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Abstract

The use of machine learning and deep learning has enabled many applications,
previously thought of as being impossible. Among all medical fields, cancer care is
arguably the most significantly impacted, with precision medicine now truly being a
possibility. The effect of these technologies, loosely known as Artificial Intelligence (AI)
is particularly striking in fields involving images (such as radiology and pathology) and
fields involving large amount of data (such as genomics). Practicing oncologists are
often confronted with new technologies, claiming to predict response to therapy or
predict the genomic make-up of patients Understanding these new claims and
technologies requires a deep understanding of the field. In this review, we provide an
overview of the basis of deep learning. We describe various common tasks and their

data requirements so that oncologists are equipped to start such projects, as well as

evaluate algorithms presented to them.

INTRODUCTION

Artificial Intelligence (AI) has touched many areas of our everyday life. In medical
practice also, it has shown great potential in several studies [1l. The implications of use
of Al in oncology are profound, with applications ranging from assisting early
screening of cancer to personalization of cancer therapy. As we enter this exciting

transformation, practicing oncologists in any sub-field of oncology are oftentimes faced




with various studies and products claiming to achieve certain results. Verifying these
claims and implementing these in clinical practice remains an uphill task.

This is an educational review, through which we will attempt to familiarize the reader
with Al technology in current use. We first explain some basic concepts, in order to
understand the meaning of techniques labelled as Al, then move into explaining the
various tasks that can be performed by AL In each we provide information on what
kind of data would be required, what kind of effort would be required to annotate these
images, as well as how to assess networks based on these tasks, for the benefit of those
oncologists wishing to foray into the field for research, or for those wishing to

implement these algorithms in their clinical practice.

WHAT IS ARTIFICTAL INTELLIGENCE: BASIC PRINCIPLES

Al refers to a broad, non-specific term referring only to the “intelligence” in a specific
task performed, irrespective of the method used. Machine learning (ML) is a subgroup
of Al, and deep learning (DL) is a further sub-group of ML, which are data-driven
approaches. Unlike traditional software engineering where a set of rules is defined
upon which the computer’s outputs are based, ML involves learning of rules by
“experience” without “explicit programming” [23. What this means, is given a lot of
data which includes a set of inputs, and the ideal outputs (training data), the task of
machine learning is to understand a pattern within this set of inputs which result in
outputs closest to the ideal output. (Figure 1). The process of training the model is
explained in Figure 2.

To understand this in medical terms, say the task of an Al system is to predict the
survival of patients, given the stage of a particular tumour. If we were to use traditional
software engineering, we would have to feed the median survival for each stage into
the model, and teach the model to output the number corresponding to a particular
stage. Whereas in case of a machine learning model, we would simply give as input, the
stage and survival information of a few thousand patients. The model would learn the

rules involved in making this prediction. While in the former case, we defined the rules




(that is if stage= X then survival=Y), in the latter we only provided data, and the ML
model deciphered the rules. While the former is rigid, that is, if a new therapy alters the
survival, we would have to change the rules to accommodate the change, the latter
learns with experience. As new data emerges, the ML model would learn to update the
rules such that it can dynamically make accurate predictions. In addition, the machine
learning model can take multiple inputs, say level of tumour markers, age, general
condition, blood parameters into account, in addition to the stage of the patient, and
personalise the survival prediction of a particular patient.

The above example also illustrates why ML models are data intensive. A good model
needs to see a lot of data, with adequate variability in parameters to make accurate
predictions. For the same reason, Al has bloomed in disciplines which have a lot of
digital data available, this includes ophthalmology, dermatology, pathology, radiology
and genomics. However as curated digital data emerges in all fields it is likely to touch

and transform all fields of medical practice.

WHAT ARE NEURAL NETWORKS?

A particular kind of machine learning algorithm, called neural network, has been
particularly effective in performing complex tasks. A neural network takes inspiration
from a biological neuron, where it receives several inputs, performs a certain
calculation, goes through an activation function, where similar to a biological neuron, a
decision on whether it should fire or not is made. When there are a number of layers of
these mathematical functions, the network is known as a “Deep Neural Network”
(DNN), and the process is called “Deep Learning” (DL) (Figure 3). A deep neural
network is capable of handling a large amount of data, and defining complex functions,
which explains its ability to perform complex classification tasks and predictions.

