74297 Auto Edited.docx



Name of Journal: Artificial Intelligence in Medical Imaging
Manuscript NO: 74297
Manuscript Type: MINIREVIEWS

Artificial intelligence: Advances and new frontiers in medical imaging

Marc R Fromherz, Mina S Makary

Abstract

Artificial intelligence (AI) has been entwined with the field of radiology ever since
digital imaging began replacing films over half a century ago. These algorithms,
ranging from simplistic speech-to-text dictation programs to automated interpretation
neural networks, have continuously sought to revolutionize medical imaging. With the
number of imaging studies outpacing the amount of trained of readers, Al has been
implemented to streamline workflow efficiency and provide quantitative, standardized
interpretation. Al relies on massive amounts of data for its algorithms to function, and
with the wide-spread adoption of Picture Archiving and Communication Systems
(PACS), imaging data is accumulating rapidly. Current Al algorithms using machine-
learning technology, or computer aided-detection (CAD), have been able to successfully
pool this data for clinical use, although the scope of these algorithms remains narrow.
Many systems have been developed to assist the workflow of the radiologist through
PAC system optimization and imaging study triage, however interpretation has
generally remained a human responsibility for now. In this review article, we will
summarize the current successes and limitations of Al in radiology, and explore the

exciting prospects that deep-learning technology offers for the future.

INTRODUCTION

Advancements in artificial intelligence (AI) technology have created a stir of

excitement—and trepidation —amongst professionals in radiology. With the advent of




concepts such as machine learning and artificial neural networks promising
instantaneous and accurate image interpretation, Al has been heralded as the next step
in radiology evolution('2l. The ability to reduce image interpretation time and increase
detection to levels beyond what is possible for the human eye could create a
revolutionary, and increasingly necessary, impact on patient care across all medical
disciplines.

Al in radiology has focused on improving three broad principles attributed to
human limitations; efficiency, objectivity, and standardization!'23l. Over the past few
years there has been a continual increase in imaging orders, and it has been estimated
that a radiologist must interpret an image every 3-4 s to match the demand[34] This
demand, combined with declining reimbursement, has put more pressure on
radiologists to increase productivityl’l. Additionally, human and health system
variability has long been seen as a potential target to improve standardization across
the field. Depending on who the reader is, what hospital system they work for, the time
of day, and the number of scans the radiologist has read can result in measurable
discrepancies in accuracy and timeliness of image interpretation/[3671,

Despite the exciting potential of Al utilization, the fear of algorithms replacing
radiologists is ever present. Al companies have grown at an astonishing rate, with 60
new FDA approved products in 2020, however the once foreseen Al takeover has not
yet manifested 8910 Nonetheless, Al is making an impact, just not in the way it was
originally planned. A fundamental shift has occurred in recent years in Al
implementation, scope, and underlying philosophy. The idea of “replacing radiologists”
is not a viable next step in Al evolution, at least for now, and the new philosophy of
“working with radiologists” is one that is rapidly gaining traction['''2. By examining
the current utilizations and limitations of Al in radiology, we can recognize the
importance of this fast-rising technology and where the interaction between human and

machine may be headed in the future.

CURRENT AI UTILIZATION IN RADIOLOGY




The current state of Al utilization in the field of radiology is variable based on
institution, although there are several widely-adopted systems. Aligning with the
newer philosophy of “working with radiologists”, many of the current Al systems are
being used in a limited capacity as tools to enhance the radiologist’s workflow. Many of
these Al systems fall under the category of “micro-optimizations”['3l.

The primary goal for micro-optimization algorithms is to assist the radiologist in
his or her daily tasks rather than fully automating the radiologic process. Micro-
optimizations can be broken down into two categories; nonpixel-based optimizations
and pixel-based optimizations. By using Al to streamline the efficiency and
standardization of time-consuming, mundane, or non-interpretive tasks, radiologists
can better allocate their time and energy to further focus on image interpretation,
consultation, and overall patient carel3#'4. Table 1 provides a summary of Al

applications for both nonpixel-based and pixel-based optimizations.

