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Abstract

Pancreatic diseases have a substantial burden on society which is predicted to increase
further over the next decades. Endoscopic ultrasonography (EUS) remains the best
available diagnostic method to assess the pancreas, however, there remains room for
improvement. Artificial intelligence (AI) approaches have been adopted to assess
pancreatic diseases for over a decade, but this methodology has recently reached a new
era with the innovative machine learning algorithms which can process, recognize, and
label endosonographic images. Our review provides a targeted summary of Al in EUS
for pancreatic diseases. Included studies cover a wide spectrum of pancreatic diseases
from pancreatic cystic lesions to pancreatic masses and diagnosis of pancreatic cancer,
chronic pancreatitis, and autoimmune pancreatitis. For these, AI models seemed highly
successful, although the results should be evaluated carefully as the tasks, datasets and
models were greatly heterogenous. In addition to use in diagnostics, Al was also tested
as a procedural real-time assistant for EUS-guided biopsy as well as recognition of
standard pancreatic stations and labeling anatomical landmarks during routine
examination. Studies thus far have suggested that the adoption of Al in pancreatic EUS

is highly promising and further opportunities should be explored in the field.

INTRODUCTION




Pancreatic diseases create a substantial burden on society. Pancreatic cancer is the third
leading cause of cancer-related death in the United States, and its death count is
expected to rise to 460,000 by 2040, becoming the second leading cause of cancer related
death in 2040 241, Chronic pancreatitis is another cause of the burden with significant
morbidity from chronic pain, diabetes mellitus, and even pancreatic cancer [5 ©l.
Additionally, pancreatic cystic lesions are reported to be detected up to 20% of
abdominal imaging studies 7. Endoscopic ultrasonography (EUS) has surpassed
magnetic resonance imaging (MRI), computed tomography (CT) and transabdominal
ultrasonography in the diagnosis of pancreatic diseases; however, there remains room
for improvement in the diagnostic sensitivity of EUS [8l. In this regard, utilization of
artificial intelligence (AI) with EUS has emerged as a promising strategy (Figure 1).
Although EUS has better performance than the alternative radiology imaging methods,
it is also more operator dependent. The endosonographer’s experience and skills can
significantly alter the diagnostic or therapeutic outcomes of an EUS procedure. Al may
decrease this operator dependency as it can provide assistance to the endosonographer
in several tasks that include, but are not limited, to identifying anatomical landmarks,
detecting lesions, interpreting sonographic findings, and guiding obtaining optimal
tissue biopsy with higher diagnostic yield.Because Al algorithms use higher resolution
EUS imaging data, they might distinguish patterns and identify details from the images
whichmay not be recognizable with human detection alone currently. Finally, Al
research with EUS is more convenient because imaging data used to train the Al models
often have readily available definitive histologic diagnoses.

Targeted Summary of Artificial Intelligence and Research

Al is an umbrella term for the computerized performance of complex tasks that
normally require human intelligence,such as visual perception, learning, pattern
recognition and decision-making [ (Figure 2). Current medical applications using Al
have made significant progress due to advancements in computer technology, data
science, and the digitalization of health care. From the development of more complex

machine learning algorithms, Al has progressed rapidly to its current front-line role in




image-based diagnosis, speech recognition, robotic surgery, drug discovery and patient
monitoring [I. However, the progress of Al in medicine has just begun and has yet to
realize its full potential. .

