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Abstract

Artificial intelligence (Al) is playing an increasingly important role in the medicine,
especially in the field of medical imaging. It can be used to diagnose diseases and
predict certain status and possible events that may happen. Recently, more and more
studies have confirmed the value of Al based on ultrasound in the evaluation of diffuse
liver diseases and focal liver lesions (FLLs). It can assess the severity of liver fibrosis and
non-alcoholic fatty liver, differentially diagnose benign and malignant liver lesions,
distinguish primary and secondary liver cancer, and predict the curative effect of liver
cancer treatment and recurrence after treatment, and predict microvascular invasion
(MVI) in hepatocellular carcinoma (HCC). These studies have great clinical application
potential in the near future. The purpose of this review is to comprehensively introduce

the current status and future perspectives of Al in liver ultrasound.
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Core Tip: Artificial intelligence (Al) is playing an increasingly important role in
medicine, especially in the field of medical imaging. Currently, there is a need of a
comprehensive review to introduce the application of Al based on ultrasound in diffuse
and focal liver lesions. In this article, we introduce the application of Al in the
assessment of liver fibrosis and non-alcoholic fatty liver and the differentiation of focal
liver lesions. In addition, we discuss the performance of Al based on ultrasound in
predicting curative effect, prognosis and microvascular invasion in hepatocarcinoma.

Lastly, we illustrate the future prospect of Al in liver ultrasound.

INTRODUCTION




In the past several years, liver diseases have affected millions of lives and become one

of the main causes of illness and death in the world[!l. It is reported that more than one-
fifth of the Chinese are affected by liver diseases, such as liver fibrosis, liver cancer and
non-alcoholic fatty liver disease (NAFLD), contributing to the health loss
unambiguously. Therefore, paying more attention to liver diseases is of great
significance.

Artificial intelligence (AI) was defined as the research of algorithms which enable
machines have the ability of reasoning and performing functions such as solving
problems, recognizing object and word, inferring world states, and making decisions/2l.
As far as I am concerned, Al is a precise prediction technique that automates learning
and recognizes patterns in data. Apart from this, Al has been already extensively
applied to medical diagnosis, especially in medical image analysis. This application
mainly relies on deep learning, a subfield of machine learning. Deep learning is on the
frontier of Al, ich is based on deep neural networks (DNNs) with more than one
hidden layer. Convolutional neural networks (CNNs) are a branch of DNNs that are
particularly useful for recognizing image and have stimulated a large amount of
interest from industry, academia, and clinicians/[3l.

Comparing with other medical imaging techniques, ultrasound is noninvasive and
more portable, which can also provide real-time imaging. In recent years, Al-powered
ultrasound has become more mature and come closer to regular clinical applications in
order to reduce the subjective and improve the efficient of ultrasound diagnosisil.
Many studies have confirmed the value of Al in the evaluations of thyroid nodule,
breast lesion and liver lesion classification by ultrasound. In addition to these
applications, other Al applications in ultrasound have also been explored and achieved
great progress.
In liver medical imaging, can make a quantitative assessment by recognizing
imaging information automatically to provide physicians assistance to make more
precise and ﬁmprehensive imaging diagnosisll. This technique has been extensively

applied to computed tomography (CT), positron emission tomography-computed




tomography (PET-CT), magnetic resonance image (MRI) and ultrasound to diagnose
liver lesions. For instance, deep learning based on CT and PET-CT not only can be used
to detect liver new tumors and metastatic liver malignancy, but also predict the primary
origin of liver metastasis(¢-Sl.

There are also many studies have illustrated the application of Al in liver ultrasound,
while a comprehensive review of Al in this flied is lacking. In this review, we will
introduce the application of AI based on ultrasound in both diffuse liver diseases,
including liver fibrosis and steatosis, and focal liver lesions (FLLs), including their
differential diagnosis and predicting curative effect, prognosis and microvascular
invasion (MVI) of hepatocellular carcinoma (HCC). The main structure of this review

was illustrated in figure 1.

