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Abstract
18]

Noninvasive imaging (computed tomography, magnetic resonance imaging, endoscopic
ultrasonography, and positron emission tomography) as an important part of the clinical
workflow in the clinic, but it still provides limited information for diagnosis, treatment
effect evaluation and prognosis prediction. In addition, judgment and diagnoses made
by experts are usually based on multiple years of experience and subjective impression
which lead to variable results in the same case. With accumulation of medical imaging
data, radiomics emerges as a relatively new approach for analysis. Via artificial
intelligence techniques, high-throughput quantitative data which is invisible to the naked
eyes extracted from original images can be used in the process of patients’ management.
Several studies have evaluated radiomics combined with clinical factors, pathological, or
genetic information would assist in the diagnosis, particularly in the prediction of
biological characteristics, risk of recurrence, and survival with encouraging results. In
various clinical settings, there are limitations and challenges needing to be overcome
before transformation. Therefore, we summarize the concepts and method of radiomics
including image acquisition, region of interest segmentation, feature extraction and
model development. We also set forth the current applications of radiomics in clinical
routine. At last, the limitations and related deficiencies of radiomics are pointed out to

direct the future opportunities and development.
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1LINTRODUCTION

Radiomics was first proposed by Lambin et al. in 2012, which converts medical images
into high-throughput quantitative features!'l. Radiomic features can capture tissue and
lesion properties noninvasively, such as shape and heterogeneity, and radiomics acts as
a new approach to extract the information underlying the medical images that fail to be
appreciated by naked eyesil. In the meanti radiomics also possesses several
advantages over molecular assays, such as being non-tissue-destructive, rapid analysis,
easily serialized, fairly inexpensive, and being fully compatible with the existing clinical
workflowsBl, In 2014, Aerts et al. demonstrated the role of radiomics in disease
prognostication, promoting the development of radiomic-based signatures.
Subsequently, the Pyradiomics framework based on the image biomarker
standardization initiative (IBSI) criteria published in 2017 strongly supported the
standardized application of radiomics/®l.

Radiomics has evolved tremendously in the last decade, with the objective of precision
medicine. However, the interpretability of radiomic-based signatures and the correlation
with biology and pathology need to be further discussed. Additional multi-center data
and prospective validation are also required for verification, in order to improve the
confidence of applicationsl®l. There are still several substantial barriers to realize the
objective of transforming artificial intelligence (AI) into the real clinical practice.

In the present study,rﬁne basic principles and methodologies of radiomics were reviewed
and an outline of the representative clinical utilization was provided to highlight the
benefits of radiomics in diagnosis, staging, tumor biological features, and prognosis.

Additionally, it is essential to explore the deficiencies of radiomics to achieve a balanced

interpretation between Al and clinical practice.

2.CONCEPT WD METHODOLOGIES
“Radiomics,” a term that describes the “omics” approach for the analysis of imaging data,

has emerged as a novel tool for diagnosis and prognosisi?l. Using advanced
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computational tools, high-throughput quantitative imaging features beyond inspections
of naked human eyes are extracted and the desensitized medical images are transformed
into multiple textural features for quantitative assessment!”-%l. With semantic features,
radiomics enables clinicians to make more objective and accurate clinical decisions in
diagnosis and prognosis[!®!1l. The workflow of radiomics analysis, consisting of several

steps, is illustrated in Figure 1.

2.1 IMAGE ACQUISITION

Image acquisition is approved by the ethics committee and informed consent form is
signed by participants or their close relatives. The right to know patients is protected by
relevant regulations. As the research of radiomics concentrated on human participants, it
complies with the basic principles of 1964 {(Helsinki Manifesto) and its later revisions.
Sensitive information is erased from medical imaging data exported from imaging
databases, including but not limited to organization name, organization address,
physician’s name, patient’s name, patient’s birthday, etc. Besides, personal data are kept
confidential, such as ID number, home address, contact information, medical insurance
information, etc. Acquisition, transmission, and use of data should meet relevant legal
requirements.
In addition, medical imaging data, which are consistent with standard imaging protocols,
are the foundation of radiomics'213]. It can be single- or multi-center, and retrospective
prospective. Although there are various types of imaging examinations, including
computed tomography (CT), magnetic resonance imaging (MRI), positron emission
tomography (PET), ultrasound (US), etc.[111416] for different research purposes, the
dominant examination methods or sequences are more recommended. Hence, more
eligible cases are included to find out common features, which may contribute to the
stability of modelsl'7l. There is no general standard for the medical imaging data from
different examination methods using different imaging methods, acquisition methods,

imaging parameters, and imaging quality that may affect the subsequent analysis.
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Therefore, how to normalize the data and conform to the imaging standard is the focus
of radiomics studies at present.