Machine learning (ML) is a field of artificial intelligence in which algorithms learn and
improve from interactions with the data, obviating the need for explicit
programming. Deep learning (DL) is a subfield of ML inspired by the organization and
working principle of the human brain and is made up of individual neurons which
form multilayeredartificial neural networks (ANN). These networks are comprised of
input and output layers each of which can execute simple tasks and sequentially
interact with one another to produce a conclusion. Among ANNs, Multi-Layered
Perceptron are earlier models that are simpler with fewer layers and can only use linear
functions [1l. Convolutional neural networks (CNN) include more layers that can also
operate in a non-linear fashion allowing more complex tasks such as image
classification and have been the most popular DL algorithm. CNNs were inspired by
the human visual cortex and designed to process grid pattern data such as images.
They have serial neural network layers to recognize and extract features from the input
data, learn the patterns of features, and perform hierarchical organization through the
layers to search for the intended output (Figure 3)I'l. Most commonly used CNN
algorithms are AlexNet, ResNet, U-Net, which all work using the same principle, and
the technical details are beyond the scope of this review[12l. Another type of ANN is
recurrent neural network (RNN), which also contains a multi-layered structure. In
addition, each neuron in this network has its own internal memory, which taken
altogether constitutes a collective memory of the network. This neural network can
remember previous input data and use it to process subsequent inputs. Therefore, these
algorithms are beneficial in processing sequential data such as before and after an
intervention or time series data. An example of RNN is the Long Short-Term Memory
model [131.

Machine learning can perform two different types of tasks: supervised and

unsupervised. Supervised algorithms aim to reach a previously defined targeted




outcome and are used for classification and prediction tasks. Labeled input data is
presented to the algorithm and the model is trained with direct feedbacks to predict
corresponding outputs. The spectrum of supervised approaches includes statistical
methods such as logistic regression, linear regression, decision trees as well as support
vector machines and random forest. Unsupervised algorithms do mnot have
a predefined target and are used for clustering and dimensionality
reduction. Unsupervised models are currently used for disease subtype and biomarker
discovery studies [1* 13l. Supervised learning has been more commonly used in EUS
research;therefore, several important nuances will be
summarized to better understand the presented literature. To train supervised learning
algorithms, the dataset should be pre-annotated for the targeted outcome, which may
be a diagnosis, class, or feature. The algorithm aims to optimize its feature detection
ability to match the presented inputs to this annotated targeted output, which is defined
as “ground truth.” This optimization, or training, task requires large
datasets, therefore, learning algorithms are data hungry. However, such datasets are
not commonly available, whichnecessitates data augmentation techniques be used to
expand the dataset by inserting slightly changed copies of previously collected data or
by creating new synthetic data with computerized approaches.

During training of the algorithm, available data is split into three sets: training,
validation, and test. Training and validation sets are used to develop and fine-tune the
model, whereas the test set is used to assess the performance of the final model
product. Of note, this validation is different from its conventional use in medicine and
seeks to optimize parameters of the model during the training phase. Two of the most
common validation approaches in medical Al research are cross-validation and hold-
out validation. Cross-validation occurs when the dataset is randomly resampled and split
repetitively - the number of repetitions is designated with k- into training and test sets.
Each training and test set is then used to develop a new model, and k repetitions yield
new k models. In contrast, hold-out validation is a constant single split of a training set

and an independent test set to develop one final model which is simpler to perform but




brings an increased risk of sampling error. Another important concept in machine
learning is overfitting, which is defined as a falsely superior performance of the model
caused by learning irrelevant features of the dataset or ‘noise” as well as the intended
signals. Therefore, a separate test set is important to accurately assess the model’s
performance.

There are several nuancea in the performance assessment of a machine learning
model. Sensitivity (recall), specificity, positive predictive value (precision), negative
predictive value and area under the rule operator characteristic (AUC) curve are
commonly used for assessing the performance of
classification. The area under the precision-recall ~ curve  (AUPRC)is used instead
of the AUC when observations are not equally distributed for two groups. The Dice
coefficient (F1 score) is the harmonic mean of precision and recall. It is commonly used to
assess the labeling performance of an image recognition model. In a model where a
ground truth area X is labeled by an image recognition model as area Y, Dice coefficient
equals the overlap of X and Y areas divided by the total of X and Y areas, multiplied by
two. Another similar metric is the Jaccard index, or intersection over union (IoU),
defined as the ratio of overlap and union of two areas: the algorithm labeled area and
the ground truth area. Both Jaccard index and Dice coefficient’s values range from 0 to 1
signifying 0% to 100% accuracy of labeling with 1 being the highest level of accuracy for
both.