APPLICATION OF AI IN DIFFUSE LIVER DISEASE

There are a variety of diffuse liver diseases which can be asymptomatic or cause severe
liver dysfunction, and many of them may lead to cirrhosis, hepatic carcinoma and
death. We will introduce the applications of Al based on ultrasound in two common
diffuse liver diseases, i.e., liver fibrosis and steatosis.
1. Liver fibrosis

iver fibrosis is the early step of cirrhosis and an important pathological basis of HCCI?,
therefore, the early detection and prevention of liver fibrosis is essential in clinical
setting. However, although liver biopsy is the golden criterion for classifying liver
fibrosis using the Metavir scorel'”l or New Inuyama classification'!l to distribute the
ﬁore ranging from FO (no fibrosis) to F4 (cirrhosis), there still remains controversial
regarding the use of tissue examination for assessment of liver fibrosis in clinical
practice. On account of liver biopsy is invasive and the liver fibrosis is not equably
distributed in liver, there are an increasing number of credible, noninvasive and
available approaches being widely applied in clinical practice. Recently, a large number
of noninvasive techniques have been used to prevent adverse outcomes through the

application of Al based on ultrasound.




1.1 Al based on B-mode ultrasound

As early as twenty years ago, Al was used to assist the diagnosis of liver fibrosis.
Ahmed et al creatively proposed an approach which employed fuzzy reasoning
techniques to identify diffuse liver diseases automatically by using digital quantitative
features measured from the ultrasound images!'2l. They extracted parameters only from
B-mode images, and the results revealed that this approach had higher specificity and
sensitivity for the diagnosis of liver fibrosis than the statistical classification techniques,
which had a certain effect but could not help much.

Apart from this, a novel deep multi-scale texture network based entirely on B-mode
ultrasound images proposed recently seems to be more convenient(!3l. The area-under-
the receiver operating characteristics curve (AUROC) of this approach were 0.92 for
significant fibrosis (= F2) and 0.89 for cirrhosis (F4) on validation group, which
outperformed than ultrasonographers and three serum biomarkers in some ways
during diagnosis. Although it cannot be used to realize liver fibrosis staging now, it has
an excellent potential in the future workflow.

1.2 Al based on doppler ultrasound

On the basis of grey-scale parameters from B-mode images, doppler parameters of
intrahepatic blood vascular were added as essential pargmeters. Eventually, five
ultrasonographic variables, including the liver parenchymal, thickness of the spleen, the
hepatic vein waveform, hepatic artery pulsatile index and damping index, were selected
as the input neurons. A data optimization procedure was used in artificial neural
networks (ANNSs) for the diagnosis of liver fibrosis, which achieved an AUC of 0.92[14].
Although this model proved to predict liver cirrhosis accurately, it still could not
provide a specific grading.

1.3 Al based on elastography

In recent years, with the development of ultrasound, studies proposed computer-aided
techniques based on elastography that is of great importance in ultrasound images to
identify and stage liver fibrosis. Real-time tissue elastography (RTE) is one of the

recently developed elastography techniques. In a study, 11 images features were




extracted directly from the RTE software which was installed in the ultrasound system
to quantify the patterns of the RTE images[!5l. Then the data was processed and input
into four classical classifiers. The resulta;howed that the performance of the adopted
classifiers was much better than the previous liver fibrosis index method, which
predicted the stage of fibrosis using RTE images and multiple regression analysis. The
good performance in this study demonstrated the machine learning had the potential to
be powerful tools for staging liver fibrosis.
Nowadays, most applications of Al in evaluating the stage of liver fibrosis were based
on shear wave elastography (SWE). An automated approach including the image
quality check, region of interest (ROI) selection, and CNN classification based on SWE
showed a more accurate detection of > F2 fibrosis levels than a previously published
baseline approach, with an AUC of 0.89 vs. 0.74[1¢l. The deep learning radiomics also
presented the potential diagnostic performance in chronic hepatitis B patients compared
with two-dimensional SWE7l. AT could help stage liver fibrosis more accurate with the
assistance of elastography.
é Liver steatosis
Hepatic steatosis, characterized by the accumulation of fat droplets in hepatocytes, can
develop to nonalcoholic fibrosis, steatohepatitis, cirrhosis, and even HCCI'$-l, Early
tection and treatment may halt or reverse NAFLD progression!’”. As a consequence,
there is a critical need to develop noninvasive imaging methods to assess hepatic
steatosis. Noninvasive liver imaging methods including CT, MRI and ultrasound have
been intensively investigated!20l.
Ultrasound is the first-line examination of identifying liver steatosis results compared
with other approaches. It is shown that enlarged liver with a greater number of echoes
caused by fat droplets interacting with the ultrasound, and the liver is brighter and
more hyperechoic compared with the right kidney on ultrasound. The image is
qualitative and relies on the subjective judgement of the operator, which will definitely
lead to variable results and low reproducibility(?!l. To overcome the observer biaﬁ a