After data collection, the data need to be checked and confirmed, in order to correct or
eliminate unqualified data. The specific inspection content includes the validity of the file
format, the integrity of the sequence, and the correctness of the image content, in order
to exclude unrecognizable images, sequence deletion, and wrong image layers. More
detailed image quality specifications can also be formed according to specific research
requirements. In the process of image quality control, it is necessary to sort out the
imaging problems encountered, so that the data can be traced back when the inclusion

and exclusion criteria are defined.

2.2 PREPROCESSING

Because of different scanning parameters, reconstruction procedures (slice thickness,
voxel size, and reconstruction algorithm), and inconsistent imaging acquisition of multi-
brand manufactories, it has a significgﬁ influence on distribution of featuresl1819], In
order to decrease this discrepancy, preprocessing of the collected imaging data is
essential. At present, the most common methods include resampling, gray-level
discretization, and intensity normalization. Image resamplinhinvolves generation of
equal-size voxels by applying the linear interpolation algorithm to improve image quality
and to eliminate bias introduced by non-uniform imaging resolution?l. Gray-level
discretization refers to the bundling of pixels based on their density, either byﬁlative
discretization (fixed number) or absolute discretization (fixed size)?!l. Image intensity
normalization is used to correct inter-subject intensity variation by transforming all
images from original greyscale into a standard greyscale. Furthermore, image
enhancement approaches, such as image flipping, image rotation, image distortion,
image transformation, and image scaling, can enrich data diversity, improve model
generalization ability, and reduce the risk of model overfitting.

In addition to the above-mentioned methods, not only for images, we also need to

preprocess clinical data. Deidentification of data is beneficial to protect personal
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information and query data among multiple departments. Hospital number is advised to
be the unique identification, realizing the mapping of images. In order to effectively
eliminate the deficiency of data inconsistency and bias in multi-center studies, it is
necessary to conduct data consistency processing, which is advantageous to realize cross-
center data modeling and verification. The methods of data consistency processing
include: (a) Standardization of data collection: Data are collected according to the unified
data acquisition standard in each center; (b) Consistency processing based on extracted
features: The method of Z-score can be used to standardize data; (c) Consistency
processing based on image domain: According to the annotated information, the size of

region of interest (ROI) is kept consistent.

2.3 SEGMENTATION

Segmentation of ROI can be divided into manual and semiautomatic/automatic
segmentation, two-dimensional (2D) and three-dimensional (3D) segmentation, and
intratumoral and peritumoral segmentation(2226l. This process is relatively tedious and
requires open-source or dedicated software to support!!2l. The process at least needs one
labeling physician and one senior physician. The knowledge of relevant anatomy and
imaging should be well known by labeling physicians and they must be familiar with the
sketching software. In addition, for manual segmentation, intra-class correlation
coefficient and concordance correlation coefficient can be advantageous to reduce the
discrepancy of subjective judgement and the intra- and inter-reader variability[1727]. Due
to the rapid development of compLEr science, semiautomatic/automatic segmentation
has been frequently applied. Automatic segmentation aims to draw ROIs
automatically!®], while semiautomatic segmentation still requires partially manual
intervention to mark the center of the lesion before automatic segmentation(?%l. They both
decrease instability to a certain extent, however, they are less applied because of technical
restriction. At present, automatic segmentation can be summarized into three

categories(®l: (a) algorithms based on intensity thresholds and regions; (b) algorithms
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based on statistical approaches and deformable models; (c) algorithms incorporating

empirical knowledge into the segmentation process.

2.4 FEATURE EXTRACTION

Features ariextracted from ROIs using different software with the similar code, which
consist of first-order, second-order, and higher-order features. First-order features
describe the geometric attributes and the distribution of voxel intensities of the ROISs,
including mean, mediannmaximum, and minimum values, as well as the skewness,
kurtosis, and entropy. Second-order _features represent the relationships between
adjacent voxels to measure featuresl®'l. Second-order textural features describe the gray-
scale alterations and are extracted by different algorithms. Higher-order features are
extracted via wavelet, Laplacian, and Gaussian filters from multiple dimensionsP2. With
the combination of multiple omics, semantic features, which are based on the experience
and knowledge of radiologists, pathological features, genetic features, etc., all promote
the transformation of radiomics into clinical practice. In recent years, depiction of deep
learning (DL)-based features, which are supplementary high-dimensional features, by
observers has been reported as a challengel®l. Although DL-based features reveal certain
advantages in terms of estimating prognosis of malignancies, it is enslaved to be widely

used by data size and technological development.

