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Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A
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Abstract

Gastrointestinal (GI) cancers are the major cause of cancer-related mortality globally.
Medical imaging is an important auxiliary means for the diagnosis, assessment and
ﬁrognostic prediction of GI cancers. Radiomics is an emerging and effective technology
to decipher the encoded information within medical images, and traditional machine
learning is the most commonly used tool. Recent advances in deep learning technology
have further promoted the development of radi(ﬁiics. In the field of GI cancer, although
there are several surveys on radiomics, there is no specific review on the applicatign of
deep-learning-based radiomics (DLR). In this review, a search was conducted on Web
of Science, PubMed, and Google Scholar with an emphasis on the application of DLR
for GI cagcers, including esophageal, gastric, liver, pancreatic, and colorectal cancers.
Besides, the challenges and recommendations based on the findings of the review are

comprehensively analyzed to advance DLR.
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Core Tip: Radiomics, especially deep-learning-based radiomics (DLR), has
revolutionized the diagnosis, assessment and prognosis of gastroiHestinal (GI) cancer.
This review provides an analysis and status of DLR in GI cancer and identifies future

challenges and recommendations.
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INTRODUCTION

Gastrointesaal (GI) cancers, mainly include colorectal, gastric, liver, esophageal, and
pancreatic cancers, and are the leading cause of cancer-related mortality globally(ll.
According to CANCER TOMORROWI2, a forecast of the global burden of cancer
mortality and incidence, by 2040, new casewf GI cancer and deaths will increase
significantly (Figure 1). In recent years, computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography (PET), ultrasound (US) and
other medical imaging techniques have been widely used in GI cancer diagnosis and
treatment(34l, It is foreseeable that with the increase in GI cancer, the amount of medical
imaging data will continue to grow. However, manual reading cannot cope with this
growth, and the disparity in expertise among radiologists causes a high rate of missed
diagnosis and misdiagnosis. In addition, traditional CT, MRI, PET, US, and other
imaging examinations cannot observe changes in tumor heterogeneity, which can
provide a better understanding of the causes and progression of cancerl5l. The
development of radiomics technology provides new opportunities and methods to
solve these dilemmas.

Radiomics is an emerging method for quantitative analysis and prediction of tumor
phenotypes using machine learning or statistical models, and was proposed by Lambin
et allel in 2012. In recent years, radiomics has been widely used in GI cancer and showed
notable outcomes in tumor characterization, therapy response assessment, and
prediction of survival rate after surgeryl7-11l. Compared with the conventional method
of using only manual inspection, radiomics can extract high-dimensional features that
are difficult to be quantitatively described by the doctors from massive radiological
images, and to correlate them with clinical and pathological data of patientéin order to
improve diagnosis and prognostication(!2. The fundamental premise of radiomics is
that the developed descri%ive models may produce useful prognostic, predictive and
diagnostic information. Radiomics can be divided into two main categories:

conventional radiomics, also referred to handcrafted radiomics (HCR) and deep-
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learning:based radiomics (DLR), also referred to as discovery radiomics['®l. Given the

benefits of these two approaghes, hybrid solutions that mix HCR and DLR also exist.

The HCR workflow is divided into multiple steps: (1) Image acquisition and
reconstruction; (2) image segmentation and delineation of region of interest (automatic,
semi-automatic, or manual delineation); (3) feature extraction and quantification. This is
the core step of HCRs. The extracted features are mainly handcrafted features (also
referred as pre-designed features), including shape, texture and intensity features. Some
features may be highly correlated or redundant, so feature dimensionality reduction is
an important step in feature analysis; and (4) Clinical target-oriented model building
and validation. At this step, classic machine learning algorithms are usually used to
develop high-precision and high-efficiency prediction models, and the models are
trained and validated with sufficient data. The workflow of HCR is depicted in Figure
2.

Although HCR has been widely adopted in GI cancer and has achieved significant
results, it has some deficiencies, such as low degree of automation and standardization,
cumbersome and time-consuming feature extraction steps, and insufficient robustness
and accuracy. Recently, deep learning, a promising technique in characterization of
medical images, has gained much attention('*'7]. Many researchers have adopted DLR
to overcome the limitations of conventional radiomics('8-22l, DL refers to a broad class of
algorithms rather than a specific model. As long as a deep neural network structure is
used to represent features at a deeper level, it can be called DL model. One of the most
popular DL models used in medical imaging is convolutional neural networks (CNNs),
which can automatically learn representative features from medical images. The use of
CNNs in radiomics makes it easy to build an end-to-end feature extraction process,
thereby avoiding the tedious and handcrafted feature extraction process. CNNs can also
be used in image reconstruction and segmentation to improve the automation level of
HCR, and the accuracy and reliability of diagnosis and prediction (Figure 2).

