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Abstract

BACKGROUND

Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is closely related to
aggressive phenotype, gene mutation, carcinogenic pathway, and
immunohistochemical markers and is a strong independent predictor of early
recurrence and poor prognosis. With the development of imaging technology,
successful applications of contrast-enhanced magnetic resonance imaging (MRI) have
been reported in identifying the MTM-HCC subtype. Radiomics, as an objective and
beneficial method for tumour evaluation, is used to convert medical images into high-
throughput quantification features that greatly push the development of precision

medicine.

AIM
To establish and verify a nomogram for preoperatively identifying MTM-HCC by

comparing different machine learning algorithms.

METHODS

This retrospective study enrolled 232 (training set, 162; test set, 70) hepatocellular
carcinoma patients from April 2018 to September 2021. A total of 3111 radiomics
features were extracted from dynamic contrast-enhanced MRI, followed by dimension
reduction of these features. Logistic regression (LR), K-nearest neighbour (KNN), Bayes,
Tree, and support vector machine (SVM) algorithms were used to select the best
radiomics signature. We used the relative standard deviation (RSD) and bootstrap
methods to quantify the stability of these five algorithms. The algorithm with the lowest
RSD represented the best stability, and it was used to construct the best radiomics
model. Multivariable LR was used to select the useful clinical and radiological features,
and different predictive models were established. Finally, the predictive performances

of the different models were assessed by evaluating the area under the curve (AUC).
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RESULTS

The RSD values based on LR, KNN, Bayes, Tree, and SVM were 3.8%, 8.6%, 4.3%,
17.7%, and 17.4%, respectively. Therefore, the LR machine learning algorithm was
selected to construct the best radiomics signature, which performed well with AUCs of
0.766 and 0.739 in the training and test sets, respectively. In the multivariable analysis,
age [odds ratio (OR) = 0.956, P = 0.034], alpha-fetoprotein (OR = 10.066, P < 0.001),
tumour size (OR = 3.316, P = 0.002), tumour-to-liver apparent diffusion coefficient
(ADC) ratio (OR = 0.156, P = 0.037), and radiomics score (OR = 2.923, P < 0.001) were
independent predictors of MTM-HCC. Among the different models, the predictive
performances of the clinical-radiomics model and radiological-radiomics model were
significantly improved compared to those of the clinical model (AUCs: 0.888 vs 0.836, P
= 0.046) and radiological model (AUCs: 0.796 vs 0.688, P = 0.012), respectively, in the
training set, highlighting the improved predictive performance of radiomics. The
nomogram performed best, with AUCs of 0.896 and 0.805 in the training and test sets,

respectively.

CONCLUSION

The nomogram containing radiomics, age, alpha-fetoprotein, tumour size, and tumour-
to-liver ADC ratio revealed excellent predictive ability in preoperatively identifying the
MTM-HCC subtype.
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Core Tip: Radiomics features can be used to predict the macrotrabecular-massive
hepatocellular carcinoma (MTM-HCC) subtype. The logistic regression algorithm can
improve the accuracy and stability of predicting MTM-HCC. Age, alpha-fetoprotein,
tumour size, tumour-to-liver apparent diffusion coefficient ratio, and radiomics score
were significant independent predictors of MTM-HCC. The nomogram based on
radiomics, clinical and radiological features can serve as a noninvasive biomarker to

preoperatively identify MTM-HCC.

13
INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death
worldwide, with a 5-year recurrence rate of 70% after surgical resectionl!l. The poor
prognosis of patients with HCC is closely related to histopathological subtypesl2.
Recently, a newly identified histopathological subtype was named "macrotrabecular-
massive HCC (MTM-HCC)" and was officially included in the new classification of
HCC by the World Health Organization in 20198). As the most common subtype with
metastatic potentiall4l, MTM-HCC is closely related to gene mutation, carcinogenic
pathway, and immunohistochemical markersll and is a strong independent predictor of
early recurrence and poor prognosis!®7l,

Early diagnosis and appropriate treatment of MTM-HCC are beneficial to prevent
early recurrence and improve prognosis. Current studies have shown that
radiofrequegy ablation is not recommended for patients with aggressive HCC, while
performing resection with wide margins or anatomical hepatectomy and shorter follow-
up intervals may be recommended for monitoring!®°. MTM-HCC shows an aggressive
phenotypell?l. Therefore, an accurate preoperative diagnosis of MTM-HCC can provide
the best individualized treatment plan.