While AT has been utilized to investigate numerous gastrointestinal diseases, the study
of pancreatic diseases using Al and EUS is limited [5. In this review, we provide a
targeted overview of Al with a summary of the current literature on the use of Al in

EUS for the diagnosis of pancreatic diseases.

METHODS
A nonsystematic search of the current literature was performed for 2015 and 2021
in the MEDLINE, PubMed, Google Scholar, Scopus, Web of Science and Embase

databases with the following terms: machine learning, deep learning, artificial




intelligence, EUS, endosonography, endoscopic ultrasound, pancreas, pancreatic
disease, pancreatitis, andpancreatic cancer. Review articles were manually screened for
any additional studies of interest. Congress abstracts, reviews, correspondences,
editorials, and book chapters were excluded. Two authors reviewed all the studies after
the initial search and confirmed the appropriateness of each study for inclusion. Our
literature search yielded fifteen studies with modern machine learning algorithms
(Table 1). Of note, five of the fifteen studies were published in 2021 with only two

prospective clinical trials from the same group.

APPLICATIONS OF AT IN PANCREATIC EUS

The application of Al was divided into sonographic image recognition, procedural
assistance, and training. Endosonographic images contain cues that may not be
recognhizable by human visual perception. In this context, deep learning algorithms are
promising tools to recognize the patterns from these cues. As such, several important
diagnostic challenges in pancreatic diseases with EUS have been addressed, including
the classification and risk stratification of pancreatic cysts and the diagnosis of
autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC).
Pancreatic Cystic Neoplasms

Pancreatic cysts are increasingly detected in patients undergoing abdominal cross-
sectional imaging with up to 20% detection rate on MRI [616.17], Since pancreatic cysts
carry a risk of malignancy, this risk should be stratified to guide -clinical
management. However, in most cases, imaging results are not sufficient for the
classification of pancreatic cysts, especially for small lesions [18. Additionally, assessing
the risk of malignant progression remains challenging with current imaging modalities,
clinical criteria, cyst fluid analysis or their combinations '8 L. In this context, ML may
help classify pancreatic cysts.

Several studies have investigated the utility of EUS ML models in pancreatic cysts,
focusing on malignancy risk assessment and classification. Two studies by Kuwahara et

al and Nguon et al used still images of EUS examinations with data augmentation, while




Springer et al and Kurita et al applied multimodality approaches that included cyst fluid
analyses and clinical data [20-231,

The 2019 study by Kuwahara ef al assessed the accuracy of ML to predict malignant
intraductal papillary mucinous neoplasms (IPMN) [23]. This single-center study included
50 IPMN patients who underwent surgical resection. Therefore, all diagnoses were
made from histopathological examination of surgical specimens. A total of 3,970 still
images were collected from 50 EUS examinations, and the CNN was fed over 500,000
images using data augmentation. Ten-fold cross-validation was performed for training.
For each case, the output of the CNN model was given as a predictive continuous value
ranging from 0 to 1 for benign and malignant assigned probabilities, respectively. When
the final model's predictive values were compared with the surgical diagnoses,
predictive values for the benign cases were significantly lower than values for the
malignant cases (0.104 vs. 0.808, respectively). The optimal cutoff for the predictive
value was determined using the Youden Index. This cutoff value (0.49) generated an
AUC of 98% for the diagnosis of malignancy. The accuracy of the final model (94%) was
significantly higher than that of human preoperative diagnosis which incorporated
contrast enhanced EUS examination findings of mural nodule size, diameter main
pancreatic duct, cyst size, and growth rate (56%). Multivariate analysis showed that the
Al predictive value was the only significant factor for diagnosing malignant IPMN. ML
outperformed currently used criteria, including serum CA 19-9, presence of mural
nodule, and type of IPMN. This study demonstrated the promise of EUS ML algorithms
in predicting malignant IPMNs. However, further prospective studies with larger
sample sizes that do not rely solely on internal validation are necessary.