DL techniques are revolutionizing radiomics. In the field of GI cancer diagnosis and

treatment, while there are several surveys on HCRI*!1], there is no specific review on the
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application of DLR. To provide a comprehensive overview of DLR in GI cancer, the

performance of DLR in gastroenterology is summarized in this review, with an
emphasis on the diagnosis and treatment of GI cancers, including esophageal, gastric,
liver, pancreatiband colorectal cancers. The original contributions to knowledge of this
review are: (1) A unique interdisciplinary viewpoint on radiomics by discussing state-
of-the-art DLR solutions; and (2) the challenges and recommendations based on the

findings of the review are thoroughly analyzed to advance the field.

DLR FOR ESOPHAGEAL CANCER

Esophageal cancer is the seve most prevalent form of cancer and the sixth most
lethal cancer globallyl!], and it is classified into esophageal squamous cell carcinoma
(ESCC) or esophageal adenocarcinoma according to the type of cells. In consideration of
the low overall 5-year survival rate of patients and the variation in responsiveness of
patients to the current treatments such as neoadjuvant chemotherapy (NAC) and
neoadjuvant chemoradiotherapy (NCRT) due to tumor heterogeneity, it is vital to have
accurate diagnosis, pretreatment evaluation and survival rate prediction. The number
of DLR studies regarding esophageal cancer has been growing, with most of the studies
exploring treatment response, and the others investigating disease classification and
survival rate prediction.

An important preoperative topic of esophageal cancer is diagnosis, yet the number of
relevant DLR studies for diagnosis is minimal. Takeuchi et all?l fine-tuned VGG16 to
develop a DLR model for the diagnosis of esophageal cancer from CT scans, and its
performance was comparable to that of the radiologists during testing, with a higher
accuracy of 84.2% and specificity of 90.0%.

Response to treatment, especially NAC and NCRT, is one of the most popular
research_interests in the field of esophageal cancer. Hu et all2!l designed a CT-based
model to predict the pathologicﬁomplete response to NCRT of patients with ESCC
using DL features, in which the support vector machine (SVM) classifier executed the

classification action. The DL features were extracted using pretrained models, and the
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optimal one used ResNet50 that achieved an area under the receiver operating

characteristic curve (AUC) of 0.805 and accuracy of 77.1% for the testing cohort, which
achieved better results than using handcrafted features. Ypsilantis et all®l designed a 3S-
CNN model that extracted DL features from PET scans and predicted whether the
patient with esophageal cancer was non-responsive to NAC. This model was also
compared with other competitive machine learning algorithms and results showed that
it surpassed the other models with an average specificity, sensitivity and accuracy of
80.7%, 81.6%, and 73.4% respectively. Amyar et all?®] presented a novel 3D CNN model
named 3D RPET-NET that predicted the response to CRT using esophageal cancer
images of FDG-PET scans, and a comparative analysis with other approaches in the
literature was also carried out. Three-dimensional RPET-NET obtained the best results
with an accuracy of around 72% and even reached 75% when using tumor volume with
an isotropic margin of 2 cm. Li et all?’] proposed a CT-based 3D DLR model (3D-DLRM),
which was modified from ResNet34. Its aim was to predict whether patients with
locally advanced thoracic ESCC had an objective or nonobjective response to concurrent
CRT, achieving a validation AUC and positive predictive value of 0.833 and 100%,
respectively. They also evaluated a model integrating the 3D-DLRM with clinical
selected factors that even outperformed the individual 3D-DLRM, reaching a validation
AUC of 0.861.

Other research interests of esophageal cancer include patient survival rate prediction
and lymph node (LN) metastasis. The latter is a significant prognostic factor for ESCC.
Wang et all28] compared the use of an HCR model, DLR model and DLR nomogram for
the prediction of the survival rate of esophageal cancer patients after 3 years of CRT, in
which DL features were extracted and selected by DenseNet-169 to build the DLR
model. This DLR nomogram attained the highest validation AUC of 0.942 and Harrell’s
concordance index (C-index) of 0.784, surpassing the results produced by the sole use of
HCR and DLR models. Yang et all?’l proposed a 3D-CNN model based on ResNet18 to
predict esophageal cancer patient survival rate using PET scans. The model was initially

pretrained to classify abnormal and healthy esophagus, and then trained to classify
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whether patients survived or expired within a yegr after diagnosis in the second stage,
and the model obtained an AUC of 0.738. Gong et all3] developed a hybrid radiomics
nomogram to predict local recurrence-free survival (LRFS) of locally advanced ESCC
patients who received definitive CRT from contrast-enhanced CT (CECT) scans, ang_it
was combined with radiomic features, tures extracted by 3D-DenseNet and
prognostic clinical risk factors. The final model achieved a C-index of 0.76 for its
external validation set, indicating the effectiveness of the addition of DL features for
better prediction performances.