With the development of imaging technology, successful applications of magnetic
resonance imaging (MRI) have been reported in identifying the MTM-HCC subtypel!ll.

Several studies!'!14l have reported that MTM-HCC has characteristic MRI features, such
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as intratumor substantial necrosis and intratumor fat. However, these studies mainly
focused on the qualitative analysis of imaa'ng features. Radiomics, as an objective and
beneficial method for tumour evaluation, is used to convert medical images into high-
throughput guantification features that greatly push the development of precision
medicinel'®l. A recent study has also shown that radiomics is a superior tool for
predicting MTM-HCC. However, this study only enrolled 88 patients and lacked a
validation set, and there was limited reproducibility of the results. In addition, a highly
accurate and reliable radiomics model can be constructed by comparing different
machine learning algorithms. Therefore, we hypothesize that valuable MRI-based
radiomics features could be extracted and a noninvasive and comprehensive model
could be constructed through machine learning to better predict MTM-HCC.

In this stydy, we aimed to apply MRI-based radiomics to preoperatively predict
MTM-HCC using different machine learning algorithms to build the best radiomics
signature and to establish and validate the nomogram by combining preoperative
clinical and radiological features to improve the decision-making process in clinical

practice.

MATERIALS AND METHODS

Patients

This retrospective study was approved by our institutional review board, and the
requirement for written informed consent was waived. Between April 2018 and
September 2021, patients with suspected HCCs who underwent preoperative liver MRI
examinations were included. The inclusion criteria included the following: (1)
Pathologically proven primary HCGC; (2) received liver MRI examinations one month
before surgery; and (3) underwent curative hepatectomy. The exclusion criteria
included: (1) Tumours less than 1 cm; (2) preoperative antitumour treatments; (3) poor
image quality caused by metal or motion artifacts; and (4) lack of complete

clinicopathological data. Finally, 232 patients were enrolled and divided into training (1
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=162) and test (n = 70) sets at a ratio of 7:3. The patient recruitment process is shown in

Figure 1.

MRI examinations

All MRI examinations were performed on a 3.0 T MRI scanner (Discovery MR 750, GE
Healthcare, Waukesha, WI, United States). Our liver MRI protocol included the
following sequence: (1) Axial T>-weighted imaging with fat suppression: Repetition
time (TR)/echo time (TE), 13000/75 msec; field of view (FOV), 360 mm x 360 mm;
matrix, 320 x 320; slice thickness, 5 mm; (2) dual-echo (in-phase and opposed-phase) Ti-
weighted imaging: TR/TE, 3.7/1.7 msec; FOV, 360 mm x 288 mm; matrix, 260 x 224;
slice thickness, 5 mm; (3) diffusion-weighted imaging (DWI) and apparent diffusion
coefficient (ADC): TR/TE, 8000/50 ms; FOV, 360 mm x 288 mm; matrix, 128%96; and
slice thickness, 5 mm. DWI was obtained using respiratory triggering, a single-shot
echo-planar imaging pulse sequence with b values of 0 and 800 s/ mm?. (4) The dynamic
contrast-enhanced (DCE) three-dimensional fast-spoiled gradient-recalled echo
sequences were as follows: TR/ TE, 3.7/1.7 msec; FOV, 360 mm X 288 mm; matrix, 260 x
224; and slice thickness, 5 mm. The DCE sequences were acquired at 15-20 s (arterial
phase, AP), 50-55 s (portal phase, PP) and 85-90 s (delayed phase, DP) after contrast-

agent injection.

