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Abstract

BACKGROUND

Bleeding is one of the major complications after endoscopic submucosal dissection
(ESD) in early gastric cancer (EGC) patients. There are limited studies on estimating the

bleeding risk after ESD using an artificial intelligence system.

AIM
To derivate and verify the performance of the deep learning model and the clinical

model for predicting bleeding risk after ESD in EGC patients.

METHODS

Patients with EGC who underwent ESD between January 2010 and June 2020 at the
Samsung Medical Center were enrolled, and post-ESD bleeding (PEB) was investigated
retrospectively. We split the entire cohort into a development set (80%) and a validation
set (20%). The deep learning and clinical model were built on the development set and
tested in the validation set. The performance of the deep learning model and the clinical

model were compared using the area under the curve (AUC) and the stratification of

bleeding risk after ESD.




RESULTS

A total of 5,629 patients were included, and post-ESD bleeding (PEB) occurred in 325
patients. The AUC for predicting PEB was 0.71 (95%CI, 0.63-0.78) in the deep learning
model and 0.70 (95% CI, 0.62-0.77) in the clinical model, without significant difference (P
= 0.730). The patients expected to the low- (<5%), intermediate- (25%, <9%), high-risk
(29%) categories were observed with actual bleeding rate of 2.2%, 3.9%, and 11.6% in

the deep learning model; 4.0%, 8.8%, and 18.2% in the clinical model.

CONCLUSION
A deep learning model can predict and stratify the bleeding risk after ESD in patients
with EGC.
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Core Tip: Bleeding is one of the major complications after ESD in EGC patients and
requires hospital-based intervention. We established a deep learning model to stratify
the bleeding risk after ESD and demonstrated its performance compared with a clinical
model. The deep learning model showed acceptable AUC and could stratify the PEB
risk as low-, intermediate-, and high-risk categories, which correlated with actual
bleeding rate comparatively. A deep learning model would be valuable in assessing the

bleeding risk after ESD in EGC patients.




INTRODUCTION

In South Korea, gastric cancer has a high incidence, the second most common
malignancy, and the fourth most common cause of cancer-related mortalitylll. After the
advent of screening programs for gastric cancer in South Korea and Japan, up to 50-
70% of cases with gastric cancers have been diagnosed at an early stagel24l. With the
increasing rate of diagnosis at early stages, endoscopic submucosahdissection (ESD) is
being actively applied for the minimally invasive treatment of early gastric cancer
(EGC) without suspicion of regional lymph node metastasis(> ©l.

In accordance with the current trend of active use of ESD, it is necessary to pay
attention to the post-ESD complications. Bleeding is one of the significant
complications, with an incidence of 3.6-6.9%[Z 8. Because bleeding after ESD requires
hospitalization and hemostatic interventions, there is a need to predict patients at a high
risk of bleeding after ESD. Therefore, there have been reports on risk factors related to
bleeding after ESDI%16l. Recently, a predictive risk-scoring model for bleeding after ESD
was proposed in Japan; this tool is expected to raise awareness regarding the potential
bleeding sources and thus, help physicians manage patients with EGC who are treated
with ESD[7].

Currently, artificial intelligence systems are being applied in various fields of
gastroenterologyl18l. The machine learning models showed good performance in the
triage of necessity for intervention in patients with upper gastrointestinal bleeding and
predicting recurrent ulcer bleeding 19 2. Deep learning is advantageous over the
machine learning model among artificial intelligence systems; its performance is
optimized by automatic learning while experiencing various cases. It can integrate and
interpret multiple factors simultaneously without external intervention. Hence, the
automatically trained deep learning model can generalize well. There has been no study
on the efficacy of deep learning for predicting post-ESD bleeding (PEB), and no study

has compared these systems with a clinical model.




This study aimed to develop and compare the performance of the deep learning and
clinical model for predicting PEB in EGC patients. We chose deep learning among the

artificial intelligence systems as a sophisticated algorithm.

MATERIALS AND METHODS

Patients

Patients who underwent ESD for EGC between January 2010 and June 2020 at the
Samsung Medical Center, Seoul, South Korea, were screened retrospectively. We
excluded cases with: failure to complete ESD (n = 1); prior gastrectomy (n = 2);
additional gastrectomy within 28 days after ESD (n = 497); no residual tumor in the ESD
specimen (n = 48); multiple procedures, such as EMR for other benign lesions and ESD
for EGC (1 = 46); and missing values for important variables (1 = 7) (Figure 1). A total of
5,629 patients were included in the analysis, who were randomly categorized into the
development set (80%) and the validation set (20%). The Institutional review board of
the Samsung Medical Center, Korea, approved this study, and the requirement for

obtaining informed consent was waived owing to the study's retrospective nature.

