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Abstract

BACKGROUND

Helicobacter pylori and the stomach microbiome play a crucial role in gastric
carcinogenesis, and detailed characterization of the microbiome is necessary for a better
understanding of the pathophysiology of the disease. There are two common modalities
for microbiome analysis: DNA (165 rRNA gene) and RNA (16S rRNA transcript)
sequencing. The implications from the use of one or another sequencing approach on
the characterization and comparability of the mucosal microbiome in gastric cancer

(GC) are poorly studied.

AIM
To characterize the microbiota of GC using 165 rRNA gene and its transcript and

determine difference in the bacterial composition.

METHODS

In this study, 316 DNA and RNA samples extracted from 105 individual stomach
biopsies were included. The study cohort consisted of 29 healthy control individuals
and 76 patients with GC. Gastric tissue biopsy samples were collected from damaged
mucosa and healthy mucosa at least 5 cm from the tumor tissue. From the controls,
healthy stomach mucosa biopsies were collected. From all biopsies RNA and DNA were
extracted. RNA was reverse transcribed into cDNA. V1-V2 region of bacterial 16S rRNA
gene from all samples were amplified and sequenced on an Illumina MiSeq platform.
Bray-Curtis algorithm was used to construct sample-similarity matrices abundances of
taxonomic ranks in each sample type. For significant differences between groups
permutational multivariate analysis of variance and Mann-Whitney test followed by

false-discovery rate test were used.

RESULTS
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Microbial analysis revealed that only a portion of phylotypes (18%-30%) overlapped
between microbial profiles obtained from DNA and RNA samples. Detailed analysis
revealed differences between GC and controls depending on the chosen modality,
identifying 17 genera at the DNA level and 27 genera at the RNA level. Ten of those
bacteria were found to be different from the control group at both levels. The key taxa
showed congruent results in various tests used; however, differences in 7 bacteria taxa
were found uniquely only at the DNA level, and 17 uniquely only at the RNA level.
Furthermore, RNA sequencing was more sensitive for detecting differences in bacterial
richness, as well as differences in the relative abundance of Reyranella and
Sediminibacterium according to the type of GC. In each study group (control, tumor, and

tumor adjacent) were found differences between DNA and RNA bacterial profiles.

CONCLUSION
Comprehensive microbial study provides evidence for the effect of choice of sequencing
modality on the microbiota profile, as well as on the identified differences between case

and control.
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transcript; 165 rDNA
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Core Tip: In this study, we aimed to characterize the microbiota of gastric cancer (GC)
on two levels: 165 rRNA gene and its transcript. Our study showed that only a small
portion of bacterial sequences overlapped using those two approaches. Moreover, our
study revealed that obtained results comparing the case group with the controls depend

on the chosen modality. We also showed that Reyranella and Sediminibacterium was
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associated with the Lauren classification and RNA level was more sensitive to detect
low abundant bacteria. This study provides novel insights into microbiome study as

well as new founding related to complex GC pathogenesis.

INTRODUCTION

Microbiota analyses are becoming increasingly relevant in scientific and clinical studies.
Most modern microbiome studies use 165 rRNA gene sequence analysis at the DNA
level, thereby enabling the identification of bacteria at all stages of their existence
(active, dead, and inactive bacteria in the form of endospores) simultaneously.
However, some of the more recent studies use RNA samples, which are subsequently
reverse transcribed into ¢cDNA for sequencing, giving us knowledge about the
metabolic state of the microbial communitylll. RNA has a shorter half-life than DNA
and turns over in cells more rapidly, providing a deeper look at bacterial activityl2l.

The stomach has long been considered an almost sterile organ due to its acidic
environment and enzymatic effectsl®l. Since its identification, it is known that
Helicobacter pylori (H. pylori) is perfectly adapted not only to survive in the acidic
envirom'ﬁnt of the stomach, but also to colonize this part of the gastrointestinal tract(4l.