Clinical and radiological data
Clinical data included age, sex, hepatitis B surface antigen (HBsAg) status (positive or
negative), serum alpha-fetoprotein (AFP) level (recorded as >4 00 pg/L or < 400 pg/L),
carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), platelet count
(PLT), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), albumin,
aspartate transaminase (AST), alanine transferase (ALT) and AST/ALT.

Radiological data of all patients were retrospectively analysed by two radiologists
who were unaware of the clinicopathological findings and included liver cirrhosis,

tumour size, tumour shape, intratumor fat, intratumor necrosis, intratumor
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haemorrhage, enhancing capsule and tumour-to-liver ADC ratio. For qualitative data,
an agreement was reached by negotiation when there was disagreement between the
two radiologists. For quantitative data, the measurements from these two radiologists
were averaged. Detailed descriptions of the radiological features are shown in

Supplementary Table 1.

Pathological data

All enrolled patients underwent hepatectomy, and pathological evaluations were
performed in consensus by two experienced pathologists. MTM-HCC was defined as a
predominant macrotrabecular architectural pattern (> 6 cells thick) involving more than
50% of the entire tumourl”. nMTM-HCC was defined as non-MTM-HCC. The following
pathological features were recorded: tumour differentiation according to the
Edmondson-Steiner grade (I-II or III-IV), presence of microvascular invasion, satellite

nodules, and biliary invasion.

Radiomics features

Image segmentation: Image segmentation was performed with an open-source
software named ITK-SNAP. The volume of interest (VOI) was defined by manually
outlining the whole tumour border in AP, PP, and DP sequences slice-by-slice for each
patient by a radiologist with five years of experience in liver MRIL Then, the
segmentation results were validated by another radiologist with more than 10 years of
experience in liver MRI using the intraclass correlation coefficient (ICC) on a cohort of
30 randomly selected patients. The image segmentation process is shown in

Supplementary Figure 1.

Radiomics feature extraction: All segmented VOIs were loaded into the Pyradiomics-
based PHIgo software (GE Healthcare, V1.2.0, China) for feature extraction, which
complies with the image biomarker standardization initiative (IBSI)[*¢l. Before that, all

images were subjected to standardized preprocessing, including resampling the images
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at the same resolution (1 mm x 1 mm X 1 mm) and classifying the grayscale into 1-10
Levels. Then, 1037 radiomics features were extracted from each VOI of each sequence,
including the first-order features (first order: 18 features), shape-based features (shape:
14 features), gray-level run length matrix features (GLRLM: 16 features), gray-level size
zone matrix (GLSZM: 16 features), neighbourhood gray tone difference matrix
(NGTDM: 5 features), gray-level co-occurrence matrix features (GLCM: 24 features),
gray-level dependence matrix (GLDM: 14 features), LoG transform features (LoG: 186
features), and wavelet transform features (wavelet: 744 features). The DCE sequences,

including AP, PP, and DP, were scanned, affording 3111 radiomics features per patient.

Radiomics feature selection: The ICCs of the measurements from the two radiologists
were applied to evaluate the interobserver reliability and reproducibility. The features
with ICCs > 0.80 were considered robust features. Then, dimension reduction was
performed using analysis of variance, correlation analysis, and gradient boosting
decision tree (GBDT) to reduce data redundancy and to further select the most

significant radiomics features based on DCE sequences.

Radiomics signature development: Five machine learning algorithms, including
logistic regression (LR), K-nearest neighbour (KNN), Bayes, Tree, and support vector
machine (SVM), were used to construct radiomics signatures based on the retained
significant features. Then, we used the relative standard deviation (RSD) and bootstrap
methods to quantify the stability of these five algorithms. The algorithm with the lowest
RSD represented the best stability, which was used to construct the best radiomics
model. Finally, the radiomics score (rad-score) was calculated via a linear combination
of the remaining features that were weighted by their respective coefficients to quantify
the discriminability of the radiomics model. Details of the RSD can be found in the

Supplementary materials.