Nonpixel-based Optimizations

Nonpixel-based optimizations refers to Al assistance in tasks that are not directly
related to image interpretation. Some of these tasks include triaging patients, PACS
optimizations, and standardized reporting. As an example, to better triage patients for
immediate interpretation Al systems are currently being tested for risk stratification in
patients with possible aortic dissection or aneurysm rupturell5l. As a different example,
through big data analysis, Al algorithms have started to tackle the issue of automated
image protocol creations. By reviewing imaging study requests, Al can determine if the
study is appropriate, if another study may be more appropriate, or if contrast is
necessary or not. With the ability to automatically mine the electronic medical record
system and compare it to established guidelines, the system can then make the
appropriate recommendation!6.17.18]. With an estimated 10% of all imaging studies being
ordered in error, these nonpixel-based algorithms can automatically detect and

eliminate erroneous study orders!920],




The automatic generation of hanging protocols and standardized screen display
is another target for optimization. Before data interpretation can commence, a
radiologist can spend 10-60 s selecting the appropriate images for comparison!''l. By
having the appropriate hanging protocol and display automatically generate, image
interpretation can commence instantaneously. What may at first seem like an
insignificant amount of time, the elimination of manual protocol selection can
significantly improve efficiency and allow for the redirection of the radiologist’s brain
power toward actual diagnostic interpretation!!].

The standardization of reporting is one of the final areas for optimization, and
one that is becoming increasingly necessary among all medical specialties in order to
efficiently navigate and report in the electronic medical systems. Reporting is the final
step in the radiologist’s workflow, and it is also one of the most error-pronel?!l. Many
micro-optimization Al algorithms are working on increasing the efficiency of reporting
through the creation of automatic report generation tools including pre-selected formats
specific for the study and automatic annotation. Automating and standardizing
reporting can optimize radiologists’ reimbursements and save time, as demonstrated by
one current chest x-ray reporting algorithm that saved radiologists an average of 8.5 h

per month?22,

Pixel-based Optimizations

While the importance of these nonpixel-based micro-optimizations cannot be
understated, the prospect of instantaneous image interpretation is the ultimate ambition
of Al. Although AI technology has not yet achieved this ability in a broad sense, the
development of pixel-based micro-optimizations have been paramount in maximizing a
radiologist's workflow efficiencyll. Some example applications of these systems
involve image segmentation, reconstruction, and disease registration.

Al segmentation has the ability to automatically delineate structures and provide
measurements such as organ volume or the surface area of a tumor. Taken a step

further, these Al algorithms can be specialized to stage tumors and provide pre-




interpreted read-outs such as PI-RADS scores for prostate cancer staging/?4. A study by
Sanford et al demonstrated a modest 40% agreement between an Al algorithm and an
expert radiologist when assigning PI-RADS scores based on magnetic resonance
imaging (MRI). This result was comparable with previous human inter-reader
agreementsl?. Automated segmentation and pre-interpreted read-outs may be
maximally utilized in areas that have the most amount of data, such as screening
imaging studies.

Utilizing Al for screening processes helps to reduce the workload for radiologists
while not over-extending the abilities of Al As the typical screen produces categorically
“positive”, “negative”, or “inconclusive” results, the complexity of the Al reads can be
minimized. Using machine learning for screening detection is referred to as computer
aided detection (CADe). CADe is currently being used in screening mammography,
where there is an abundance of imaging studies and a relatively disproportionate
amount of mammography trained readers[122l. CADe highlights the area of interest,
and it is then determined whether an additional diagnostic study is indicated. CADe for
mammography has been around since 1998 and its implementation into clinical
workflow has continued to increase allowing radiologists to read more screening
studies in less time. Along with the decreased read-time, it should be noted that several
studies comparing the accuracy of CADe mammography to traditional radiologist-read
mammograms have shown no discernable differencel2¢l. In one such study, an ensemble
of top-performing Al algorithms combined with a single radiologist reader achieved an
area under the curve (AUC) of 0.942, with 92% specificity, outperforming the
radiologists” specificity of 90.5%[%°l. This is a representative example of new Al

algorithms geared toward instantaneous, automatic interpretation.

Table 1. Areas of radiology workflow with current Al implementation

LIMITATIONS




Despite the constant development of new Al companies, advanced algorithms,
and enhanced learning technology, Al has not yet become mainstream in the radiology
world due to a combination of both logistical and clinical challenges. The ease of which
Al programs can be implemented varies widely based on the scope and technicalities of
the clinical problem they aim to solve, as well as the mechanism by which they solve
them. In general terminology, there are two main types of Al systems, machine-learning

and deep-learning, each of with have some specific limitations of their ownl[1.27].