A specific kind of DL, called Convolutional Neural Networks (CNNs) have performed
particularly well in image-related tasks. CNNs use “filters” which are applied to
images, similar to the traditional image processing techniques. “Convolving” with a

filter (a mathematical operation) results in highlighting certain features of an image.




Given an input set of images, a CNN basically learns what set of filters highlights
features of a particular image, most relevant to a given task. In other words, a CNN is
learning the features of an image that may be crucial to making a decision. For example,
in case of mammography, a CNN is trying to answer what features of a mammogram

are most predictive of the presence of a cancer within.

RADIOMICS AND RADIOGENOMICS: SHIFT TOWARD PERSONALIZED
PATIENT CARE

Images contain information far beyond what meets the eye. While radiologists can
interpret some of these features with the naked eye (such as margins, heterogeneity,
density etc), pixel-by-pixel analysis of these images can yield significant amounts of
hidden information. Studies have shown that these may be successfully correlated to
outcomes such as patient survival and genomic mutations [5.. More specifically, it was
shown by Choudhery et al [°l that in addition to differentiating among the molecular
subtypes of breast cancer, texture features including entropy were significantly different
among HER?2 positive tumors showing complete response to chemotherapy. Other
parameters such as standard deviation of signal intensity were found predictive in
triple negative cancers. A similar study by Chen et al I/l in patients with non-small cell
lung cancer treated with chemoradiotherapy showed that the ‘radiomics signature’
could predict failure of therapy. Therefore, using non-invasive imaging, it is thus
possible to predict the mutations, response to specific drugs, best site of biopsy. Thus
potentially, the therapy of the patient can be guided by markers mined from non-

invasive imaging, making precision medicine a true possibility.

DISCUSSION

Common Applications of Al in Oncology
Most applications of Al in oncology are currently in the field of radiology and

pathology, given the abundant digital data available in these fields. These tasks may be




classified into specific categories (Figure 4). For readers wishing to foray into the field,
an explanation of each kind of task, as well as data requirements and some examples of
applications of these tasks are given below.

Classification
A classification task is one in which the Al algorithm classifies each image as belonging
to one of several target categories. These categories are given at the level of image or
patient. For instance, whether a particular mammogram has cancer or not.
Data requirement: Training the network requires input images (mammograms in the
above example), and an image level ground truth label (presence or absence of cancer in
the above case). These are relatively easy to obtain if reports are available in a digital
format, since automated extraction of diagnosis from free-text reports may be
performed. Usually thousands of such images are required for training. Large public
datasets of labelled natural images exist, such as “ImageNet” with over 14 million
images (8, and several classification networks trained on these databases also exist, such
as Alexnet, Inception, ResNet efc. These networks trained on these large public
databases can be adapted to the medical domain, a process called “Transfer Learning”.
Classification tasks can be evaluated by calculating the Area Under Receiver Operating
Curve (AUROC) and by drawing a confusion matrix from which accuracy of
classification can be calculated.
Applications: Some examples of classification tasks include breast density
categorization on mammograms [, detection of stroke on head CT in order to prioritize
their reading [19, prioritising chest radiographs based on presence of pneumothorax in
them [111,
Advantages: The most advantageous use of classification networks is for triage. These
can be used to classify images that need urgent attention, or those that need a re-look by
a reporting radiologist, pathologist or ophthalmologist. This helps to reduce workload
and effectively divert resources where required.
Disadvantages: When a classification task is performed by an algorithm, it simply

classifies an image into a certain category, say ‘benign’ or ‘malignant’ for a




mammogram, or “COVID’ or ‘'Non COVID’ for a chest radiograph. It does not indicate
which part of the image it used for classification, or indeed, if multiple lesions were
present which lesion it classified. This translates to reduced ‘explainability” of such a