Model construction and evaluation
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Univariate LR analysis was performed on variables, including the abovementioned
clinical features, radiological features, and rad-score. Variables with P < 0.05 were
included in the multivariate LR analysis to determine the potential independent
predictors of MTM-HCC, based on which combined model was built. In addition, the
clinical model was constructed based on the final selected clinical features, and the
radiological model was constructed based on the final selected radiological features. To
verify the improvement in the performance of the model after including radiomics, we
integrated the selected independent predictors to construct different fusion models. The
area under the receiver operating characteristic (ROC) curve (AUC) and the DeLong
test were used to evaluate the performance of the different models for predicting MTM-
HCC. The Hosmer-Lemeshow test was used to assess the goodness-of-fit of the
combined model. A nomogram based on the combined model was established for easy
use to generate a probability of MTM-HCC. Then, the patients were classified into high-
risk and low-risk groups according to the nomogram. The flowchart of the model

construction and evaluation is shown in Figure 2.

Statistical analysis

Statistical analyses were performed with SPSS software (version 24.0, Chicago, IL,
United States) and R software (version 3.4.1, Vienna, Austria). Continuous variables
were expressed as the mean + SD or median (interquartile range). Categorical variables
are presented as numbers (percentages). Continuous variables were analysed using a
two-sample f test or Mann-Whitney U test if not normally distributed. The chi-squared
test or Fisher’s exact test was used for categorical variables. Statistical significance was

set at a two-sided P < 0.05.

RESULTS

Patient characteristics

Clinical, pathological, and radiological features of the HCC patients are shown in Tables
1 and 2. In terms of the MTM-HCC and nMTM-HCC groups, age, PLT, tumour size,
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intratumor haemorrhage, and tumour-to-liver ADC ratio were significantly different in
both the training and test sets (P < 0.05). In addition, AFP > 400 pg/L (P < 0.001), CA19-
9 (P=0.021), AST (P =0.004), ALT (P = 0.023), tumour shape (P = 0.024), and intratumor
necrosis (P = 0.005) also differed significantly between the two groups in the training
set. The Edmondson-StP'ﬁler grade (P = 0.048) differed significantly between the two
groups in the test set. There were no significant differences in any of the features

between the training and test sets (P > 0.05).

adiomics signature development
A total of 3111 radiomics features were extracted for each patient based on the DCE
sequences. Then, 2417 features with ICCs > 0.80 were obtained as robust features. After
feature selection by analysis of variance and correlation analysis, 75 features were
selected. Following GBDT, 27 features were ultimately retained, as shown in Figure 3A.
The RSD values based on LR, KNN, Bayes, Tree, and SVM were 3.8%, 8.6%, 4.3%,
17.7%, and 17.4%, respectively. Therefore, the LR machine learning algorithm was
chosen to construct the best radiﬁrnics signature (Figure 3B). The corresponding rad-
score was calculated and was significantly different betweep the MTM-HCC and
nMTM-HCC groups in the training set (P < 0.001) and test set (P = 0.002), as shown in
Figure 3C. Details of the retained radiomics features and rad-score are shown in

Supplementary Table 2 and Supplementary Figure 2.

Model construction and comparison

The multivariate LR analysis showed that age (OR =0.956, P = 0.034), AFP (OR =10.06
P <0.001), tumour size (OR = 3.316, P = 0.002), tumour-to-liver ADC ratio (OR=0.156, P
= 0.037), and rad-score (OR = 2.923, P < 0.001) were independent predictors of MTM-
HCC (Table 3). A clinical model was constructed based on age and AFP. A radiologigcal
model was constructed based on tumour size and the tumour-to-liver ADC ratio. To
verify the improvement in the performance of the model after including radiomics, we

constructed different fusion models, including a clinical-radiomics model and a
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radiological-radiomics model. Finally, we integrated all five of the selected independent
predictors to build the combined model. The corresponding model score of the
combined model was calculated, as shown in Supplementary Figure 3.