Machine-Learning Al

Machine-learning functions largely on the principal of pattern recognition. If the
machine is able to “see” enough example image characteristics of a certain disease, it
can then look at new images and be able to recognize them based on those previously
defined features. The caveat here, is that these “pre-defined features”, such as tumor
volume, density, etc.,, must be hand-fed into each specific machine-learning classifierl®l.
In this way the Al does not actually learn, but rather applies the specifics of its pre-
engineered programming. Consequently, machine-learning Al is intrinsically limited by
these specific characteristics which can reduce its ability to recognize image features,
such as rare or unusual disease presentations282l. Figure 1 demonstrates a schematic
example of how machine-learning Al systems utilize these pre-defined features for
classification. Furthermore, as the breadth of medical knowledge continues to expand,
previous CAD systems may become outdated, and therefore obsoletel28]. The theoretical
solution to these hard-wired restrictions is the use of Al algorithms that do not rely on
pre-engineered feature recognition, but rather one that can learn and adapt in a manner

similar to the human brain.

Figure 1. Machine-learning requires pre-defined feature inputs which are then

extracted in order to classify target image characteristics.




Deep-Learning AI

Deep-learning is programmed to mimic the pattern of neural networks such as
those in the human brain, referred to in the literature as convolutional neural networks
(CNNs). The principal mechanism behind Al algorithms relies on a vast quantity of
data, and through this data the Al can develop its own pattern of feature recognition
without the need for pre-programming from human experts. Deep-learning Al uses
these features to create connections and draw conclusions in a way similar to the
human brain, and allowing it to operate freely from human input thus increasing its
automaticity and decreasing restrictions!3331. While in theory this method appears to
be a step-up from classical machine-learning technology, the reliance on data and
complexity of the mechanism has its limitations.

With the wide-implementation of PACS and an ever-increasing number of
medical images, there is no shortage of data for Al algorithms to minel32l. The issue is
not quantity —but quality. Different PACS, different imaging machine manufacturers,
and different protocols can all effect the generalizability of an Al algorithm. These
variations in image reconstruction, segmentation, and labelling can have adverse effects
on the Al's ability to learn, and the process of standardization across these variables
would be a time-consuming and expensive task. This is one of the reasons for the
current narrow use of Al in clinical practice. Currently approved Al programs only
function with specific computed tomography (CT) imager models, specific PAC
systems, and specific disease processes. With such a narrow clinical window, Al in its
current form is limited in scopel2829l. If multiple different Al systems are needed for
each specific pathology the process of creating and implementing these systems may
not be fiscally feasiblel®l. Even with implementation, a lapse in the detection of rare

diseases would still exist.

Industry Acceptance
Questions regarding the mechanism of how deep-learning functions can also

create additional limitations, specifically regarding FDA approval and the accuracy of




the AI's resultsl®3]. The mechanism is extremely complex, and in many instances, the
exact way in which the AI forms these CNNs is either unknown or proprietary. If the
way the Al algorithm functions to produce its results is not well understood, this begs
the question of whether or not its results can be trusted[83433l. This question has haunted
Al since its inception, and the answer of whether or not health professionals and
patients would be willing to put their faith in the recommendation of a 100% computer-
controlled radiologic study is not an easy one to answer. A variety of comparison
studies have been conducted to determine whether Al accuracy is comparable to that of
human readers, and the results have been mixed.

In the previously mentioned Shaffter et al study on breast cancer detection, no
single Al algorithm was able to outperform the radiologists, with a specificity of 66.1%
for the top-performing algorithm compared to 90.5% for the radiologistsl?l. In a breast
cancer detection study using a different Al system, the Al outperformed the radiologists
with an AUC of 0.740 compared to the radiologists” AUC of 0.6250%l. In a study
comparing chest radiograph interpretation, Al outperformed the radiologists on
detection of pulmonary edema, underperformed on detection of consolidation, and had
comparable performance for detection of pleural effusionsP’l. These studies collectively
demonstrate that Al systems have mixed performance compared to human radiologists.

The utilization of different algorithms, training datasets, and radiologist
experience in these studies makes drawing conclusions about Al's general
trustworthiness difficult. Concerns such as these are why the shift toward micro-
optimizations has been an attractive one for the interim, however as new technologies
are developed and deep-learning systems are polished the future of Al continues to

push the boundaries of possibility.