Some studies also discuss the application of DLR to prediction of LN metastasis,
which is an effective prognosis factor of ESCC. Wu et all3!l built a model involving HCR,
computer vision and DLR to predict the LN status of ESCC patients, and they also
constructed two simpler models for efficacy comparison, and they exploited
Convolution Neural Network-Fast (CNN-F) to extract DL features from CT imgages. The
model with all signatures involved performed the best with C-statistic of 0.875, 0.874,
and 0.840 for training, internal validation, and external validation cohorts, and those
demonstrate its satisfactory discriminative ability.

The studies about the application of DLR for esophageal cancer are summarized in

Table 1.

LR FOR GASTRIC CANCER

Gastric cancer (GC) is the fifth most prevalent form of cancer and the fourth most lethal
cancer globallylll. To ameliorate the low survival rate of patients, early diagnosis of
disease and systematic treatment methods are necessary. The application of DLR in GC
has been a promising area for research with a rising number of relevant studies
published every year, that aim to tackle or refine the existing concerns regarding GC.
Many studies focused on prediction of treatment response of patients. Cui et all32
constructed a pretreatment venous-phase CT-based DLR nomogram that combined
handcrafted features, DL features and remarkable clinicopathological factors to identify

locally advanced GC patients with good response to NAC. The nomogram achieved
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better than the clinical model and the separate use Qf two features that were built for
comparison, attaining C-index values of 0.829, 0.804, and 0.827 in its internal validation
cohort and two external validation cohorts, respectively. Li et al33 developed a
combined artificial intelligence (AI) model that incorporated feature outputs from HCR
and DLR models, which aimed to determine whether the patients had signet ring cell
carcinoma (SRCC) of GC and predict survival and treatment response to postoperative
chemotherapy from CECT images. They also compared its efficacy with the clinical,
HCR and DLR models, and the Al model obtained the best results with an AUC of 0.786
and accuracy of 71.6% for diagnosing SRCC for the test cohort. The AI model also
evaluated that SRCC patients with higher risks had shorter median overall survival
(OS) and insignificant improvements in median OS after receiving adjuvant
chemotherapy than those of lower risk, indicating its good capﬁJility to predict survival
and response to treatment. Tan et all®! built a dual-energy CT delta radiomics model to
predict the treatment response to chemotherapy of patients with far-advanced GC.
They developed a V-Net segmentation model, and the application of this semi-
automatic segmentation model to the delta radiomics model shortened the diagnostic
time and achieved better results in terms of mean AUC (0.728 vs 0.687 in the testing
cohort, 0.828 vs 0.749 in the independent validation cohort) than using manual
segmentation.

Survival rate prediction is also a popular topic for DLR of GC. Hao et all3! combined
clinical variables, radiomic features and DL features to build -based prediction Cox
proportional-hazard model, which served to predict the OS progression-free
survival (PFS) of patients with GC. The model acquired the highest C-index of 0.783 and
0.770 for OS and PFS when using postoperative clinical variables, and the most
dominant variables for survival prediction were identified as important prognostic
factors in the subsequent survival analysis. Some studies only made use of Db
techniques to build predictive models for similar purposes. Zhang et all3] proposed a
multi-focus and multi-level fusion feature pyramid network (MME-FPN) to predict OS

risks of GC patients from CT images, and other models using existing methods in the
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literature were used for comparison. The experimental results showed that MMF-FPN
was the finest model that attained the highest C-indexes (validation: 0.74, testing: 0.76)
and hazard ratios (validation: 3.50, testing: 9.46).

To do a preoperative prediction of early recurrence of patients with advanced GC
from CT images, Zhang ef all” designed a radiomics nomogram that utilized clinical
characteristics and radiomics signature containing handcrafted and DL features as
input. The radiomics nomogram reached an AUC and accuracy of 0.806 and 0.723,
respectively, while having considerable k values of 0.932 for both intra- and inter-reader
agreement, exceeding the results obtained by the radiomics signature and clinical
modal built for comparison.