Among the six different models, the combined model performed best, with AUCs of
0.896 and 0.805 in the training and test sets, respectively (Table 4). The DeLong test
showed that the predictive performances of the clinical-radiomics model and
radiological-radiomics_model were significantly improved compared to those of the
clinical model (AUCs: 0.888 vs 0.836, P = 0.046) and radiological model (AUCs: 0.796 vs
0.688, P = 0.012), respectively, in the training set, highlighting the improved predictive
performance of radiomics. In addition, the combined model performed better than the
radiological model (P < 0.001), radiomics mod = 0.001), and radiological-radiomics
model (P = 0.002) in the training set, and the combined model was significantly
different from the clinical model in both the training set (P = 0.023) and the test set (P =
0.042) (Table 4 and Figure 4).

Nomogma building and verification

Based on the combined model, we developed an i.ntuitivensimple-to-use nomogram for
individual risk prediction of MTM-HCC (Figure 5). The Hosmer-Lemeshow test
exhibited good calibration of the nomogram in the training set (P = 0.995) and test set (P
= (0.466). According to the optimal Cuﬁmff value of -1.663, the patients were stratified
into low-risk and high-risk groups. As shown in Figure 6, there were significant
differences in the number of patiegts who were predicted to have MTM-HCC between
the low-risk and high-risk groups in the training set (P < 0.001), test set (P = 0.003), and
all study populations (P < 0.001), indicating the clinical applicability of the nomogram.

DISCUSSION
In this study, we comprehensively evaluated clEal and radiological features and
found that age, AFP, tumour size, and tumour-to-liver ADC ratio were significant

independent predictors of MTM-HCC. By comparing five different machine learning
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algorithms (LR, KNN, Bayes, Tree, and SVM), we finally selected the LR algorithm with
the best stability to construct the radiomics signature. Finally, by further comparing the
predictive performance of the different models, the optimal combined model was
selected, and a visual nomogram was constructed, which provided a reliable theoretical
basis for the development of a simple, easy-to-use, and accurate assessment tool and
indicated that it had great potential in the field of preoperative noninvasive prediction
of MTM-HCC.

Although some previous studies have focused on the clinical and radiological
features of MTM-HCC, there is no consensus on the best biomarker for predicting
MTM-HCC. Our study showed that MTM-HCC patients presented with large tumour
sizes and high AFP loads, which re consistent with previous findings!72%.
Interestingly, this study found that the age of patients with MTM-HCC was lower than
that of the patients with nMTM-HCC. This may be because the activation of
angiogenesis is the reason for the unique invasive biological characteristics of such
tumours. Overexpression of angiopoietin 2 and vascular endothelial growth Factor A
can cooperatively promote new angiogenesis in MTM-HCC, and these factors are
indicators of poor prognosis in solid tumoursl62ll. This also confirmed that the
aggressiveness of MTM-HCC may be related to molecular factors. Various studies have
explored the relationship between PLT and MTM-HCC, but no consensus has been
reached?2l. Our study showed that PLT was not an independent predictor. Tae
multivariate LR analysis showed that a low tumour-to-liver ADC ratio was an
independent predictor of MTM-HCC, which was consistent with the results of Chen et
all?l. This is because the cellular structure is increased, the arterial supply is reduced,
and diffusion is more restricted in more aggressive HCCPL In addition, previous
studies[!120] have suggested that intratumor necrosis can be used as an independent
predictor of MTM-HCC. However, in our study, although the univariate LR analysis
showed that intratumor necrosis was more common and statistically significant in
MTM-HCC, it was not an independent predictor, which ﬁs also consistent with the

results of Zhu et al™l. This may be because intratumor necrosis is not a commonly
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reported finding of aggressiveness or p(ﬁ prognosis in HCC and lacks high specificity.
This finding was more common in non-HCC malignancies, such as intrahepatic
cholangiocarcinoma or metastasis, and therefore was considered a feature of non-HCC
malignancies!23l.