. pylori is the major cause of peptic ulcer disease and the most significant risk factor for
gastric cancer (GC). GC remains one of the most common cancers in the world and the
fourth leading cause of cancer-related death(5l. However, only a minority of people
infected with H. pylori develop GC, which may be linked to non-H. pylori microbiota-
associated alterations in the stomachl®l. Studies in insulin-gastrin (INS-GAS) mice and in
humans indicated the importance of other members of the stomach bacterial
community in the development of gastric carcinogenesis(7-10l.

There is only one study that has compared DNA and RNA profiles of the stomach
microbiotal'll. However, the profiles of the active and standing microbiota in GC have
not been studied. In this study, we systematically characterized the microbiota of GC on
both levels using the 165 rRNA gene (DNA level) and its transcript (RNA level). GC

tumor and tumor adjacent tissue samples, as well as healthy mucosa samples from the

4/19




young control group, were used for the comparison. We obtained detailed data on
bacterial composition within groups depending on study modality (DNA or RNA) and
performed association analysis with clinical characteristics to question the potential

impact of approach on the outcome.

MATERIALS AND METHODS
Study cohort

In total, 316 DNA and RNA samples from a group of 105 individuals were included in
the study (Figure 1). The study cohort consisted of 29 healthy control individuals and 76
patients with GC. Participants did not report any antibiotic intake at least a month
before endoscopy. Gastric tissue biopsy samples from damaged mucosa and healthy
mucosa at least 5 cm from the tumor tissue were collected from GC patients using
single-bite biopsy forceps. From the controls, healthy stomach mucosa biopsies were
collected. Tissue samples were placed in sterile cryotubes (Thermo Fisher Scientific,
United States), snap-frozen in liquid nitrogen, and stored at -86 °C until further study.
Clinical data obtained from histological examination, such as tumor size, number of
lymph nodes damaged by tumor cells, presence of metastases (TNM classification), cell
differentiation (grading), type of GC (Lauren classification) and stage of GC, were
included in the analysis. An overview of the demographic and clinical characteristics of
the study cohort is given in online Supplementary Table 1.

Study individuals were recruited at the Department of Gastroenterology at the
Hospital of Lithuanian University of Health Sciences Kaunas Clinics during the years
2012-2018. This study was approved by the local ethics committee (BE-2-10), and all

participants gave their written informed consent.

DNA, RNA extraction, cDNA synthesis and amplicon library preparation
Total DNA and RNA were extracted from gastric biopsy samples using an AllPrep
DNA/RNA Mini kit (Qiagen, Germany) according to the manufacturer’s

recommendations. RNA was reverse transcribed into cDNA using the Superscript IV
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First-Strand Synthesis System Purification Kit (Invitrogen, Carlsbad, CA) and random
hexamer primers, following the manufacturer’s instructions. Amplicon libraries were
generated as described previouslyl'213l. The bacterial 16S rRNA gene V1-V2 region was
amplified using the 27F and 338R polymerase chain reaction primers and sequenced on

a MiSeq (2 x 250 bp; Illumina, Hayward, CA).

Bioinformatic and statistical analysis

Bioinformatic processing was performed as described previouslyl'4l. FastQ files were
analyzed using the dada2 packagel®], version 1.10.1, in R. In total, 7735281 paired-end
reads were received, with an average of 22953 per sample. Samples that did not reach
5000 reads were discarded from the analysis (21 samples out of initial 337). All samples
were rarefied to an equal sequencing depth of 5047 reads using the phyloseq
packagell6l, with returning 10496 phylotypes (Supplementary Table 2). Phylotypes were
annotated to a taxonomic affiliation based on the naive Bayesian classificationl'”! with a
pseudobootstrap threshold of 80%. The relative abundances (expressed as percentages)
of different microbial communities’ phylogenetic ranks (from phylum to class, order,
family, genus and phylotype) were used for downstream analyses.

The phylogenetic tree was built using the online tool iTOLISI, after hierarchical
clustering using the Bray-Curtis algorithm[®l at the phylotype level in Past 3120l
Bacterial richness and Shannon diversity indices were calculated using the vegan(2!l
package from R. The data matrices comprising the percentage of abundances of each of
the abovementioned taxa were used to construct sample-similarity matrices by the
Bray-Curtis algorithm, where samples were ordinated by principal coordinate analysis
(PCoA) at the phylotype level using the patchwork(2?l package from R.