Kurita ef al used a multimodality approach to differentiate benign from malignant cysts.
This single center study used 85 patients with pancreatic cystic lesions and final
diagnosis from surgical pathology or combination of cyst fluid analysis, radiology
imaging, and clinical follow-up. The input data consisted of sex, cyst fluid protein
markers, cytologic diagnosis and EUS imaging features of the cyst. A Multi-layered

Perceptron was used as the ML model. The final model achieved 95.7% sensitivity,




91.9% specificity, and 0.97 AUC for classifying lesions as benign or malignant, which
was the primary endpoint. The model showed 92.9% accuracy which was significantly
higher than CEA (71.8%) and cytology (85.9%) alone [22l. An external data set was not
available to test the algorithm. In addition, it is unclear why the algorithm did not
mention inclusion of known high-risk features including enhancing nodule, solid mass,
and dilated main pancreatic duct.

Another large multicenter study used a ML based approach called CompCyst to guide
the management of pancreatic cystic lesions and relied heavily on molecular analysis of
cyst fluid in addition to clinical and radiologic imaging features. The study population
consisted of 862 patients recruited from 16 centers who underwent surgical resection
with final diagnosis based on histologic analysis. DNA from cyst fluid were extracted
and evaluated for four types of molecular abnormalities including mutations, loss of
heterozygosity, aneuploidy as well as protein markers carcinoembryonic antigen (CEA)
and vascular endothelial growth factor-A (VEGF-A). Then the CompCyst test was used
to classify cysts into one of the three following groups using a combination of molecular
and imaging features. The first group was defined as cysts without any malignant
potential which would not need surveillance. VHL and GNAS were used in this step
and achieved 100% specificity and 46% sensitivity. The second group was cysts with
small risk of malignant progression which would require surveillance. Multiple gene
mutations and solid component in imaging was used in this step yielding 91%
sensitivity and 54% specificity in the test cohort. The third group included cysts with
high likelihood of malignant progression or malignancy which should be resected.
VEGF-A protein expression was used in this step with 99% sensitivity and 30%
specificity. The system was compared to standard of care and demonstrated
significantly higher accuracy (69% vs 56%, respectively) [20L. This study used a separate
validation set and a comprehensive model that incorporated clinical and radiologic
findings, however, the wide-ranging molecular analysis is not readily available for

routine clinical use.




A recent 2021 study focused on differentiating mucinous cystic neoplasms from serous
cystadenomas using a total of 109 cases from two centers.[2ll Final diagnoses were
determined by endosonographers with over 5 years of experience. Additional cyst fluid
or histopathologic examinations were available for only 44% of patients. A total of 221
still images were obtained followed by data augmentation, but the final number of
input images was not provided in the study. The ResNet framework was used as the
CNN model. Three hold-out validations were performed with 10 cases for testing, and
the remaining cases used for training. The result of the study showed 82.75% accuracy
and 0.88 AUC to correctly classify mucinous cystic neoplasms and serous cystadenomas
from the still EUS images. A pseudo-colored decision map (gradient weighted class
activation mapping [GradCAM]) was used to visualize the decision-making process.
Presentation of the pseudo-colored decision map is an important asset because it
highlights and color codes (red for higher impact and blue for lower impact) the areas
in the image which affected the algorithm’s final decision; therefore, this allows
clinicians to better comprehend the decision-making process by the model. However,
this study has several limitations. First, the most commonly encountered cyst, IPMN,
was not included in the dataset that decreases the generalizability of the model. Second,
ground truth was endosonographers” expert opinion and only 44% of patients had cyst
fluid or histologic confirmation of diagnosis. Despite various limitations, the studies
presented demonstrate the feasibility of image recognition ML models to perform
assification tasks for pancreatic cysts and guide clinical management.