model, where the results cannot be understood logically.
Detection

A detection task is one in which the network would predict the presence as well as
location of a lesion on an image. Unlike a classification task, which is performed at
image or patient level, the detection task is performed at lesion level. For example if the
network draws a box around a cancer on a mammogram, the task is a detection task.
Data Requirement: Training requires images as input, the ground truth needs to be
provided as a box (called a bounding box) around each lesion, with their labels
mentioned. This would typically have to be done prospectively, as this is not performed
in the routine work-flow of most departments. In the above example, each
mammogram would have to be annotated with bounding boxes by an expert
radiologist (usually by multiple radiologists to avoid missing/ misclassifying lesions),
and each box would have to be assigned a label (as benign/malignant or with a
BIRADS score, depending on what output is expected). Several publicly available
datasets such as the COCO dataset [12] exist for natural images, with several networks
trained on these datasets for object detection &uch as RCNN, faster-RCNN, YOLO etc).
Detection tasks are evaluated by calculating the intersection over union (IOU) between
a predicted box, and a ground truth box; that is by calculating how close a predicted
box is in comparison to the ground truth box. All boxes over a certain cut-off are
considered a correct prediction. A Free-Response Operating Curve (FROC) is drawn
and sensitivity of the network at specific false positivity rates can be computed and

compared.




Applications: The most prominent applications in oncology are detection of nodules
on chest radiographs [13] and CT scans of the lungs [14-16], and detection of masses and

calcifications on mammography ['7].

Segmentation and Quantification

A lesion segmentation task essentially involves classifying each pixel in the image as
belonging to a certain category. So unlike a classification task (image or patient level) or
detection task (lesion level), a segmentation task is performed at pixel level. For
instance, classification of each pixel of a CT image of the liver as background liver or a
lesion would result in demarcating the exact margins of a lesion. The volume of these
pixels may then be calculated, and give the volume of the right lobe, left lobe of the liver
separately.

Data Requirement: Here, exact hand annotations of the lesion in question by the expert
is required. This involves drawing an exact boundary demarcating the exact lesion in
each section of the scan. Since this is routinely performed for radiotherapy planning,
such data may be leveraged for building relevant datasets. Datasets like the COCO
dataset exist with pixel level annotations for natural images.

These algorithms are evaluated with segmentation accuracy, IOU with the ground
truth annotations (described in the previous section) or Dice scores [15].

Advantages: There is tremendous advantage to the use of Al for segmentation,
particularly quantification, in terms of increasing throughput and reducing the man-
hours required for these tasks. In some cases such as quantification of extent of
emphysema, which is particularly tedious for human operators, ready acceptance of Al
may be found.

Applications: Automated liver volume calculations (liver volumetry) is an important
application which can significantly reduce the time of the radiologist spent in the
process [1920 Segmentation of cerebral vessels to perform flow calculations [21,

segmentation of ischemic myocardial tissue [22] gre other such applications.




Image generation

Image generation refers to the network “drawing” an image, based on images it has
seen. For instance, if a network is trained with low dose CT and corresponding high
resolution CT images, it may learn to faithfully draw the high-resolution CT image,
given the low dose CT. The most successful neural network to perform this task is
called a Generative Adversarial Network (GAN), first described by lan Goodfellow [231.
This involves training 2 CNNs- a Generator, which draws the image, and a
discriminator, which determines whether a given image is real or generated. The 2
CNNs are trained simultaneously, with each trying to get better than the other.

Data requirement: This kind of network is usually trained in an “unsupervised”
manner, that is, no ground truth is required. Therefore no expert time is required in
annotating these images. Only curated datasets of a particular kind of images are
required.

This kind of network is difficult to evaluate, since no objective measure is typically
defined. Evaluation by human eyes is generally considered the best

Applications: GAN has found use in several interesting and evolving applications. This
includes CT and MRI reconstruction techniques to improve spatial resolution while
reducing the radiation dose or time of acquisition respectively. GANs can also be
trained to correct or remove artifacts from images [24.. An interesting application of
GAN has been in generating images of a different modality, given an image of a certain
modality. An example is generation of a PET image, given a CT image [%5], generation of
MRI brain image from CT brain [2], or a T2 weighted image from T1 weighted image
(271,

Advantages: An interesting application of GAN has been used for simulation training
for diagnostic imaging [%2°l. Students may be trained to recognise a wide variety of

pathology using the synthetic images generated from these networks. This may be




particularly important in certain scenarios such as say, detecting masses in dense
breasts.