Accurate prediction of LN status of GC, which is a remarkable prognostic factor, is of
importance to determine the appropriate treatment. Guan et all*8! explored the efficacy
of using different DL models to extract features and machine learning classifiers (i.e.,
SVM and random forest) to build a CT-based predictive model for the evaluation of LN
status. Other models using radiomic features and integrated features were built for
comparison, and the best modgl was ResNet50-RF with an AUC and accuracy of 0.9803
and 98.10%, respectively. A nomogram based on DL feature scores and clinical risk
factors was also developed and a higher AUC of 0.9914 was achieved in the testing
cohort. Dong et al®! proposed a similar DLR nomogram to evaluate the number of LN
metastases of locally advanced GC patients before surgery, in which radiomics
signatyres that contained handcrafted and DL features and clinical characteristics were
used. %Z performance of the model was evaluated with four validations sets; three of
which were collected from China and one from Italy. The model showed its good
discriminative capability to identify N-staging of GC with higher C-indexes of 0.797 in
the validation sets from China and 0.822 in the set from Italy, and it outperformed other
predictors such as clinical models and single signatures. To predict the LN status and
prognosis of patients, the dual-energy CT-based DLR nomogram created by Li et all4]
incorporated CT-reported LN and two radiomics signatures for arterial-phase and

venous-phase CT images, in which DL features were extracted viz CNN. The
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nomogram performed better and gained a higher AUC of 0.82 than the clinical model
built alongside for co rative analysis, and the associated prognosis prediction was
satisfactory in terms of PFS (C-index: 0.64) and OS (C-index: 0.67). Jin et all4ll developed
a DLR model that adopted ResNet-18 to evaluate the LN status in nodal stations using
CECT, and the high value of the median AUC of the 11 stations (0.876) proved the
excellent prediction ability of the model. The authors attempted to build a nomogram
combining the DL features with clinical features, but no significant improvements in the
results were observed.

Other prognostic factors of GC have also been investigated in previous studies. Sun et
all®2l exploited DL techniques to build a CT-based radiomics nomogram for evaluﬁ'lg
the status of serosal invasion of advanced GC patients. Three radiomics signatures were
generated based on the three phases of CI images with their DL features extracted
using CNNs, and they were integrated with clinical characteristics to form the
nomogram. The final model outperformed other models, such as clinical and
phenotypic models, and its AUC for test sets I and II was 0.87 and 0.90, respectively. Li
et al®3 compared the use of DL features and radior%features to create a CECT-based
GC risk (GRISK) model using similar procedures for the prediction of the status of
lymphovascular invasion in patients with localized GC. The team explored the use of
deep transfer learn'ﬁ models to build a gastric imaging marker, in which five
pretrained models and an auto-encoder were utilized for feature extraction and
reduction, respectively. Then, it was integrated with patient clinical and radiological
characteristics to construct its own GRISK model. The GRISK model with deep transfer
learning gastric imaging marker obtained comparable AUC (0.722 vs 0.725) and
accuracy (0.671 vs 0.710) with the other model with the radiomics gastric imaging
marker but did not surpass the latter model.

The studies investigating the usage of DLR for GC are summarized in Table 2.

DLRs FOR LIVER CANCER
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Primary liver cancer is the sixth most prevalent form of cancer and the third most lethal

cancer globally, and some of its common phenotypes are hepatocellular carcinoma
(HCC) and intrahepatic cholangiocarcinomalll. Taking the high mortality caused by this
disease into account, the clinical application of early diagnosis, individualized
evaluation and prognosis prediction are valued. The exploitation of DLR technology in
liver cancer has been rapidly developing, and various solutions for the issues in
different phases of diagnosis and treatment are emerging.

Computer-aided diagnosis does not only aid radiologists such as shortening the
diagnosis time, but also allow them to evaluate appropriate treatments at earlier stages
of liver cancer. Ding et all*4] constructed a CT-based DLR model that fused a radiomics
signature and a DL model, to differentiate HCC into low or high grade. The DL model
was an alteration of VGG19 and it performed better than the radiomics signature, with
better AUC (0.7513 vs 0.7475) and accuracy (66.31% vs 65.78%). The fused DLR model
was the optimal model with observable improvements in the results, achieving an AUC
of 0.8042 and accuracy of 72.73%.

Accurate prediction of patient response to different therapies is critical to realize
personalized treatment at different stages of HCC. Peng et all*>l developed a multi-class
DL model from ResNet50 to predict four treatment responses to transarterial
chemoembolization (TACE) therapy of HCC patients using CECT scans. Its
performance was assessed using confusion matrices and receiver operating
characteristic curves, and the model attained an AUC over 0.90 for all four classes in
both validation sets, and accuracies of 85.1% and 82.8% for validation sets 1 and 2,
respectively. In the next year, they combined conventional radiomics and DL to build a
new CECT-based DLR model that served to predict the initial treatment response to
TACE of HCC patients preoperativelyl4¢l. Different from their prior work, they designed
their own CNN for feature extraction and prediction, and the DL model was integrated
with five radiomics models built with different classic machine learning algorithms or
tumor size feature to build integrated models for efficacy comparison. The DL model

outperformed all individual radiomics models with an AUC of 0.972, while all
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integrated models yielded higher values of AUC than merely using DL model. The
combination of DL with random forest classifier obtained the highest AUC of 0.994.