Pancreatic Cancer

PDAC is currently the fourth leading cause of cancer-related mortality in Western
countries and is predicted to become the second by 2030 [24l. Most cases are diagnosed at
later stages with 5-year survival rates less than 10%. A promising strategy is earlier
diagnosis to combat this disease [2°]. For this, EUS with FNA has superseded the cross-
sectional imaging modalities such as CT and MRI, especially in the earlier diagnosis of
PDAC [26l. However, EUS is operator dependent, and EUS diagnosis of PDAC is more

challenging in patients with baseline abnormal pancreatic imaging (e.g., chronic




pancreatitis) who also carry a higher risk. Within this context, ML has been used to
improve the diagnostic performance of EUS for pancreatic masses. Four studies used
histologically confirmed PDAC cases with normal pancreas as control. Additional
control groups were used in different studies to reflect clinical scenarios including
chronic pancreatitis and neuroendocrine tumors. EUS images served as inputs for the
algorithms. Additional EUS diagnostic technology, such as elastography, digital
characteristics, contrast-enhancement, and Doppler imaging were also used. Regarding
ML methods, Support-Vector-Machines were used in earlier studies to select the best
combination of digital imaging features. In later studies the preferred methods were
neural networks with different complexity levels depending on the year of the study.
Although the models and populations varied, all studies achieved over 80% specificity
and 0.94 AUC, demonstrating the feasibility of ML in this area.

In an early 2008 study by Saftoiu et al, ML for EUS elastography images was evaluated
to discriminate pancreatic tumors from ‘pseudotumoral’ chronic pancreatitis. The
prospective study enrolled 68 patients including PDAC, pancreatic neuroendocrine
tumor, chronic pancreatitis, and normal pancreas. Final diagnoses were confirmed with
additional pathology, imaging findings, and 6-month follow-up of patients. From each
patient, EUS elastography images were converted to vector data. As the sample size
was small, 10-fold cross-validation was performed. The vector data was then analyzed
with simple three and four layered ANNs. This ML algorithm yielded an AUC of 0.93
to classify malignant tumors from normal and pseudotumoral pancreatitis (7). This
study was followed by a larger prospective blinded study in 2012 with 258 patients
enrolled from 13 European centers. The population consisted of 211 PDAC confirmed
by pathology diagnosis and 47 chronic pancreatitis patients diagnosed by clinical,
imaging and EUS criteria (at least four of the following: hyperechoic foci, hyperechoic
strands, lobularity, calcifications, hyperechoic duct wall, dilated main pancreatic duct,
irregular main pancreatic duct, dilated side branches, and cysts). EUS elastography
images of the regions of interests were converted to vector data and then analyzed with

similar ANNs. One hundred training iterations were performed with the model to




increase the statistical power of the results. The mean performance of one hundred
models to correctly classify PDAC from chronic pancreatitis showed 0.94 (0.91-0.97)
AUC with 85.6% sensitivity and 82.9% specificity compared with 0.85 AUC for hue
histogram analysis [28]. These two studies present an excellent example for the roadmap
of ML research with an initial proof-of-concept study followed by a larger prospective
study. Of note, less complex neural networks were used with fewer layers. Multi-
layered Perceptron only accepts numeric data as the input unlike newer CNN
algorithms that can directly process the image itself. Therefore, the performance of ML
in these studies can be improved.

Zhang et al evaluated the approach of utilizing texture features of EUS images as an
input to the ML model ?°l. This study included 153 PDAC with tissue diagnosis, 43
chronic pancreatitis, 20 normal pancreas. Regions of interest were manually annotated,
and texture features were extracted with software. The Support-Vector-Machine ML
was used in this phase to select the best combination of texture feature characteristics to
discriminate PDAC from chronic pancreatitis and normal pancreas. Final model
achieved 98% accuracy, 94% sensitivity and 99% specificity. Another early study in
2013 used a similar approach with the analysis of digital image characteristics 3%l. The
study population consisted of 262 PDAC patients diagnosed by cytology with 126
chronic pancreatitis controls diagnosed by standard EUS criteria and over 2-year follow
up. Regions of interests were manually selected by blinded endosonographers. Then
105 digital imaging characteristics of these images were extracted with dedicated
software. The final combination of 16 characteristics yielded a strong discriminative
performance with 94.2% accuracy, 96% sensitivity and 93% specificity.