Disadvantages: These networks seem to possess a supra-human capability. The
generated images cannot be verified; for authenticity of texture or indeed even

representation and thus may lead to an inherent mistrust of ‘synthetic’ images.

Natural Language Processing (NLP)

NLP refers to understanding of natural human language. While processing structured
information is relatively easy, most data in the real world is locked up in the form of
sentences in natural language. For example, understanding what is written in radiology
reports would require processing of free-text, this task is called NLP.

Data requirement: Large publically available datasets such as the “Google blogger
corpus” (text) and “Spoken Wikipedia corpuses” (spoken language) are available, over
which networks can be trained to understand natural language. However large medical
corpuses with reports pertaining to specific tasks are needed for tackling specific
medical problems. With more robust Electronic medical records (EMR), integrated
Hospital and Radiology Information Systems (HIS and RIS) as well as recorded medical
transcripts, this field is likely to grow rapidly.

Applications: The applications of NLP range from extraction of clinical information
from reports and EMRs to train deep neural networks, to designing chatbots for

conversing with patients.

Predictive Modelling, Radiomics and Radiogenomics

Predictive modelling has been at the core of medical practice for decades. While initial
attempts were centered at developing scoring systems, or metrics that could be
calculated from a few lab parameters, predictive modelling can be much more complex

today because of the number of variables that machine learning systems can analyse.




A simple example of such a model is the “cholesterol ratio” (Total cholesterol/ HDL)
which is used to estimate the risk of cardiac disease. As our models are capable of
processing many variables, in fact capable of processing whole images, predictive
models can be much more nuanced. Radiomics and Radiogenomics are in fact an
extension of the same, built to predict survival, response to therapy or future risk of

cancer, with more complex feature extraction and analysis from radiology images

Data requirement: Building such models requires longitudinal data. Simple machine
learning models would require lesser data in comparison to deep learning models. The
amount of data required essentially depends upon which level machine learning is used
at. For instance, if lesion segmentation is performed manually, feature extraction is
performed with routine textural features, and feature selection is performed by means
of traditional tools such as simple clustering or principle component analysis (PCA),
then machine learning model would only use these selected features to make the
desired prediction, and the amount of data required is relatively small. However if deep
learning is used end-to-end, the data requirement is much higher.

Predictive models are also assessed through AUROC and confusion matrices from
which accuracy of prediction can be calculated.

Radiomics involve 4 steps: a) segmentation b) extraction of features c) selection of
features and d) model building for prediction (Figure 5). Segmentation involves
drawing a margin around a lesion. This may be performed by an expert manually, or
automatically. Features of the lesion are then defined. These may be semantic, that is
defined by an expert, such as tissue heterogeneity, spiculated margins etc, or
quantitative features (such as mean, median, histogram analysis, filter-extracted
features). This may yield several 100 features, of which overlapping features should be
removed before analysis. Subsequently a few selected features may then be fed into a
machine learning model along with the outcomes that are to be predicted. Machine
learning or Deep learning may also be applied at the initial stages, for segmentation and

feature extraction itself, rather than at the last step.




Applications: Predictive models are extremely useful in oncology. Studies have shown
that features extracted from images can be used to predict the response to various kinds
of therapies. Morshid et al and Abajian et al showed good accuracy at predicting
response to transarterial chemoembolisation (TACE) [3031]. Studies have also correlated
the imaging features extracted with genomic information, for example, several studies
have shown that imaging features can accurately predict EGFR mutation status in
patients with lung cancer [3235], Segal et al showed that 28 CT texture features features
could decode 78% of the genes expressed in hepatocellular carcinoma 1%l. More recent
work also shows that deep learning models can predict future risk of development of
cancer. Eriksson ef al studied a model that identified women at high likelihood of
developing breast cancer within 2 years based on the present mammogram [¥71. All these

pave the way towards more personalised management of patients with cancer.