2.5 FEATURE SELECTION

According to the fourth step (feature extraction), the great number of extracted features
is achieved, and how to select the most relevant features is the key to establish a robust
radiomics model. This process simplifies the mathematical problem by decreasing the
number of parameters and also reduces the risk of overfitting. Specific methods include
univariate, the least absolute shrinkage and selection operator (LASSO), RELIEF

algorithm, redundancy maximum relevance (MRMR), etc.[34.

2.6 MODELING AND VERIFICATION
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The ultimate objective of radiomics is to establish an effective model for classification and
prediction. The data should be clustered into training and validation datasets. Different
classifiers, including logistics, support vector machine (SVM), Bayes, k-Nearest Neighbor
(KNN) algorithm, Tree and Forest, are used to set up models and to select the most
effective model by seed circling for clinical transformation(?*l. Meanwhile, the predictive
performance of the final model should be verified on a separate cohort, and an external
validation cohort is highly appropriate to confirm its generalization. Owing to the lack of
data sharing, obtaining the results of external validation of the model is a challenge at

this stage.

3. CLINICAL APPLICATION OF RADIOMICS

3.1 DIAGNOSIS AND STAGING

In previous studies, radiomics has shown a great potential in the diagnosis and staging
of different diseases. Although the diagnosis of some lesions is easy according to imaging
manifestations, radiomics can improve phyﬁans’ diagnostic confidence and patients’
examination strategies. In a plain CT study, 168 patients with hepatocellular carcinoma
(HCC) and 117 patients with hepatic hemangioma were analyzed. Textural features were
extracted from plain CT images and 13 features were selected from 1,223 candidate
features to constitute the radiomics signature, in order to establish gistic regression
model to classify benign and malignant liver tumors. The final model achieved an
average area under the curve (AUC) of 0.87. In spite of the lack of innovation, it helps
patients who cannot successfully undergo contrast-enhanced CT (CECT) because of
iodine contrast agent allergy for a relatively accurate diagnosis[l.
In another study, Ding et al. explored the capacity of the combined model for
differentiating HCC from focal nodular hyperplasia (FNH) in non-cirrhotic livers using
Gd-DTPA contrast-enhanced MRI. For this purpose, 8 radiomics features were selected
the radiomics model, and 4 clinical factors (age, gender, hepatitis B surface antigen
(HbsAg), and enhancement pattern) were chosen for the clinical model. The combined

model was established using the factors from the previous models. The classification
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accuracy of the combined model that differentiated HCC from FNH in both the training
and validation datasets was 0.956 and 0.941, respectively. The model could support
clinicians to make more reliable clinical decisions!?l.

Serous cy%adenomas (SCN) are considered as mostly benign cystic neoplasm in the
pancreas. Mucinous cystic neoplasm (MCN) is an easily misdiagnosed lesion of SCN,
which is associated with the risk of malignant transformation®®l. Therefore, Xie et al.
confirmed the value of CT-based radiomics analysis in preoperatively discriminating
pancreatic MSN and SCN. A total of 103 MCN and 113 SCN patients who underwent
surgery were retrospectively enrolled. The Rad-score model was proved to be robust and
reliable (average AUC, 0.784; sensitivity, 0.847; specificity, 0.745; positive-predictive
value (PPV), 0.767; negative-predictive value (NPV), 0.849; accuracy, 0.793), which could
serve as a novel tool for guiding clinical decision-making[3°l.

E another multi-center study, researchers took advantages of radiomics to develop a
nomogram for preoperatively predicting grade 1 and grade 2/3 tumors in patients with
pancreatic neuroendocrine tumors (PNETs). Totally, 138 patients from two instituti
with pathologically confirmed PNETs were included in that retrospective study. The
nomogram integrating an independent risk factor of tumor margin and fusion radiomic
signature showed a strong discrimination with an AUC of 0.974 (95% confidence interval
(CI): 0.950-0.998) in the training cohort and 0.902 (95% CI: 0.798-1.000) in the validation
cohort, with a satisfactory calibration. Decision curve analysis (DCA) verified the clinical

applicability of the predictive nomogram!4l.