series of quantitative and semi-quantitative parameters including attenuation and




backscatter coefficients, the hepato-renal index (HRI) and ultrasound envelope statistic
parametric imaging (known as speckle statistics) have been implemented on
ultrasound, some of which represent excellent reproducibility and reliability[2-24l. At
present, almost all the studies published mainly concentrated on NAFLD.

It is reported that the detection of moderate and severe steatosis based on ultrasound
had an 84.8% sensitivity and a 93.6% specificity, while mild steatosis had an even lower
sensitivity[?5. Recently, some researchers have applied Al to improve the ultrasound
detection rate of NAFLD, and the results were promising. Table 1 shows the studies
using Al based on ultrasound to access steatosis. All these studies showed that Al had
the tremendous potential in helping diagnose liver steatosis and some studies
attempted to optimize CNN models. In the future, classifying the degree of liver
steatosis with the assist of the Al could be a trend.

2.1 Qualitative evaluation

Deep learning has been applied to qualitatively evaluate NAFLD. An approach of
assessing fatty liver disease by utilizing deep learning based on CNNs with B-mode
images was proposed(2l. Later, they incorporated 135 participants ﬁth known or
suspected NAFLD to investigate the function of four liver views (three views in
transverse plane, including hepatic veins at the confluence with the inferior vena cava,
right portal vein and right posterior portal vein, and one view in sagittal plane that is
liver and kidney view) in the assessmentl?’l. The study assessed attention maps for liver
assessment based on CNNs, which illustrated that the available image features
provided by each view could offer help in assessing liver fat. Unlike the study
developed previously, although the latter had a bigger sample, MRI proton density fat
fraction (PDFF) was used as reference standard which was not precise enough
compared with liver biopsy.

On the basis of deep learning, a novel framework combining transfer learning with fine-
tuning was proposed/2sl. Although this study revealed the new framework

outperformed than CNN, this conclusion was not convinced cause the radiologists’




qualitative score was the reference standard. This framework was also utilized in other
studies and achieved a good performance.

With the development of deep learning, Chou et al established two-class, three-class,
and four-class prediction models to classify different severity steatosis by making the
use of B-mode ultrasound images from 2070 patientsi??l. Although liver biopsy is the
gold criteria, the deep learning model could select eligible patients for a liver biopsy by
evaluating the severity of fatty liver preliminarily, which would reduce unnecessary
test.

Different deep learning algorithms tend to have different performances. The combined
deep learning algorithms based on B-mode images were performed a highest AUROC
of 0.9999 and a best accuracy of 0.9864 compared with every single one of the
algorithms(3l. Therefore, in the future studies, selecting an optimal algorithm is
important.

2.2 Quantitative evaluation

Al has also been applied to quantitatively evaluate NAFLD.

2.2.1 Radiofrequency signal

Using radiofrequency signals could get rid of the lost or change of data during original
data translating to B-mode ultrasound images. A study acquired the diagnosis and the
fat fraction of NAFLD by inputting the original data based on one-dimensional
algorithmsl3l. They obtained a 97% sensitivity, 94% specificity and the positive
predictive value is up to 97%, which proved utilizing original ultrasound
radiofrequency was not only able to be applied in diagnosing NAFLD, but also be
applied to quantify liver fat fraction in clinic. Similarly, in an animal experiment, a CNN
model based on radiofrequency signals was proved to have a better performance than
the traditional quantitative ultrasound when classifying steatosis[32l.

2.2.2 HRI model based on CNNss

HRI model based on CNNs can also be studied for NAFLD evaluation®. Cha et al
reported the automated approach had no significant difference in hepatic

measurements and HRI calculations compared with experienced radiologists, which




indicated that the aid of deep learning could reduce the radiologists’ workload and
improve the residents’ diagnost'ﬁaccuracy. In this study, an automated HRI calculation
algorithm was used, including liver and kidney segmentation, kidney ROI extraction,

liver ROI extraction, and calculation of the HRI.