Another older study evaluated the use of ML to classify PDAC from normal
pancreas 311, This retrospective study in 2016 included 202 PDAC patients and 130
patients with normal pancreas as controls. The regions of interests from EUS images
were annotated by endosonographers. Then digital characteristics of the images
(wavelet decomposition energy, boundary fractal, gray level cooccurrence matrix,

standard statistical) were extracted. Among 112 digital characteristics, 20 were




identified as more effective for classification, and therefore served as the input for the
ML algorithm. A three-layered Multi-layered Perceptron model was used as the neural
network, which is a less-complex approach accepting numerical data such as the digital
characteristics of EUS images and does not require extra image processing. As such,
because the images themselves are not being used, important information may not be
included in the model. The final model yielded 83% sensitivity, 93% specificity and 87%
accuracy for differentiating PDAC from normal pancreas. This model also only
compared PDAC images to normal pancreatic tissue and not to other commonly
encountered differential diagnoses such as chronic pancreatitis, which limits its
adoptability to clinical use.

A recent study in 2021 evaluated the performance of ML to classify focal solid lesions.
The study population consisted of 30 patients with PDAC, 20 patients with pseudo
tumors in chronic pancreatitis, and 15 patients with pancreatic neuroendocrine
tumors [321. The final diagnoses were confirmed with histologic evaluations of fine-
needle specimens and clinical follow-ups. From each EUS examination, 5 sets of images
were extracted including grayscale images, colorDoppler, contrast-enhanced imaging,
and elastography. A total of 1300 collected images was increased to 3360 with_data
augmentation. Regarding the ML method, a CNN algorithm was combined with a Long
Short-Term Memory model. Long Short-Term Memory model is a supervised ML
model that has additional feedback learning functions and allows the use of sequential
pre- and post-contrast appearance from the same EUS images. Cross-validation was
performed for each dataset with 80% of images used as training and 20% as test sets.
The final combined model’s overall specificity was 96.4%, and sensitivity was 98.6%
for classifying the pancreatic masses. For PDAC cases, the algorithm yielded
96.7% specificity, 98.1% sensitivity, 97.6% accuracy, and 0.97 AUC. When compared to
previous studies, Udristoiu ef al used a more complex, combined ML approach with
CNN and Long Short-Term Memory allowing inclusion of temporal data with contrast-

enhanced imaging.




Tonozuka et al also evaluated their own ML algorithm for its performance in classifying
pancreatic masses [3l. The 139 total patients included 76 with PDAC, 34 with chronic
pancreatitis and 29 normal controls. PDAC was diagnosed using histology from EUS-
fine needle biopsy or surgery, and chronic pancreatitis was diagnosed using the
Rosemont criteria. All patients were followed for over 6 mo. Ten still images of lesions
were chosen from each EUS examination, and the input dataset was increased to over
80,000 after data augmentation. From 1390 still images, 920 were used for training and
cross-validation, while the remaining 470 images were used for testing. A CNN
algorithm with seven layers was used. In addition to the CNN model, a pseudo-
colored feature mapping was used to highlight the areas in the image with greater
impact on the final model, which makes the decision-making process more
comprehensible to the endosonographer. Inthe test dataset, the model yielded
84.1% specificity, 92.4% sensitivity and 0.94 AUC.

Autoimmune Pancreatitis

AIP is an increasingly recognized entity that may be challenging to diagnose. Accurate
diagnosis is particularly important as the differential often includes PDAC with its
different prognostic and management implications. Many diagnostic algorithms have
been developed that include clinical, serologic, imaging, and histopathologic
criteria, but their performance remains limited. While EUS with biopsy is the most
effective diagnostic tool, its diagnostic yield also is suboptimal [34. Image processing
may enhance our ability to diagnose AIP by extracting data and learning from the cues
in sonographic images. Two studies have studied the utility of ML in differentiating
AIP from other diagnoses, including chronic pancreatitis and PDAC. The studies by
Zhu et al and Marya et al used different ML approaches, but both achieved over 80%
sensitivity and specificity for diagnosing AIP only from EUS images 35361,

The earlier 2015 retrospective study by Zhu et al studied a ML algorithm to differentiate
AIP from chronic pancreatitis using an EUS image dataset of 81 AIP and 100 chronic
pancreatitis cases [35l. AIP diagnoses were based on HISORt criteria. Chronic

pancreatitis was diagnosed by standard EUS criteria. Experienced endosonographers




selected regions of interest in EUS images, and 115 digital parameters were extracted
from each image. Then, a supervised Support Vector Machine algorithm was used to
select the best combination of these digital parameters for discriminating AIP from
chronic pancreatitis. The final combination of digital parameters yielded 90.6%
accuracy, 84.1% sensitivity and 94.0% specificity.