Survival predHon is also an important research area to facilitate individualized
HCC treatment. To predict the OS of HCC patients who were treated with stereotactic
body radiation therapy, Wei et all#7! established a CECT-based DL network model that
comprised two variational-autoencoder-based survival models and one CNN-based
model for extracting radiomic features, clinical features and CT features. The
performance of the separate models and the integrated radiomics model using either
DL network or Cox hazard model was compared by C-index, in which the integrated
model produced the highest C-index of 0.650 in repeated cross-validation among all
models. Liu et all*®! developed two separate DLR models to differentiate HCC patients
who received radiofrequency ablation (RFA) or surgical resection into high or low risks
using CEUS images, and the corresponding radiomics signatures were built.
Afte rds, two radiomics nomograms were constructed by combining the signatures
with clinical variables to predict the 2-year PFS of patients and both models. Both DLR
models achieved satisfactory values of C-index (0.726 for RFA, 0.741 for surgical
resection). The good agreement of the survival predictions of the nomograms was
demonstrated from the calibraticur\res.

Postoperative recurrence of cancer is one of the primary causes of death, which
extends to the increase in recurrence risk assessment using DLR. To predict the early
recurrence of HCC patients using multi-phase CECT scans, Wang et all*l explored the
predictive ability of various kinds of models, and they included a DLR model based on
ResNet, a clinical model extracting features from clinical data and three combined
CNN-based models of different structures. Experimental results demonstrated that the
integration of DL features and clinical features improved the prediction accuracy, and
one combined model obtained the highest AUC of 0.825. The team improved their
study by comparing the DL model with a conventional radiomics model, and one more
combined model of another structure was added to the comparative analysis of their

previous work[®l. The DL model performed better than the radiomics model with an
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average AUC of 0.7233 and accuracy of 69.52%, while one of the combined models
surpassed the rest in the comparative analysis and reached 0.8248 and 78.66% in its
average AUC and accuracy, respectively. They also investigated the effect of attaching a
joint loss function to the best model on the average AUC and accuracy, and the two
metrics were improved to 0.8331 and 80.49%. He et all5!l presented an intelligent-
augmented DL model for Risk Assessment of Post Llver Transplantation (i-RAPIT)
model in their study, which was a multi-network model that estimated the recurrence
risk of HCC patients after liver transplantation. The i-RAPIT modgl was composed of
two deep CapsNet networks for feaﬁlre extraction from MR and pathological images,
and a natural-language-processing-based radial basis function (NLP-based RBF) for
extracting clinical features. Before the MR images were entered into the model, U-Net
was also exploited for tumor and liver detection in the images. The model achieved a
total accuracy of 82%, and AUC of 0.87 and F-1 score of 84% when comparing with
other network combinations.

Early detection of microvascular and macrovascular invasion is another practical
approach to select the proper therapy for HCC patients and reduce mortality. Jiang et
all®?2l adopted 3D-CNN to build a CT-based DL model for predicting the status of
microvascular invasion of HCC patients, and three models based on radiomics features,
radiologic features, and integration of the two kinds of features and clinical
characteristics was also used for comparison. The results produced by the four models
were excellent, with the DL model ieving better results for a few metrics such as
AUC (0.906), and sensitivity (93.2%) in the validation set. Wang et all*] devised a new
DL model named MVI-Mind that consisted of a light-weight transformer for
segmentation and a CNN for prediction of microvascular invasion, and several DL
techniques were used to compare the proposed methods. The MVI-Mind attained
highest mean intersection over union of 0.9006 and accuracy of 99.47% as compared
with other DL segmentation algorithms, and it maintained its superiority in prediction
and obtained AUC values of 0.9223, 0.8962, and 0.9100 for arterial phase, portal venous

phase and delayed period CT images, respectively. For estimating the status of
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macrovascular invasion using CT scans, Fu et all*! utilized the concept of multi-task DL
neural network (MTnet) to build predictive models. Radiomic features from CT images,
clinical and radiological factors were fused to construct the proposed model, and it was
modified from U-Net that contained modules engaged in tumor segmentation, feature
extraction and prediction. It exhibited the most outstanding performance with an AUC
of 0.836 among all models built for comparison.

The studies investigating the implementation of DLR for liver cancer are summarized

in Table 3.