APPLICATION OF AI IN FOCAL LIVER LESIONS (FLLS)

HCC is the most conventional original malignant FLL, which is the sixth most common
cancer in human beings, as well as the fourth primary reason of death related with
cancer in the world!!l. Hence, early accurate differential diagnosis of malignant and
benign FLL is important for the management, and prognosis of patients[34l.

Ultrasound is the first-line imaging modality to identify FLLs in clinical workflow. The
development of Al provides a new method to improve the accuracy of ultrasound in
diagnosing FLLs. Compared with radiologists viewing anatomical images, Al can better
reflect monolithic tumors morphology, as well as capture both granular and
radiological patterns in specific task, which are tough by normal human vision/3l.
Figure 2 illustrated the flowchart of the application of deep learning and radiomics in
FLLs. Studies have confirmed the application of Al can improve the diagnostic
performance of ultrasound for FLLs (Table 2).

1 Differential diagnosis of FLLs

1.1 Al based on B-mode Ultrasound

1.1.1 Differentiate malignant and benign lesions

Al has been widely used in differentiating malignant and benign FLLs based on B-mode
ultrasound. Gray level co-occurrence matrix could be used in extracting features from
B-mode images, which was used in differentiating malignant and benign FLLs
combined with fuzzy support vector machinel?l. This study achieved the AUC of 0.984
and 0.971 in database 1 and database 2 respectively, which confirmed the feasibility of
Al in this field.

With the development of Al, deep learning plays a more vital role in the differential

diagnosis of FLLs. A CNN with ResNet50 was utilized to recognize benign from




malignant through ultrasonography of solid liver lesions, which performance was
comparable to expert radiologistsB7l. But this study did not evolve other information
except ultrasound images such as clinical factors. In another study, after adding seven
clinical factors, a muti-center study obtained a higher accuracy, sensitivity and
specificity compared with radiologists withl5-year experience, and the AUC for
recognizing malignant from benign lesions reached up to 0.924 in external validation
cohort!38].

However, these studies above just involved several common FLLs in clinic, more kinds
of FLLs may confuse the diagnosis and reduce the accuracy. Similar to the previous
study, there was also a muti-center study estimating internal validation and external
validation cohorts, which had a larger volume of training data and involved more
varieties of FLLs, including cysts, HCCs, hemangiomas, focal fatty infiltration, and focal
fatty sparingl®l. Although they obtained a lower sensitivity because more kinds of
diseases were included, the performance in external validation cohorts was still
satisfactory. Besides, they are trying to utilize videos as training materials to realized
real-time analysis in future workflow. This novel approach would offer great
convenience to radiologists in helping differentiate FLLs.

1.1.2 Differentiate different FLLs

Al could also be used in the classification of FLLs. In order to optimize feature sets, a
hybrid textural fea&lre extraction system was proposed®! by Hwang et al In their
preliminary study, a high accuracy was observed in classifying cysts vs. hemangiomas
and cysts vs. malignant lesions, but when classifying hemangiomas vs. malignant
lesions by extracting multiple ROI, the accuracy was only 80%. However, the proposed
approach exhibited a better accuracy in all classification groups by quantifying the key
features in ultrasound images, especially in classifying hemangioma vs. malignant, with
an accuracy of 96.13%.

Later, a sparse autoencoder system based on deep learning was proposed in diagnosing

cysts, hemangiomas, and malignant lesions, which outperformed the three progressive




techniques including K-Nearest Neighbor, multi-support vector machine and Naive
Bayes with an overall accuracy of 97.2%[411,

These two studies®41] just focused on three kinds of FLLs. An algorithm that could
simultaneously detect and characterize FLLs based on deep learning was proposed in
diagnosing HCC, focal nodular hyperplasia, cysts, hemangiomas and metastasis, which
achieved an average AUC of 0.9162l. This study yielded promising results by using a
small amount of data, using larger databases would increase the accuracy of this model.
1.2 Al based on Contrast-enhanced Ultrasound (CEUS)

It is reported that CEUS images had better sensitivity and specificity for differentiating
between malignant and benign tumors compared with B-mode images, which indicated
CEUS had a superior diagnostic performance. Combing AI with CEUS could not only
differentiate benign and malignant FLLs, but also classify different kinds of malignant
lesions.