A recent study examined the additive performance of ML with EUS to distinguish
AIP from PDAC as well as chronic pancreatitis and normal pancreas. The study
included 583 patients (146 AIP, 292 PDAC, 72 chronic pancreatitis, and 74 normal) with
all available videos and still images of the pancreatic and peripancreatic
regions included in the analysis regardless of whether they included regions of
interest [*. A total of 1,174,461 still images were extracted from the images and videos.
Since all portions of EUS videos were included, there was a risk of oversimplification of
diagnosis from certain aspects of the examination, such as presence of metastasis, which
were removed from the dataset. The classification was performed with two datasets:
the first one included still images obtained from both EUS videos and captured images,
while the second dataset only included EUS videos. The CNN algorithm was trained for
both datasets. Pseudo-colored feature mapping was also used to visualize decision
making. For comparison, seven independent EUS experts evaluated each case using
videos. In the final analysis, ML showed 87% specificity, 90% sensitivity and 0.9AUC
for distinguishing AIP from PDAC in the image-only dataset. In the video-only dataset,
the metrics were 90%, 93% and 0.96 for specificity, sensitivity, and
AUCG, respectively. The ML model was superior to expert endosonographers, who had
82.4% specificity and 53.8% sensitivity in differentiating AIP from PDAC. ML also had
high sensitivity (99%) and specificity (98%) for distinguishing AIP from normal
pancreas. It had inferior performance in separating AIP from chronic pancreatitis (94 %
sensitivity, 71% specificity, 0.89 AUC). The heatmap analysis yielded interesting results,
which may help guide endosonographers, showing that visualizing a hyperechoic plane
between the parenchyma and duct or vessel was highly predictive of AIP while post

acoustic enhancement deep to a dilated pancreatic duct or vessel was consistent with




PDAC. Regarding Al technology, these two studies differ with respect to their approach
of utilizing ML with EUS data. Zhu et al used an older ML algorithm, Support Vector
Machine, which is a supervised algorithm that classifies two numeric data points. As
such, EUS images are converted into numerical data by extracting digital parametric
features, and then the ML model is trained with these features. On the other hand,
Marya et al used a CNN algorithm, ResNet, with 50 Layers that can work directly on the
EUS images itself.

Procedural Assistance and Training

EUS is the leading modality for assessing and obtaining tissue from the pancreas
with approximately 90% specificityand sensitivity for solid masses [%l. However,
interobserver reliability remains an issue in EUS as accuracy relies on
the endosonographers’ skills and experience and carries the risk of false-negative
results. Pancreatic EUS also has a steep learning curve. ML approaches have been
developed to potentially augment the diagnostic performance of EUS and biopsy as
well as aid in training.

Iwasa et al tested ML to augment contrast enhanced EUS by dividing the sonographic
image into regions with similar appearance and then differentiating regions of interest,
also called automatic segmentation. For this study, videos from 100 contrast enhanced
EUS examinations of solid pancreatic masses with histologic diagnosis were used. Each
video was transformed into 900 still images as input for a U-Net CNN algorithm. The
borders of the lesions were manually annotated by two endosonographers and served
as the ground truth. IoU was used as the performance output of the algorithm with
median IoU for all cases being 0.77, which is greater than the acceptable 0.5 threshold
value 1], The EUS videos were also classified into different categories to understand the
effect of respiratory movements and visibility of boundaries of the lesions by the
endosonographers. IoU significantly improved to 0.91 in cases with the most visible
boundaries and decreased to 0.13 for cases with the least visible boundaries *°l. On the
other hand, respiratory movements did not change the performance of the algorithm.