R FOR PANCREATIC CANCER

Pancreatic cancer iséle seventh most deadly cancer worldwide, in which pancreatic
adenocarcinoma or pancreatic ductal adenocarcinoma (PDAC) are the most prevalent,
accounting for the high mortality ratelll. The number of deaths caused by this disease is
almost equivalent to the number of cases due to the overall poor prognosis, so the
introduction of advanced Al technologies is essential and urgent to rectify the situation.
In these few years, the field of DLR in pancreatic cancer has flourished and more critical
issues such as disease differentiation and survival prediction have been discussed.
Achieving an accurate diagnosis of PDAC gives a great contribution to avoiding false
predictions and improving the survival outcomes of patients. For distinguishing
between PDAC and autoimmune pancreatitis using CT scans, Ziegelmayer et all5]
developed a DLR model that utilized VGG19 to extract DL features, and its efficacy was
compared with a model trained on handcrafted radiomic features. The former model
performed better with higher mean values in AUC, sensitivity, and specificity (0.90,
89% and 83%) over the cross-validation procedure. Liao et all**l used a DL model based
on the coarse-to-fine network architecture search (C2FNAS) to perform segmentation of
CECT images for radiomic feature extraction, and they were used for training the
machine learning model for prediction. The DL segmentation model obtained a mean
Dice score of 0.773 for segmentation while the prediction model yielded an AUC of

0.960 when distinguishing between PDAC and the control group (non-cancerous
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diseases and normal pancreas). Tong et all*l constructed a ResNet-50-based DLRs
model to classify PDAC and chronic pancreatitis patients from CEUS images, and the
outputs were the probability of being PDAC or chronic pancreatitis, and heatmaps yith
highlighted regions that displayed the detected lesions. A two-round reader study was
conducted to test the effectiveness of the model. The model achieved an AUC of 0.967
and 0.953 in two validation sets and outperformed the radiologists in the first round,
while radiologists could obtain higher accuracies in determining the disease with the
aid of the model in the second round.

Prediction of treatment response is also a critical aspect in the field of DLR in
pancreatic cancer. Watson et all®! built a CNN model based on LeNet to classify, using
CT scans, whether PDAC patients had a pathological response or no response to NAC.
It was compared with two models: a hybrid DL model that had the same architecture as
the pure DL model but captured both CT image features and one clinical feature [> to
10% decrease in carbohydrate antigen (CA)-19], and a CA-19 model only taking in the
feature regarding CA-19 decrease. Both DL models could produce superior results than
the CA-19 model, and the hybrid DL model obtained a slightly higher AUC than the
pure DL model (0.784 vs 0.738).

Survival prediction is another vital feature of PDAC that occupies a substantial
portion of the existing DLR studies. Muhammad et al®®! designed a CNN architecture
modified from AlexNet to evaluate the survival risk of PDAC patients that received
radiomic features extracted from CECT images, and the model reached a C-index of
0.85, indicating itself as a good survival model. Zhang et all®] also made use of a CNN
that was pretrained with non-small cell lung cancer images to construct their CT-based
survival model for patients with resectable PDAC, in which a modified loss function
was used. The proposed model accomplished finer prognostic predictions than the
conventional radiomic model with an index of prediction accuracy of 11.81% and C-
index of 0.651. They released another paper in the same year and compared the efficacy
of DL and radiomic features from CECT images by feeding them separately to a

random forest classifier to build a DLR model for predicting OSI¢l. Similar to their prior
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work, the DL features were extracted by a pretrained CNN model but with a different
structure. The model that used DL features attained an AUC of 0.81, which was higher
than the other model based on radiomic features and gained a hazard ratio of 1.38 when
the respective risk scores (predicted probabilities of deaths) were tested in survival
analyses. Later, they further modified their previous DLR model to a risk score-based
feature fusion model to predict 2-year OSl2. Two small models based on DL and
radiomic features separately were émbodied in the framework to generate their
corresponding risk scores, and these risk scores were used to train the main prediction
model. The performance of the proposed model was later assessed with other models
using different feature reduction techniques, and the risk score model achieved the
highest AUC of 0.84. Yao et all®®l devised a new multi-task network model to perform
both survival and tumor surgical margin prediction of resectable PDAC patients
simultaneously using multi-phase CECT scans. Inside the model, a 3D-CNN model
incorporated with a nnUNet for pancreas segmentation was exploited for the margin
prediction part, while the combination of 3D-ResNetl8 and Contrast-Enhanced 3D
Convolutional Long Short-Term Memory (CE-ConvLSTM) network was responsible for
survival prediction. The model achjeved the results exceeding all other deep models in
the comparative analysis, which yielded a C-index of 0.705 in predicting survival
outcome and a balanced accuracy of 73.6% in determining the resection margin. They
revised their preliminary work by incorporating pancreatic anatomical features into the
model and switching to implement an automatically self-learning segmentation method
that used 3D UNet as the network architecture and nnU as the backbone model for
training[®l. The new model attained the highest survival C-index of 0.667 and balanced
accuracy of 67.1% for resection margin prediction among all the models including their
previous model and other DL and radiomics models.