At present, there is no research on the value of different machine learning algorithms
in predicting MTM-HCC. In this study, we compared the performance of radiomics
signatures constructed by five machine learning algorithms, and the results showed that
the radiomics signature constructed by the LR algorithm had the best stability, with an
RSD of 3.8%. The radiomics model based on the LR glgorithm performed well in
predicting MTM-HCC, with AUCs of 0.766 and 0.739 and specificities of 0.847 and 0.804
in the training and test sets, respectively. Therefore, radiomics is very useful for timely
capturing and reflecting the underlying histopathological features. In addition, 27
features were finally retained in this study, of which 22 (81.5%) features (4 LoG and 18

avelet features) were extracted from the original and derived imagesi24. For example,
this study confirmed that "cluster shade", "correlation" and "MCC" were the most
meaningful features among GLCM, showing differences in the regional signal intensity
distribution and linear dependency. Among the first-order features, “Mean” and
“Median” describe the mean and median grey intensity of the voxel intensity within the
tumour region, respectively, and the differences in the grey intensity distribution are
represented by “Kurtosis” and “Skewness”. “GISZM_LowGrayLevelZoneEmphasis”
and “GLDM_DependenceNonUniformityNormalized” represent the heterogeneity of
the tumour. These results are consistent with some radiomics features extracted from
previous studies on the pathological and survival prediction of HCC??7], indicating
that LoG and wavelet features can represent signal intensity distribution or grey
distribution in tissues, which can better reflect the biological characteristics and
heterogeneity of tumours.

Our study found that the clinical model based on age and AFP (AUC, 0.836;
sensitivity, 0.750; specificity, 0.822) had a significantly higher diagnostic efficiency than
the clinical model based on AST, PT, and AFP proposed by Shan et all28l (AUC, 0.723;
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sensitivity, 0.711; specificity, 0.607) in predicting MTM-HCC_ The limitation of our
clinical model was that it had poor performance in the test set, with an AUC of 0.701, a
sensitivity of 0.579, and a specificity of 0.706. However, when the radiomics signature
was introduced, the predictive performances of the clinical-radiomics model and
radiolggical-radiomics model were improved compared to the clinical model (AUCs:
0.888 vs 0.836 in the training set, 0.793 vs 0.701 in the test set) and radiological model
(AUCs: 0.796 vs 0.688, 0.764 vs 0.723 in the test set), respectively, highlighting the
improved predictive performance of radiomics. This is due to the unprecedented
opportunities for extracting potential quantitative information from images provided
by advanced radiomics analysis. Traditional imaging diagnosis usually relies on
morphological changes observed by the naked eye. However, it often takes a long time
for the appearance of observable morphological image changes of tumours caused by
pathological changes. This also indicates that it is valuable for clinical applications to
extract the quantitative radiomics features behind the images.

Since the diagnosis of HCC does not require biopsy, preoperative noninvasive
identification of the MTM-HCC subtype is critical for treatment and prognosis. There
was only one previous study on radiomics in the prediction of MTM-HCC, and the
nomogram established based on radiomics and intratumor fat showed satisfactory
prediction performance, with an AUC of 0.785[14. However, that small sample study (n
= 88) lacked a test set, and the reproducibility of the results was limited. It is worth
mentioning that our nomogram performed best in the preoperative noninvasive
prediction of MTM-HCC, with AUCs of 0.896 and 0.805 in the training and test sets,
respectively. This study achieves the first step towards the noninvasive evaluation of
MTM-HCC using radiomics and clinical and radiological features in clinical practice
and may guide the selection of patients for whom targeted therapies would be effective.
This again suggested the application value of radiomics in predicting MTM-HCC.
Integrating multidimensional features is of great significance for building a powerful

prediction model.
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Some limitations should be noted. First : this retrospective study only included
surgically resected lesions, which may cause selection bias. Therefore, the results of this
study may not be representative of the entire clinical spectrum. Second, all patients
were recruited from a single centre, which may limit the external validation. Therefore,

further studies using larger, multicentre samples are needed to verify our findings.

CONCLUSION

In this study, we found that age, AFP, tumour size, and tumour-to-liver ADC ratio were

significant independent predictors of MTM-HCC. We compared and selected the
optimal LR machine learning algorithm to construct the radiomics signature. The
nomogram showed excellent predictive ability in preoperatively identifying MTM-HCC

d showed great potential in clinical application, which was helpful to guide
individualized treatment and improve the long-term survival outcomes of HCC

patients.
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