FUTURE DIRECTIONS

The future of Al in radiology is constantly evolving, and with new computer
systems, implementation targets, and algorithms being developed seemingly by the day

there is no discernable end to what is possiblel®?10l, Within PACS, the utilization of




deep learning Al could theoretically be implemented wherever large quantities of data
are available, although as previously stated there are several limitations to deep
learning technology. With the interconnectivity, digitization, and increasing data pool
in modern radiology, the limitations of deep-learning may slowly start to be overcome,
and the use of micro-optimization may ramp up in scale.

The next phase in Al utilization will likely continue the trend of micro-
optimization, but with increased efficiency. As hospital systems become more
integrated, with imaging devices and PACS being able to directly communicate with
each other, it would only make sense that the Al algorithms within these systems do the
same. With Al's current narrow clinical usage, each system excels at only one specific
task(??°l. By combining these systems, the scope of each can be summated into a larger,
more efficient system. For example a lung cancer screening CT reconstruction algorithm
could be used alongside a hanging protocol algorithm, with CADe for detection, and
another algorithm for report generationl®l. Until a more encompassing system is
created, combining existing micro-optimizations can scale efficiency in clinical

workflow.

Disease Recognition and Triage

Despite the profound promise of deep learning, it has yet to have seen wide-
spread clinical utilization. That being said, the power behind deep learning is data and
the amount of available data is continuously growing. As we gather more high-quality
data, the deep learning systems should become more powerful, increasing their usage
potential. The full potential of deep learning is still unknown, however there are several
promising applications in detection and automated disease monitoring. One of these
applications is in the identification of incidental findings. When a radiologist is
examining a trauma study, the Al system can detect incidental pulmonary nodules,
allowing the radiologist to focus on the primary clinical issue without overlooking other
findingsl340l. Looking to improve upon current CAD systems, utilizing deep learning

Al for triage is another attractive target, where the urgency of a given study is




prioritized and then sent to a radiologist for final interpretation. These algorithms pool
hundreds of thousands of imaging studies along with their subsequent reports, and use
this information to train their CNNs. In a study of one such algorithm on assigning
priority to adult chest radiographs, Al was able to assign priority with a sensitivity of
71% and a specificity of 95%. Importantly, the time taken to report critical findings was
reduced significantly from 11.2 to 2.7 days®l. Another study on triaging patients based
on head CT findings produced similar results, with an AUC of 0.92 for accurately
detecting intracranial hemorrhagel*!l. Figure 2 is schematic example demonstrating this
type of Al triage system. The ability for the system to distinguish between ‘normal” and
‘abnormal” accurately, and then further stratify ‘abnormal’ into severity categories, is a

promising step toward automated interpretation[3%41l.

Figure 2. Deep-learning Al application in triaging head CT images. The input image
characteristics are extracted and analyzed by the CNN to create an output. The output

is then flagged or not flagged depending on the algorithm’s interpretation.

Disease Monitoring

The prospect of monitoring disease progression is a more complicated one, but
the ability of the deep learning system to accumulate and track data changes over time
makes this an attractive target. These systems may also have the ability to automatically
adjust for changes in patient position or body habitus at the times the studies were
conductedPl. One of the obvious applications for this is oncology, with AI models
already demonstrating their ability to accurately measure therapeutic response and
tumor recurrencel243l, Throughout the COVID-19 pandemic, the ability to track disease
progression has been crucial for medical decision making. Unfortunately, the wide
variability in an individual’s disease course has been difficult to predict. To solve this
problem, several deep learning systems have been tested to identify minute chest CT

changes based on quantitative pixel analysis, giving us a more sophisticated look into




the pathophysiology of the diseasel#454l. Not only does this present the potential to
make educated decisions for COVID patients regarding the need for hospitalization and
allocation of resources, but the pandemic in general has further stressed the need of

increased efficiency in radiology during times of unprecedented volume.

CONCLUSION

As the role of Al in radiology continues to advance and diversify, the potential for
revolutionary clinical impact persists. One of the most important factors for the
continued development of Al in radiology is achieving wide-spread implementation,
and to achieve this Al must be embraced by radiologists. Currently, only an estimated
30% of radiologists use Al in day-to-day workflow!¥’l. With the shift of AI philosophy
away from replacing radiologists, the view of Al as a threat to fear may be replaced
with its view as a tool to exploit. As more algorithms are approved, more studies
published, and more systems implemented into clinical practice, radiologists and
trainees alike need to educate themselves on what Al can do for them and their patients.
When radiologists and Al learn to work together, the potential clinical benefits of a

human-machine symbiosis can be fully realized.
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