3.2 EVALUATION OF TUMOR BIOLOGICAL BEHAVIORS

Concurrent advancements in imaging and genomic biomarkers haE facilitated
identification of noninvasive imaging surrogates of molecular phenotypes. Villanueva et
al. investigated the genomic features of HCC gnd peritumoral tissues that were associated
with patients” outcomes, and they explored the relationship between imaging traits and
éenomic signaturesl‘!l. Patients who underwent pre-operative CT or MRI and

transcriptome profiling were assessed using 11 qualitative and 4 quantitative (size,
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enhancement ratio, wash-out ratio, tumor-to-liver contrast ratio) imaging traits. Several
imaging traits, including infiltrative pattern and macrovascular invasion were found to
be associated with gene signatures of aggressive HCC phenotype, such as proliferative
signatures and CK19 signature.

Microvascular invasion (MVI) is one of the strongest predictors of hepatic transplantation
or hepatectomy for HCC, which is one of the independent factors for early recurrence
and poor prognosisl#2l. MVI could be diagnosed postoperatively and it was defined as
the presence of tumor within microscopic vessels of the portal vein, hepatic artery, and
lymphatic vesselsl43l. Conventional imaging methods cannot reveal MVI because of the
poor resolution before operation. Therefore, H; important to develop a non-invasive tool
to detect MVI for clinical decision-making. Zhang et al. proposed a nomogram for the
prediction of MVI that included a radiomic score and alpha fetoprotein, tumor type,
peritumoral enhancement, arterial rim, and internal arteries. This nomogram was
superior to a clinical and radiologic model with an AUC of 0.858 versus 0.729044]. In
another research, Renzulli et al. demonstrated that non-smooth tumor margins and
peritumoral enhancement, combined with the radio-genomic features were independent
predictors for MVIwith a PPV of 0.955. In a large-scale study, Xu etal. collected CT scan
images from 495 patients and developed a combined model which consisted of semantic
features (aspartate aminotransferase, alpha fetoprotein (AFP), non-smooth tumor
margin, extrahepatic growth, ill-defined pseudocapsule,_and peritumoral arterial
enhancement) and radiomic features to predict histological VI, with an AUC of 0.909
and 0.889 in the training cohort and the test cohort, respectivelyl4l.

Gao et al. assessed the preoperative prediction of TP53 status based on multiparametric
MRI (mp-MRI) radiomic features extracted from 3D images. In totalﬁ7 patients with
pancreatic cancer who underwent preoperative MRI were included. The 3D ADC-ap-
DWI-T2WI model with 11 selected features yielded the best performance for
differentiating TP53 status, with an accuracy of 0.91 and an AUC of 0.96. The model
revealed a good calibration, and the DCA proved the clinical value of the model. The

radiomics model derived from mp-MRI provided a non-invasive, quantitative method to
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predict mutational status of TP53 in patients with pancreatic cancer that might contribute

to the precision treatmentl47].

éS PROGNOSIS

Current guidelines recommend surgical resection as the first-line therapy for patients
with HCCH48l. However, postoperative recurreae rate remains high and there is no
reliable prediction tool. In a multi-center study, the potential of radiomics coupled with
machine lea'mg algorithms was assessed to improve the predictive accuracy for HCC
recurrence. Using the machine learning framework, they identified a three-feature
signature that demonstrated a favorable prediction of HCC recurrence across all datasets,
with C-index of 0.633-0.699. AFP, albumin-bilirubin, hepatic cirrhosis, tumor margin, and
radiomic signature were selected for developing a preoperative model; the postoperative
model incorporated satellite nodules into the above-mentioned predictors. The two
models showed a superior prognostic performance, with C-index of 0.733-0.801 and
integrated Brier score of 0.147-0.165, compared with rival models without radiomics, and
are widely used in staging systems. Combined with clinical data, a three-feature fusion
signature generated by aggregated ML-based framework could accurately predict
individual recurrence risk, Eﬁlbling appropriate management and surveillance of HCC
(49). In another study, CECT with measurement of Gabor and Wavelet radiomics features
in patients with a single HCC tumor treated by hepatectomy revealed that several
features were associated with both overall survival (OS).and disease-free survival (DFS)
(P-values < 0.05) (50). Similar results were reported by a separate study that risk scores
developed from radiomics nomograms obtained from CECT textural data overmatched
traditional clinical staging systems in both the training and validation cohorts for both
tumor recurrence and OS5I,