This proof-of-concept study suggests that ML can provide real-time assistance in the




detection of pancreatic lesions. The classification of exams with respect to the ease of
detecting the border of lesions is an important aspect of this study because it
demonstrated that ML can also be affected by the quality of the EUS examination and
the sonographic characteristics of the lesion, reflected in this case by how well the
border was visible.

A case report suggested that a ML model may help target areas to biopsy within
pancreatic masses that have the highest diagnostic yield by avoiding areas of
necrosis. A CNN algorithm was used to label and highlight the more cellular region in
a 6.5 cm solid pancreatic mass, which was predicted to have the highest probability of
yielding a diagnosis by discriminating it from neighboring necrotic or inflammatory
regions. EUS-fine needle aspiration was performed and yielded a positive diagnosis for
PDAC. The technical details, training dataset and methods, validation and model
characteristics were not presented in the report . This is a novel idea that may
provide valuable intra-procedural assistance, however, needs further evaluation.

ML may aid EUS training by guiding the steps of routine diagnostic EUS evaluation of
the pancreas. A novel Al system aimed to assist recognition of fundamental stations
and identification of pancreatic and vascular anatomical landmarks. This was
performed in four steps: identifying images, filtering suitable images, recognizing
pancreas stations, and segmenting anatomical landmarks and monitoring for loss of
visualization of the pancreas. Two expert endosonographers decided on the criteria for
suitable images and annotated video clips that served as ground truth. A ResNet model
was used as the CNN algorithm. A separate set of prospective EUS
examinations were used as a test set. Three different endosonographers classified each
image for comparison with the Al model. The final model was tested using an external
test set and demonstrated an accuracy of 82.4% to identify six anatomical stations
(abdominal aorta, pancreatic body, pancreatic tail, confluence, pancreatic head from
stomach, or pancreatic head from descending duodenum), and a Dice of 0.715 to label
pancreas and vessels. Comparison of the Al model with the three expert

endosonographers yielded strong interobserver agreement with kappa values of 0.846,




0.853 and 0.826 [41l. The results of this study demonstrated that a ML model may aid in
recognizing stations and anatomic landmarks in sonographic images. This has the
potential to assist procedural navigation during EUS examination and improve
cognitive aspects of EUS skills. However, the impact of such real-time procedural
assistance on the endosonographer’s performance was not assessed in this study and

warrants further evaluation.

CONCLUSION

In this review, we summarize the current literature regarding the use of ML in EUS for
diagnosing pancreatic diseases. Our review defined two main areas for Al in the field:
visual recognition-classification and procedural assistance and training. AI has been
more utilized in transabdominal ultrasonography for detecting liver fibrosis and in CT
scans for lesion classification, which have been extensively reviewed elsewhere [42-46].
ML appears to have great potential in assisting EUS examination of the pancreas as
sonographic imaging contains vital visual information that the human eye cannot
distinguish. The diagnostic accuracy of EUS imaging is highly operator
dependent and requires both technical and cognitive skills. Acquisition of these skills
currently requires dedicated  training  with  proctorship  and  procedural
experience, which remains limited, apart from dedicated advanced endoscopy
fellowship programs. These issues in training limit the widespread adoption of
EUS, which is the leading tool for diagnosing pancreatic disorders, including PDAC. Al
may assist in the development of cognitive skills and augmentation of procedural
efficiency in relatively less experienced endosonographers.

Further opportunities should be explored with Al and pancreatic EUS. However,
several limitations exist in the field. First, the number of EUS procedures and the
prevalence of pancreatic diseases are lower, which makes it more difficult to train data-
hungry machine learning algorithms. Second, annotation of EUS data is more
challenging compared to other imaging modalities asthe number of experts

endosonographers is relatively limited. Third, EUS examinations with histopathologic




or cytologic diagnosis is harder to obtain for certain pancreatic diseases and have issues
with sensitivity, which further limits the number of studies for Al training. However,
these limitations may be overcome with multi-center collaborations and prospective
data collection, which will hopefully lead to improved image recognition, procedural

assistance, and training for pancreatic EUS.
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