessing, model training, hyperparameter tuning,
cross-validation, model evaluation, and interpretation (Figure 1). The step-by-step
process is described below.

The first step is to ]_:Eeprocess the dataset by handling missing values, normalizing

numerical features, and encoding categorical variables. This ensures that the data isin a

10 / 12




suitable format for training the model. Next, the MLP model is trained using the
training set. DThe first step is to pre&rocess the dataset by handling missing values,
normalizing numerical features, and encoding categorical variables. This ensures that
the data is in a suitable format for training the model. Next, the MLP model is trained
Eng the training set. During training, the model's weights are updated iteratively
using an optinﬁation algorithm (e.g., stochastic gradient descent) to minimize the loss
function. The loss function rraasures the difference between the model's predictions
and the actual outcomesl?’l. Hyperparameters are parameters that are not learned

ring training but are set before training begins. Examples of hyperparameters include
the number of hiaen layers, the number of nodes in each layer, the learning rate, and
the dropout rate. Hyperparameter tuning involves selecting the optimal values for these
hyperparameters to improve the model's performance. This can be done _using
techniques such as grid search, random search, or Bayesian optimization/?!l. Cross-
validation is a technique used to assess the generalization performance of the model. It
involves splitting the dataset into multiple subsets (folds), training the model on some
of the folds, and evaluating its performance on the remaining folds. This process is
repeated multiple times, with different subsets used for training and evaluation each
time. The average performance across all folds is used as an estimate of the model's
generalization performancell’), Once the model has been trained and validated, its
performance is evaluated using the test set, which was not used during training or
aalidation. The evaluation metrics used to assess the model's performance may include
accuracy, precision, recall, F1 score, and area under the receiver operating characteristic
curve (AUC-ROC)22I. These metrics provide insights into the model's ability to correctly
classify patients with and without ICUAW. After evaluating the model, it is important
E interpret its predictions and understand the factors that contribute to ICUAW risk.
Techniques such as feature importance analysis and model visualization can help
identify the most important predictive variables and understand the model's decision-

making process[10.21.22]. The process is iterative and may involve multiple rounds of data
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preprocessing, model training, hyperparameter tuning, cross-validation, model
evaluation, and interpretation.
By following these steps, researchers and clinicians can develop and validate an

MLP model for predicting ICUAW that is accurate, reliable, and interpretable.

CONCLUSION

This editorial on predicting [CUAW using an MLP neural network model presents a
comprehensive approach to addressing the challenges associated with predicting
ICUAW. By leveraging the capabilities of the MLP model, researchers and clinicians can
develop a predictive model that is accurate, reliable, and interpretable. The editorial
highlights the importance of predicting ICUAW for improving patient outcomes,
optimizing resource utilization, and guiding clinical decision-making in the critical care
setting. The editorial presents the strengths and weaknesses of existing approaches to
predicting ICUAW, including clinical assessment, electrophysiological testing,
biomarkers, and muscle ultrasound. It emphasizes the limitations of these approaches
and how the MLP model addresses these limitations by providing a nonlinear modeling

approach, feature learning capabilities, scalability, generalization, and interpretability.
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