Al could be used to differentiate malignant and benign FLLs based on three-phase
CEUS images. A two-stage multiple-view learning that was the integration of deep
canonical correlation analysis (DCCA) and multiple kernel learning (MKL) was used to
fuse the characteristic of three-phase patterns in CEUS, presenting an accuracy of
90.41%41. The proposed algorithm had both a low computational complex and a high
predictive accuracy. But for muti-view CEUS images, utilizing a multi-modal feature
fusion algorithm is necessary.

Compared with DCCA-MKL, the use of a three-dimensioned CNN (3D-CNN), which
integrated the relationship between two temporally adjacent frames to extract features
spatially and temporally, achieved a higher accuracy of 93.1%, sensitivity of 94.5% and
specificity of 93.6%[*l. But this algorithm still needs to be validated in the future work.
These two studies abovel#344] exploited heterogeneous visual morphology to describe
the difference between different liver masses. Apart from this method, time-intensity
curve (TIC), which represents the contrast intensity constantly and generates the fitted

curve of enhanced intensity during the process, was used in many studies.




SVMI5-4] and deep learning®7-%8l based on TICs presented good performances in
differentiate FLLs. A SVM-based image analysis system was used for FLLs classification
and presented an AUC of 0.894l. An ANN diagnostic system based on TICs was
proved to have a similar accuracy and specificity with human in classifying five
different liver tumors ten years agol%’l. Later, deep learning became more mature, TICs
of the arterial and the portal vein phases of CEUS videos were extracted on the basis of
the deep belief networks, a kind of neural network that was composed of layers of
Boltzmann machines, to analyze the extracted TICsl*8l. The accuracy of classifying
benign from malignant lesions was 83.36% by means of this deep learning method.
Exactly in this study, a novel evaluation procedure named leave-one-patient-out and
custom DNNs were creatively presented. This study involved various types of liver
lesions and compared the custom DNN designs with the state-of-the-art architectures
and obtained a maximal accuracy of 88% by utilizing the proposed evaluation
procedure in both pre-trained and trained from scratch models. This novel approach
has a magnificent prospect for development, and it is worth investigating in the future
work.

Al based on CEUS was proved to provide assistance in clinical settings as the reference
and improve the performance of residents in the differentiation of benign and
malignant FLLsl*%l. In the future, it probably plays a supporting role in clinic work.
However, Al based on TICs tends to complicate the calculation because generating TICs
is a time-consuming process. Therefore, developing new approaches to extract features
from CEUS images is important.

2 The application of Al in predicting curative effect and prognosis of HCC

It was reported that the Edmondson-Steiner grade was a vital pre-operation predictor of
tumor survival and recurrence after undergoing surgical resection5%5l, Owing to
preoperative pathological differentiation grade can only be obtained by invasive
biopsyl®2], it is necessary to explore a noninvasive method to predict therapeutic effect,

recurrence, and metastasis to realize personalized treatment.




Some studies(>>*] demonstrated the superiority of Al based on CEUS in predicting
curative effect and prognosis in HCC. Although the results revealed a better
performance of Al models compared with single clinical or ultrasound model, a better
performance may be obtained by adding clinical factors in the future studies.

2.1 Predicting curative effect of HCC

Transarterial chemoembolization (TACE) is the first-line therapy in patients who are
diagnosed as mid-stage HCC, and the response to the first TACE treatment is related to
the subsequent curative effect and survival. Therefore, it is necessary to predict the
personized responses to first TACE of HCC patients. Deep learning radiomics-based
CEUS model, machine learning radiomics-based B-Mode images model and machine
learning radiomics-based TIC curve of CEUS model were established to realize this
function(®3l. These models presented a better performance compared with HAP-score
based on three indexes concerning liver function and tumor load, which will be of great
benefit in selecting both first treatment and subsequent therapies after first TACE
personally.