Outcome, data sources, study variables, and definitions

The main outcome included the development of a deep learning model and a clinical
model that predict the bleeding after ESD in patients with EGC and the comparison of
performance between the deep learning model and the clinical model.

The variables used to build the deep learning and clinical models were collected from
the medical records retrospectively based on the date of ESD. These variables included:
age; sex; comorbidities such as hypertension, diabetes mellitus, liver cirrhosis, and
chronic kidney disease (estimated glomerular filtration rate < 60 mL/min/1.73 m?);
patient management with antithrombotic agents [ATs; aspirin, P2Y12RA, warfarin,
direct-acting oral anticoagulants (DOAC), and cilostazol], non-steroidal anti-
inflammatory drugs (NSAIDs), interruption of ATs, replacement of antiplatelet agents

(APA), and heparin bridging; tumor characteristics (single or multiple lesions, location,




pathologic size, type of differentiation); piecemeal resection; and laboratory data
(albumin level and international normalized ratio [INR]).

Bleeding after ESD was defined as the presence of signs of bleeding (melena,
hematemesis, or a decrease in the hemoglobin level by > 2 g/dL), along with
endoscopic stigmata of recent bleeding, such as Forrest class Ia, Ib, IIa, and IIb, within
28 days after ESD. Interruption of ATs was defined as the discontinuation of these
medications before the procedure, according to the recommended duration.
Replacement of APA was described as when the procedure was performed with aspirin
or cilostazol alone in patients who were receiving multiple APAs. Heparin bridging
was defined as the administration of heparin during the period between the
discontinuation and resumption of anticoagulants. A hemoglobin reduction of >2 g/dL
was evaluated by calculating the differences in the hemoglobin levels between the day

before and after ESD.

Development of the deep learning and clinical models

We built a deep learning model and a clinical model based on the development set,
which comprised 80% of the overall cohort. Subsequently, we validated the deep
learning and clinical models in the validation set, which comprised 20% of the overall
cohort. The categorical variables were converted using one-hot encoding and the
continuous variables were normalized, as preprocessing. We built the deep learning
model as follows: First, we augmented the development set using the borderline
synthetic minority over-sampling technique to overcome the imbalance of the dataset.
Synthetic data were generated from 5-100% of the majority class. Second, we
constructed the deep learning model using automated machine learning, called Keras
Tuner, to tune hyperparameters automatically. The initial architecture of the model was
configured similarly to a transformer based on the attention mechanism(2ll. Then, we set
the number of neurons as a hyperparameter variable, ranging from 12 to 24, in 4 dense
layers. The learning rate was also set to a range from 1le-2 — to le-4 —. The combination

of hyperparameters was determined using Bayesian optimization. Finally, we evaluated




the performance in the validation set using a model tuned with the 20% of synthetic
data of the majority class. The optimal units of dense layers were selected to 24. The
optimal number of attention head was chosen to 16. The architecture is depicted in
Supplementary Figure 1. The optimal learning rate with Adam optimizer was le-3.

Multivariable logistic regression analysis was performed in the development set to
build the clinical model. Then, the clinical model was constructed as a formula with the
sum of the beta coefficient values of significant factors with a p-value of <0.05.

The calculated value from the deep learning and clinical models was multiplied by
1,000 and converted as a score. The score that indicated the risk probability was divided
by the decile in the development set. We selected cutoff to discriminate the risk
categories as low-, intermediate-, and high-risk at a bleeding rate of <5% and <9% in the
development set referred to in a previous report(lZl. Decile 1st to 4 was allocated to low
risk, 5" to 8" to intermediate risk, 9t to 10% to high-risk category. Link to the deep
learning and clinical models: https:// github.com/YeongChanLee/Predict-PEB.

Statistical analysis

Descriptive statistics for continuous and categorical variables are presented as means
(standard deviation) and frequencies (%). The deep learning model and the clinical
model for prediction of bleeding after ESD were evaluated using two methods. First,
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
and receiver operating characteristic area (ROC) curve along with the area under the
curve (AUC) were analyzed. The performance with AUC was compared using the
bootstrap test. Second, the risk stratification of PEB based on the development set was
applied to the validation set and compared with the actual bleeding rate in the
validation set. For example, if the score of calculated cases belongs to the high-risk
category, we verified that the real bleeding rate was in the predicted range of nine
percent or higher. The predictors for PEB were identified with multivariable logistic

regression analysis in the entire cohort and development set. Model development for
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deep learning was performed using Tensor Flow 2.4.0, and Python 3.8.5. Statistical

analyses were performed using the R software (version 3.5.1, Vienna, Austria).