LN metastasis also possesses a high prognostic value in pancreatic cancer and it is
noteworthy to have an early and accurate prediction of its status. An et all®4l developed
a DLR model with different radiomics signatures extracted from dual-energy CT scans

for the prediction of LN metastasis by a pretrained ResNet-18 model. Experiments of
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adding key clinical features were conducted to compare the effectiveness of using
different approaches. The combined model integrated DL features and key clinical
features yielded the highest AUC of 0.92 and accuracy of 86%.

The expression of various genes is an influential factor for patient prognosis and
preoperative prediction of these prognostic factors can assist the diagnosis and
treatment evaluation process. To predict the status of HMGA2 and C-MYC gene
expression of PDAC patients, Li et all®5l compared the use of radiomic features, DL
features (extracted by pretrained CNN) and integration of both features in a CT-based
model using an SVM classifier. Region of interest segmentation was conducted by two
experienced radiologists individually, and the model was tested with different
segmented images for improving the validity of the study. A model using DL features
and all features achieved similar values in all evaluation metrics for both C-MYC and
HMGA?2 tests, while DL features selected by Doctor B obtained outstanding average
AUC scores (C-MYC: 0.90, HMGA2: 0.91) and accuracies (C-MYC: 95%, HMGA2: 88%) in
the two gene tests.

The studies investigating the application of DLR for pancreatic cancer are

summarized in Table 4.

R FOR COLORECTAL CANCER

Colorectal cancer (CRC) is the third most common kind of cancer and the second
leadinﬁause of cancer-related fatalities worldwidelll. It is crucial to carry out research
on the diagnosis, treatment response prediction, and survival prediction of CRC, which
can improve the prognosis of patients and significantly reduce the social and medical
burden. In recent years, promising research results have emerged in the preoperative,
intraoperative and postoperative stages of CRC using DLRs technology, covering the
entire process of CRC diagnosis and treatment.

DLR is revolutionizing the treatment options for CRC. When making treatment
decisions for CRC patients, identifying KRAS mutations, which may contribute to the

continued proliferation of tumors, can help personalize treatment and care for CRC
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patients(®l. For preoperative prediction of KRAS mutations in patients with CRC, HCR

and DLR were merged into a noninvasive model created by Wu et allé7l. The godel,
which mixed the handcrafted and DLR radiomics features, produced a C-index or the
original cohort of 0.815 and the validation cohort of 0.832, which was higher than using
HCR or DLR alone. For the individualized treatment decision-making in colorectal liver
metastases (CRLM) management, the prediction of chemotherapeutic response is
crucial. To predict the response to chemotherapy in CRLM, Wei et allt8] developed a
ResNet10-based DLR model that used contrast-enhanced multidetector CT images as
inputs. They also developed an HCR model for comparison. The DLR model achieved a
higher AUC than the HCR model when predicting the response to chemotherapy in
CRLM (training: 0.903 vs 0.745; validation: 0.820 vs 0.598). Microsatellite instability
(MSI) function is a predictive biomarker for clinical outcomes and predicts responses to
adjuvant 5-fluorouracil and immunotherapy in CRC. A DL model that was created
using the MobileNetV2 architecture by Zhang et all®®l was adopted to predict the MSI
status of CRC based on MR images. With AUC values of 0.868, the best model
successfully identified 85.4% of the MSI status, indicating that the suggested model may
aid in locating individuals who might benefit from chemotherapy or immunotherapy.
DLR in CRC also emphasizes the need to predict treatment response. For improv'ag
NCRT response prediction in locally advanced rectal cancer, Fu et all”®l compared the
handcrafted and DL featur%extracted from pre-treatment diffusion-weighted MR
images. The DLR approach produced a mean AUC of 0.73, while the HCR method
elded a mean AUC of 0.64, which demonstrated that DLR may achieve higher
classification performance compared with HCRs. To predict the distant metastasis in
locally advanced rectal cancer patients receiving NCRT, Liu et al’!l exploited the use of
a DLR model based on MR images. DLR achieved a C-index of 0.747 and AUC of 0.89%4
at 3 years. In order to define tumor morphological change for response evaluation in
patients with metastatic CRC, Lu et all72l offered a DLR study using CNN and recurrent
neural network. They discovered that the DL network performed better than the size-

based equivalent with C-index (0.649 vs 0.627), and was capable of predicting the early
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on-treatment response in metastatic CRC. The predictive performance could be
improved by the integration of DL network with size-based methodology.