Differences in relative abundance of detected bacteria (at all taxonomic ranks)
between study groups were evaluated by PERMANOVA and ANOSIM statistical tests,
using 9999 permutations. Groups were considered significantly different if the P-value
was < 0.05, considering an estimate effect-size F values for PERMANOVA and R values

for ANOSIM tests. Calculation was made by Past 3 program. The distributions of taxa
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abundance values were compared by Mann-Whitney test followed by Benjamini-
Hochberg correction for multiple comparisons, named as false discovery rate value.
Differences were considered significant when the corrected p value (q value) was < 0.05.

The bacterial networks were visualized using Cytoscape 3.8.0123], after the Spearman
correlation test performed with the psychl?4l package from R, with threshold of 0.2 in
absolute value and P-value < 0.05. Phylotypes that accounted for at least 1% of the total
number of phylotypes and at least 10% of the samples in each group were used for

correlation analysis.

RESULTS

General cohort

The bacterial contents of 180 biopsy samples taken from 105 individuals were
characterized as described above (Supplementary Table 1). After sequencing and
rarefying library size to the minimum sequencing depth, 10496ﬂﬂifferent phylotypes
belonging to 23 phyla, 40 classes, 82 orders, 169 families, and 463 genera were retrieved
and taxonomically annotated.

The global bacterial profiles were grouped into two clusters based on their Bray-
Curtis similarities as percentages (Figure 2A). Analyzing all samples together, the main
factor for clustering was bacterial heterogeneity. The first cluster consisted of samples
with a more heterogeneous microbiome profile, where the most abundant bacteria
accounted for less than 30%. All control samples (except T10_2) were located in this
cluster. The second cluster - where the most abundant bacteria accounted for more than
30% of GC patient samples - was shaped by the most abundant bacteria Helicobacter, the
abundance of which reached 98%-100% in some samples (Figure 2A, Supplementary
Table 2).

Distinct profile of the gastric tissue microbiome at the RNA and DNA levels
Further PERMANOVA and ANOSIM analyses showed that DNA and RNA groups of

the same study individuals were significantly different in all taxonomic ranks (Figures
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3A-C; Supplementary Table 3). Differences between DNA and RNA samples were
noticeable even at the phylum level. Although Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, and Fusobacteria were the main bacterial phyla in all groups, Bacteroides
and Fusobacteria were significantly more abundant at the DNA level. However, in the
control group, Firmicutes and Proteobacterin were more abundant at the RNA level.
Bacterial profile analysis indicated that only a portion of phylotypes (18%-30%) were
common between bacterial profiles obtained from DNA and RNA samples (Figure 3D).
PCoA supported the distinction of bacterial communities at the DNA and RNA levels,
especially in the control group (Figure 3E). Firmicutes, Bacteroidetes, Proteobacteria, and
Fusobacteria were major phyla determinants for sample differentiation.

More detailed analysis revealed that DNA and RNA samples differed from each
other by 12, 10, and 30 phylotypes and by 18, 17, and 35 genera in the tumor, tumor
adjacent, and control groups, respectively (Table 1, Supplementary Table 4). In all study
groups, bacteria such as Neisseria, Peptostreptococcus, Prevotella, Veillonella, and
Oribacterium were significantly more abundant at the DNA level, while Staphylococcus,
Methyloversatilis, Pseudomonas, Reyranella, Corynebacterium, and Sediminibacterium were
significantly enriched at the RNA level. Interestingly, most of these bacteria founded in
the RNA samples were not observed in the DNA samples at all, or their relative
abundance was low. Some changes in the relative abundance of bacteria between DNA
and RNA samples were specific for the study group. For instance, in the control group,
Helicobacter, Gemella, and Streptococcus were enriched at the RNA level, while
Actinomyces and Alloprevotella were enriched at the DNA level. In the GC groups (tumor
and tumor adjacent), Fusobacterium, Granulicatella, Solobacterium, and Porphyromonas
were enriched at the DNA level. No bacteria were enriched at the RNA level in this
group.