7. Genomic data analysis

The next generation of personalised medicine is undoubtedly ‘genomic medicine’,
wherein not just targeted therapy, but also diagnostic procedures are tailored as per the
genetic make-up of an individual.

In addition, there is a growing effort towards population based studies for pooling of
large scale genomic data and understanding the relationship between genomics, clinical
phenotype, metabolism and such domains. The challenge with these techniques are the
huge amounts of data obtained from a single cycle, and the computational requirements
in its processing and analysis. Thus, both ML and DL are ideally suited to deal with
each step of the process starting from genome sequencing to data processing and
interpretation.

For instance, a deep learning model that combined both histological and genomic data
in patients with brain tumors to predict the overall survival, was able to show non-

inferiority compared to human experts [381.




Data requirement: The essential in this field is not the data, but rather the ability to
process the data. Since the human genome contains approximately 3 billion base pairs,
and thousands of genes, the data becomes extremely high dimensional. Convolutional
neural networks and recurrent neural networks (RNNs) have been proven to be the best
approach to evaluate multiple DNA fragments in parallel, similar to the approach used
in Next Generation Sequencing (NGS) [*l. RNN models have also been used to perform
microRNA and target prediction from gene expression data [401.

Applications: In addition to the applications detailed above, Al has also found use in
variant identification, particularly Google’s ‘Deep Variant’” which has shown superior
performance to existing methods despite not being trained on genomic data [41l. Other
studies have also used machine learning to identify disease biomarkers and predict

drug response [4243].

ENABLING PATIENT-CENTRIC ONCOLOGY CARE

Much of medical care today is moving away from patients, with focus shifting towards
interpreting digital data in the form of blood reports, imaging data, pathology reports,
genomic information efc. While the sheer amount of data has rendered face to face
patient care less important, as synthesizing this information takes significant time and
effort.

ML and DL have however ushered in a new era with endless possibilities. For instance,
in a field like radiologist, where Al is likely to have maximum impact, the onco-
radiology reporting room of the future is likely to be dramatically different from where
we are currently. Al, by reducing the amount of time spent in preparing a report, may
pre-prepare images and sample reports, allowing a radiologist to spend time with the
patient, examining the clinical files and providing the report immediately after the
examination (unlike in current practice where a radiologist sees the images, never meets
the patient and gives them a report about 24 h later). This report can potentially be
transcribed into several reports simultaneously - for instance a patient friendly report,

in easy to understand non-medical language, a physician report with important sections




and lesions marked on the image, and a traditional descriptive radiology report. In fact
the radiology report is likely to have much more information than currently considered
possible, including the possibility of a particular mutation, possibility of response to a
particular therapy, even reconstructed images translated to different modalities which
may help determine the most important site of biopsy etc.

While Amara’s law for new technology may well apply (which says that any new
technology is overestimated early on, and underestimated later [44]), the potential of Al
and the vistas that it open up cannot be ignored. As the technology evolves, many of the
changes it brings about will enable a leap towards the era of personalised medicine.

(Figure 6)

CONCLUSION

Al thus holds great potential. The most significant advantage of Al rests in the fact that
since it is data-driven, it holds the potential to derive inferences from very large
databases, in a short span of time. It brings with it the possibility to standardize clinical
care, reduce interpretation times, improve accuracy of diagnosis, and may help enable
patient centricity in cancer care.

Like any new technology, however, Al must be used with care and only after thorough
clinical tests. The most significant disadvantage derieves from the fact that it is a “black-
box”, with little explainability . Little is known about the reasons behind the decisions
taken by neural networks, making it imperative for the decisions to be seen and
approved by human experts.

In summary, there is tremendous scope of artificial intelligence in cancer care,
particularly in the image related tasks. With the development of neural networks
capable of performing complex tasks, the era of personalised medicine seems a reality
with AL Thus, judicious use must be encouraged to maximise the long term benefits

that outlive the initial enthusiasm of discovery.
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