LN metastasis, which is a key prognostic factor for C]E is among the other study
topics of CRC. Ding et all3l adopted a DLR nomogram based on faster region-based
CNN (Faster R-CNN) to predict LN metastasis in patients with CRC. Patient aﬁ Faster
R-CNN-detected LN metastasis, and tumor differentiation were prgdictors in the Faster
R-CNN nomogram for predicting LN metastasis, with AUCs in the training and
validation sets of 0.862 and 0.920, respectively. Zhao et all”l applied a DLR model
related with genomics phenotypes for predicting LN metastasis in CRC and showed
good performance with AUCs of 0.81, 0.77, and 0.73 in the training, testing and
validation sets, respectively. Li et al’l examined the performance of the three most
popular classification techniques-DL, conventional machine learning, and deep transfer
learning-to determine the most efficient way for automatic classification of CRC LN
metastases. Deep transfer learning was the most successful, with an accuracy of 0.7583
and AUC of 0.7941. All of these studies have shown that DLR technology has good
performance in the prediction and classification of LN metastasis.

The studies exploring the creation of DLR for CRC are summarized in Table 5.

CHALLENGES AND RECOMMENDATIONS

In the past several years, with the development of DL technology, the research and
ﬁ:uplication of DLR in tumor diagnosis, treatment and prognosis have been increasing.
To perform a systematic evaluation of the status of DLRs for GI cancer, we conducted
an extensive review on all original publications between January 1, 2015, and August
30, 2022. Even though several published articles have confirmed the exceptional
performance of DLR, there are still many issues that algorithm designers and doctors
must address. Below is a list of the challenges and recommendations for DLR in future

research summarized by our team.

Prospective and multi-center studies
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According to the most recent research, most studies on DLR were retrospective and
single center. Retrospective studies may have sample selection bias and cannot truly
reflect the distribution of clinical cases, which could jeopardize the precision of DLR
models. As different centers have different machine parameters, scanning settings, and
diagnostic rules, single-center studies limit the generalization of the DLR models.
Prospective and multi-center studies can evaluate the reliability and accuracy of the
DLR models, enhance their generalization, and bridge the gap between academic
studies and clinical applications. Thus, carrying out prospective and multi-center

studies is the key to accelerating the clinical application of DLRs models.

Development of user-friendly DL models

We found that many physicians do not really want to use DLR methods for related
research because the models usually have complex structures, large parameters, poor
interpretability, non-existence of gradients, overfitting, and other problems, which limit
the promotion and use of DLR technology. Therefore, it is necessary to develop simple
and user-friendly models and training schemes for non-professional users. Publication
of more source codes and pre-training weights are ways to reduce the development and
training difficulty of DL models. For overfitting problems, development of automatic
data augmentation schemes and image synthesis schemes can increase the amount of
training data. For the black box nature of DL models, attention maps and network

dissection schemes can be integrated into the model to improve interpretability.

Establishment of accessible datasets

For DLR, the dataset is the new oil. DLR analysis requires a large amount of data to
train and validate models; however, most studies are based on private datasets and do
not use uniform construction standards, which will hinder the reproducibility of the
studies and deployment of DLR models. Thus, a professional data development
organization that combines multi-center data should be established. The organization

should also standardize the development process of multiple kinds of datasets and
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make the datasets publicly accessible. Additionally, to reward data contributors,

researchers who use these datasets could charge appropriate fees.

Efficient fusion of multiple features

DLR is a new technology in the field of Al for medical image analysis. Although its
performance is satisfactory, it is not a panacea, especially in the case of extreme
shortage of data. Numerous studies have demonstrated that combining HCR and DLR,
can result in better performance. Thus, we suggest integrating other clinical features,
genomics, handcrafted features, and DL features to build an optimal solution.
Moreover, a suitable feature dimensionality reduction scheme should also be adopted
to reduce the redundancy of the integrated features. In addition to imaging features,
features extracted from clinical data sources, such as gene expression, clinical
characteristics, and blood biomarkers, can also be combined to enhance radiomic

features.

CONCLUSION

Globally, GI cancers account for a large portion of cancer-related fatalities. For the
diagnosis and treatment of GI cancer, DLR can offer a simpler, quicker and more
reliable approach. This article is the first comprehensive review on DLR in the GI tract.
The status, difficulties, and suggestions discussed in this review can help engineers
create optimal radiomics products to support clin'ﬁal decision-making and offer
guidance for diagnosis and treatment of other tumors. Despite the success of DLR in GI
cancer, prospective and gnulti-center studies are still needed. Development of user-
friendly RL models, the creation of large public databases, and the fusion of multiple
features are also necessary to encourage the clinical application of radiomics.

Figure Legends

Figure 1 Estimated global new cases and deaths of major gastrointestinal cancers

from 2020 to 2040121,




Figure 2 Overview of steps in handcrafted radiomics workflow and steps that can be

done with deep learning models. ROI: Region of interest.
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