RESULTS

Baseline characteristics

Of the 5,629 patients, 325 experienced post-ESD bleeding (PEB). The non-PEB and PEB
groups were comparable in age, liver cirrhosis status, albumin level, INR level, a
proportion of aspirin or cilostazol use, undifferentiated tumor type, and piecemeal
resection. The PEB group had a higher proportion of males and comorbidities
(hypertension, diabetes mellitus, and chronic kidney disease) than the non-PEB group.
P2Y12RA and anticoagulants (warfarin or DOAC) and the proportion of patients
receiving replacement therapy or heparin bridging were higher in the PEB group than
in the non-PEB group. The PEB group had a higher proportion of multiple_tumors,
middle location of tumors, and larger size of tumors than the non-PEB group. (Table 1).
There was no difference in the baseline characteristics between the development and

validation sets (Supplementary Table 1).

Predictors for bleeding after ESD

In the overall cohort, the independent predictors were identified as follows: age [OR,
0.98; 95% confidence interval (CI), 0.96-0.99; p value, <0.001], male (OR, 1.65; 95%ClI,
1.19-2.28; p value, 0.003), hypertension (OR, 1.56; 95%CI, 1.19-2.03; p value, 0.001),
chronic kidney disease (OR, 1.78; 95%CI, 1.18-2.70; p value, 0.006), P2Y12RA (OR, 2.40;
95%ClI, 1.22-4.74, p value, 0.011), DOAC (OR, 4.31; 95%CI, 1.26-14.78; p value, 0.020),
middle location (OR, 1.72; 95%CI, 1.07-2.74; p value, 0.024), and size (OR, 1.03; 95%CI,
1.02-1.04; p value, <0.001) (Supplegmentary Table 2).

In the development set, age (OR, 0.98; 95%CI, 0.96-099; p value, 0.001), male (OR,
1.54; 95%CI, 1.09-2.19; p value, 0.015), hypertension (OR, 1.35; 95%CI, 1.00-1.82; p
value, 0.049), chronic kidney disease éR, 1.78; 95%CI, 1.12-2.84; p value, 0.015),
P2Y12RA (OR, 2.26; 95%CI, 1.05-4.88; p value, 0.037), middle location (OR, 1.97; 95%CI,




1.14-3.41; p value, 0.015), and size (OR, 1.04; 95%ClI, 1.03-1.05; p value, <0.001) were
identified as independent predictors. The clinical model was a formula described

bottom of Table 2.

Performance and comparison of deep learning morﬁ and clinical model

The deep learning model was found to have a sensitivity of 64.3%, specificity of 74.0%,
PPV of 11.4%, NPV of 97.5%, and AUC of 0.71 (95% CI 0.63-0.78). The clinical model
had a sensitivity of 69.6%, specificity of 71.0%, PPV of 11.1%, NPV of 97.8%, and AUC
of 0.70 (95%ClI, 0.62-0.77) (Table 3 and Figure 2). There were no significant differences
in the AUCs between the deep learning and clinical models (Table 3).

The score multiplied by 1,000 to the derived value based on the deep learning and
clinical models reflects the risk probability and was divided into deciles. The maximum
cutoff was 35.9 in low risk, 57.5 in intermediate risk, and over the 57.5 was assigned to a
high-risk category of the deep learning model based on development set (Table 4). In
the clinical model, the maximum cutoff was 12.7 in low risk, 24.6 in intermediate risk,
and over the 24.6 was considered to a high-risk category based on development set
(Table 4). In the validate set, the deep learning model showed an actual bleeding rate of
2.2%,3.9%, and 11.6%; the clinical model showed an actual bleeding rate of 4.0%, 8.8%,

and 18.2% in low-, intermediate-, high-risk categories, respectively (Table 4).

DISCUSSION
The deep learning and clinical models for predicting bleeding after ESD in patients with
EGC showed good performance. We demonstrated that deep learning and clinical
models could stratify the PEB risk, which correlated with actual bleeding rates. Hence,
we suggest that the deep learning model can aid in the prediction of bleeding after ESD,
in addition to the clinical model.

This study was the first to establish a deep learning model for predicting bleeding
after ESD and demonstrate its performance compared to that of a clinical model. The

strengths of this study were its large sample size and the relatively recent data from a




single institution. In addition, we included all essential variables and sought the
advantages of the deep learning model that can deal with extensive data, complex
problems and improve its performance incrementally by automated learning. We
included all types of ATs separately and clarified the distinction between patients
without an indication for ATs, patients who received an interruption before the
procedure, and patients who received replacement or heparin bridging.