Patients with pancreatic cancer have a poor prognosis, thereforeait is necessary to identify
tumor characteristics associated with prognosis. Toyama et al. enrolled 161 patients with
pancreatic cancer who underwent FDG-PET/CT before treatment. The area of the

primary tumor was semi-automatically contoured with a threshold of 40% of the
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maximum standardized uptake value, and 42 PET-based features were extracted. Among
the PET parameters, 10 features showed statistical significance for predicting OS.
Multivariate Cox regression analysis revealed gray-level zone length matrix (GLZLM)-
gray-level non-uniformity (GLNU) as the only PET parameter showing statistical
significance. In the random forest (RF) model, GLZLM-GLNU was the mogt relevant
factor for predicting 1-year survival, followed by total lesion glycolysis (TLG). Radiomics
with machine learning using fluorodeoxyglucose (FDG)-PET in patients with pancreatic

cancer provided valuable prognostic informationltl.

4. DISCUSSION

There is no doubt that radiomics as a newly emerged quantitative technique is
burgeoning in disease management. Nevertheless, the majority of the research of
radiomics encountered common problems, and whether the radiomic-based signatures
can be used in clinical practice needs to be discussed.

Reproducibility is one of the primary challenges that radiomic techniques must overcome
for clinical application. At present, imaging protocols are not standardized worldwide,
and hence, variability in image acquisition and reconstruction parameters is inevitable in
clinical practice. A recent study demonstrated that the quantitative values of radiomic
features varied according to imaging protocolsl52. In addition, although IBSI seeks
standardization for radiomic extraction, the differences in techniques or platforms
adopted in different cenhas may lead to differences in feature valuesl®], propagating to
the radiomic signatures. Most radiomic signatures have a sharp drop in performance
from training cohort to validation cohort. Researchers have adopted data normalization
methods to correct for multicenter effects, such as ComBat harmonization(33l. However,
whether the radiomic-based signature developed by normalized radiomic features is
appropriate for clinical practice has not yet been studied. It is urgent to develop a
reproducible radiomic signature that could overcome inherent multicenter effects, which

is the basis for clinical individualized application.
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Data sharing for independent validation is a challenge for radiomic signatures. To date,
studies have mainly developed and validated the radiomic signatures using imaging data
derived from their own center or multiple centers according to the same imaging
protocolsl>l. However, whether the signatures would be effective in completely
independent centers needs further validation. Although images are more readily
available than tissue molecular assays, the current open radiomic d;ﬁasets are not enough
for the independent validation. To eliminate this deficiency, data sharing among
institutes and hospitals around the country or even around the world is important for
radiomics, although it presents complex logistical problems. The Cancer Imaging Archive
(TCIA) provides a good example of data sharing with a large portion of clinical datal®3,
and it is still growing with contribution from different institutes and hospitals. A
previous study indicated that signatures should be validated using an open dataset that
could become the standard to demonstrate their effectiveness!’l.

Biological interpretability of radiomic sialatures would accelerate their clinical
application. Clinical experts mainly assume the radiomic model as a black box that can
provide promising prediction resultg for clinical outcomes, which may make radiomics
as a less accepted approach. The problem is further aggravated in the context of
deconvolutional neural or DL networks, which even lack the gbservable model that solely
concentrates on maximizing performance. A great number of these so-called ‘black-box’
approaches may be pérfectly viable in the diagnostic setting; however, when it comes to
radiomic signatures for optimizing treatment, the question of interpretability becomes
more paramount because a biomarker-driven treatment decision needs an explanation
rooted in pathophysiologyl>l. The emergence of radio-genomics provides a bridge for
linking the radiomics to the underlying biological progression. The biological
interpretability may provide biological evidence for the predictive ability of the radiomic
signatures.

Clinical operability is the key in the clinical adoption of prognostic and predictive
radiomic tools. To date, radiomic-based studies have mainly concentrated on developing

robust signatures, and their application details in clinical practice are lack. Therefore,
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translating the computer language into a simple software or system may be an effective

method to promote clinical application of radiomics.

5.CONCLUSION

In conclusion, the current researches have achieved encouraging results of radiomics and
revealed potential of clinical applications, while poor standardization and generalization
of radiomics limit the further translation of this method into clinical routine. How to
make reproducibility of data, multi-center data sharing, biological interpretability of
radiomic signatures and clinical operability come true, will become the crucial issue for
development of radiomics. Only then will radiomics be more comparable and increase
reliability to get clinician's approval. In foreseeable future, the development of radiomics
will occupy a significant position in personalization and precision medicine. At present,
it is more important to make clinical participants be conscious of benefits and limitations

of radiomics in order to obtain reasonable decision towards clinical practice.
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