2.2 Predicting prognosis of patients with HCC

Radiofrequency ablation and surgical resection are recommended for early-stage HCC.
Deep learning could also be used to predict the progression-free survival (PFS) of these
two therapies in HCC patients®l. Two models based on these two kinds of therapies
provided a satisfactory prediction accuracy and calibrations of 2-year PFS. In another
studyP?], a 3D-CNN model which would avoid missing information from CEUS images
compared with extracting features from four-phase images was used, it was proved that
predicting prognosis of different treatments in advance and swapping treatment timely
would increase the 2-year PFS, which could contribute to a better prognosis.

3 The application of Al in predicting microvascular invasion (MVI) of HCC

MVI has proved to be the independent pﬁdictor of the recurrence and the poor
outcomes of HCC. Therefore, making a non-invasive and accurate preoperative

identification of MVI would be of great significance for HCC patients. The application




of Al in predicting MVI achieved good performance based on gray-scale ultrasound
images and CEUS.

The radiomics score based on ultrasound of HCC was established and proved to be an
independent predictor of MVII%l. The performance of clinical nomogram was improved
significantly with the aid of radiomics score, which demonstrated the important role of

is technique.

Features of peri-tumoral area have been proved to be more accurate recentlyl>l. The
radiomic signatures on the basis of features of gross and peri-tumoral region (GPTR)
showed the best performance compared with gross-tumoral region and peri-tumoral
regionl57l. The AUC values of 0.726 based on features of GPTR and of 0.744 with the
incorporation of essential clinical information were received eventually.

These studies/>®57l mentioned above declared the application of Al based on gray-scale
ultrasound, AI could be applied to CEUS in predicting MVI as well. Zhang et al
extracted radiomics features from the B-mode, artery phase, portal venous phase, and
delay phase images of preoperative CEUS to construct four radiomics scores based on
the primary dataset]. Then they used four radiomics scores and clinical factors for
multivariate logistic regressia'l analysis, which demonstrated that portal venous phase
and delay phase radiomics score, tumor size, and alpha-fetoprotein (AFP) level were
independent risk predictors in predicting MVI. The radiomics nomogram based on
these four predictors indicated a better discrimination and a good calibration compared
with clinical model (based on tumor size and AFP level) in both primary dataset (AUC:
0.849 vs. 0.690) and validation dataset (AUC: 0.788 vs. 0.661). This study developed a
new non-invasive predictive nomogram based on CEUS, which could provide useful
information in predicting MVI preoperatively and choosing a more appropriate surgical

option.

CONCLUSION

In conclusion, Al can provide great assistance in the evaluation of diffuse liver diseases

(including liver fibrosis and liver steatosis) and FLLs. Firstly, it could be applied to




identify and stage liver fibrosis on the basis of B-mode ultrasound, doppler ultrasound
and elastography. Secondly, the application of deep learning could be used to make
qualitative evaluation based entirely on B-mode images and quantitative evaluation
based on radiofrequency signals and HRI, which would improve the ultrasound
detection rate of NAFLD. Thirdly, Al not only had the ability to differentiate malignant
FLLs from benign FLLs, but also could classify different kinds of FLLs and had a better
performance compared with clinical indexes. Fourthly, we could predict the curative
effect and prognosis of HCC treatment and choose an optimal personalized treatment
previously. Lastly, Al based on B-mode ultrasound and CEUS could predict MVI of
HCC preoperatively, which could be helpful for a more appropriate surgical planning.
These applications had good specificity, accuracy and a comparable or even better
performance compared with experts in the diagnosis and differentiation of liver diffuse
and focal lesions.

There are also some limitations in the applications of Al in ultrasound. Firstly, it is
difficult to prepare the large-scale dataset with ground truth, especially for medical
images. Secondly, although deep learning is the widest used algorithm and has good
performance in various studies, the interpretability and generalization of it is
low. Thirdly, the input data may vary from different equipment and operators, which
would influence the performance of Al Lastly, because a large amount of data is
needed to train and validate the established algorithms, the conclusions of many single-
center studies were not convincing. Therefore, researchers are expected to conduct more
multi-center studies and incorporate more samples as much as possible. At the same
time, optimizing algorithms and creating standards for medical images are also
necessary. In spite of medical images, researchers could also build the database
containing important clinical factors to establish a more comprehensive Al model for

future work.
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