Our study identified younger age, male sex, hypertension, chronic kidney disease,
P2Y12RA use, DOAC use, middle tumor location, and tumor size as the predictors of
PEB. Previous studies also reported that younger age was associated with PEBILL 22 23],
It is unclear why younger age was associated with PEB. Several reports proposed that
atrophic change along with aging might relate to decreasing the vascularity on the
mucosal and submucosal layerslil 22 2426] - Although aging and changes in intestinal
vasculature have not been clearly elucidated, a decrease in the volume of vasculature
with aging was observed in animals/??l. Aspirin did not increase the PEB risk after
discontinuation about one week[13l. Although some reported that maintaining aspirin
did not increase the PEB riskl10 13 28 29] 3 meta-analysis showed that aspirin was
associated with increased bleeding risk, requiring clinical caution(3. There is still
controversial due to limited evidence for P2Y12R [2 1112 31 [n comparision, an increased
bleeding risk after ESD has been reported consistently in patients receiving dual
antiplatelets. In addition, there were reports that warfarin or DOAC are related to
bleeding risk 17; rather, some reported heparin bridging was associated with PEB risk
[% 10, The irony is that most of the patients who experience heparin bridging take
warfarin or DOAC, but the results about each factor were inconsistent in previous
retrospective studies. It is assumed that the duration of discontinuation and other
individual factors might influence these results. In addition, it has been suggested that
large sizel® 1 21, CKD with hemodialysis 1017 32], and long procedure time LI were
associated with bleeding after ESD. The upper location showed increased PEB risk [2
31, contrarily some other reported lower location related to increased PEB risk (22 3], a

recent meta-analysis did not prove significance according to the locationl8l. Recently, a




predictive risk-scoring model for PEB in Japan showed that chronic kidney disease with
hemodialysis, usage of aspirin, P2Y12RA, cilostazol, warfarin, DOAC, lower third
tumor location, tumor size > 30 mm, and the presence of multiple tumors were the
predictors of PEB, whereas interruption was a protective factor against PEBI'7l. Another
recent model proposed a simple algorithm including significant factors with continuous
use of ATs, size = 49 mm, age <62 years. We also found an association between
P2Y12RA or DOAC usage and PEB; however, other ATs were not associated with PEB,
and interruption and heparin bridging or replacement of APA were not identified as
the protective factors. In our institution, ESD is classified as a high-risk procedure based
on the national practice guidelines, and experts are consulted before ESD in patients
receiving ATs. The expert assesses the thromboembolic risk depending on the
underlying disease and recommends the possibility of interruption, duration of
interruption, and the need for heparin bridging or replacement of APA[337], Recently, a
guideline published in South Korea also categorized ESD as an ultra-high-risk
procedure and recommended interruption of ATs with heparin bridging or replacement
of APA according to the thromboembolic risk[38].

The deep learning model in our study showed an AUC of 0.71, which was
comparable to the AUC of 0.72 for a risk-scoring model in JapanZl and the AUC of 0.70
for the clinical model in our study. In the validation set, predicted as low-, intermediate-
, high-risk categories showed an actual bleeding rate of 2.2%, 3.9%, and 11.6% in the
deep learning; 4.0%, 8.8%, and 18.2% in the clinical model. Our study demonstrated that
the deep learning and clinical models can stratify the bleeding risk after ESD. The
predicted risk categories correlated with actual bleeding rate; even considering the
actual bleeding rate was slightly lower than predicted range of =5% and <9%
(intermediate risk) in the deep learning and was close to upper range in the clinical
model. Our findings support the clinical potential of the deep learning model for
predicting PEB risk based on its comparable performance. Because bleeding after ESD
requires intervention and hospitalization, physicians are concerned about the

occurrence of PEB as a major complication. Based on the risk-prediction model,




physicians could carefully assess the bleeding risk and perform preventive hemostasis
during the procedure. Suppose additional management like the shielding method for
preventing PEB in the selected high-risk group is attempted. In that case, it is
anticipated that the deep learning model could support risk stratification.

Our study has several limitations. Due to its retrospective design, information such as
the timing of the resumption of ATs, endoscopist’'s experience, defect size, and
procedure duration was missing. Furthermore, our study was designed as a single-
center study; hence, hospital-based validation in other hospitals was not performed,
and further proof is warranted. However, the deep learning model might be
generalizable because it automatically identifies the risk or probability of bleeding
without the external intervention of known relevant factors. Both the deep learning and
clinical models showed a low PPV, which may be related to the low incidence of
bleeding after ESD, even though bleeding is one of the major complications. In our
cohort, the number of patients who received anticoagulants (warfarin or DOAC) was
small; therefore, it is possible that the statistical significance of these variables was
insufficient for establishing a clinical model in the development set. In this regard,
despite the fact that our study focused on the development of a deep learning model
and a clinical model, as well as the utility of the deep learning model, further
accumulation of data and additional analysis will be required before the

commencement of the clinical application of artificial intelligence systems.

CONCLUSION

In conclusion, we introduced a deep learning model to predict the risk of bleeding after
ESD in patients with EGC. The model demonstrated its performance as comparable to
the clinical model. The deep learning model could help the physicians raise caution to

the PEB and would be a desirable tool for supporting ESD application.
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