Nevertheless, despite the found differences between DNA and RNA, samples of the
same origin tended to cluster together in each of the study groups (Figure 2). Paired
samples, 46 pairs out of 64 (72%) in the tumor group and 38 pairs out of 58 (66%) in the

tumor adjacent tissue group, clustered next to each other, indicating their global
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similarity (Supplementary Figure 1). Paired samples from the control group were not

added to this analysis due to the small number of paired samples.

Revealed microbiome alterations in GC depend on the chosen sequencing modality
The GC samples had lower bacterial richness and diversity compareddo control
samples (Figures 3F and 3G). While differences in diversity were found both at the
DNA and RNA levels, differences in bacterial richness were found only at the RNA
level. Group-average agglomerative hierarchical clustering analysis showed that it was
possible to distinguish patients with GC from controls by their bacterial profile, as
samples tended to cluster based on clinical status (both at the DNA and RNA levels)
(Figures 2B and 2C). These results were supported by the phylogenetic analysis of
global stomach bacteria, which revealed significant differences between the GC group
and control groups at all taxonomic ranks (Figures 3 A-C, Supplementary Table 3).
Bacterial abundance differential analysis revealed 15 phylotypes and 17 genera that
differed between the GC and control groups at the DNA level (Table 2, Supplementary
Figure 2, Supplementary Table 4). Meanwhile, at the RNA level, there were twice as
many differences: 40 at the phylotype level and 27 at the genus level. Half of the
differences detected at the DNA level were also found at the RNA level (58% of genera
and 46% of phylotypes). These bacteria include previously described bacteria, such as
Lactobacillus, Propionibacterium, Streptococcus, and Veillonella, among others(2>-29],
Although fewer unique bacteria were identified only at the DNA level (8 phylotypes
and 7 genera), they were more studied and more frequently discussed in the literature
as being associated with various human health conditions (Supplementary Table 4).
These bacteria include Campylobacter, Clostridium sensu stricto, Prevotella, and
Saccharibacteria, among others. Of the listed bacteria, Clostridium sensu stricto was
enriched, and others were decreased in GC patients. Uniquely, only at the RNA level
were 33 and 17 differences at the phylotype and genus levels, respectively, found
between the GC and control groups (Supplementary Table 4). Essentially, this group

included such bacteria that were not established or their abundance at the DNA level
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was negligible, for example, Limnohabitans, Methylobacterium, Methyloversatilis,
Pseudomonas, Reyranella, Rhodoluna, Sediminibacterium, and Staphylococcus. Of the listed
bacteria, only Pseudomonas and Staphylococcus were more abundant in GC samples,
while all the others were more abundant in healthy individuals.

Bacterial diversity and profile comparison analysis between tumor and tumor
adjacent tissues did not reveal significant differences at either the DNA or RNA level
(Figures 3A-C, 3F and 3G). Moreover, assemblages of approach from each individual
typically clustered together irrespective of tissue type (tumor or tumor adjacent tissue)

(Figure 2A).

Bacterial networks in GC patients have fewer components and integrated connections
Analysis of the bacterial network similarity revealed that the main network holding
bacteria with the highest betweenness centrality score was different between DNA and
RNA levels in all study groups (Supplementary Figure 3). In the bacterial network of
the control group at the DNA level, phylotypes depending on the Streptococcus,
Prevotella, and Actinomyces genera accounted for 68% (58 out of 85) of the total number
of bacteria and formed the core network keeping bacteria, while at the RNA level, core
bacteria were Streptococcus and Gemella, making up to 62% (47 out of 75)
(Supplementary Figures 3A and 3B). The GC groups showed different DNA/RNA
networks as well: The main network forming bacteria in the tumor adjacent tissue at the
DNA level was Prevotelln, Gemella, and Granulicatella, while the RNA network was
shaped by Streptococcus, Reyranella, and Fusobacterium (Supplementary Figures 3C and
3D). The most critical network-forming bacteria in tumor tissue were: Granulicatella,
Veillonella, and Neisseria at the DNA level and Reyranella, Acinetobacter, and Prevotellaceae
at the RNA level (Supplementary Figures 3E and 3F).

Two common bacterial clusters (one at the DNA level and another at the RNA level)
with strong positive correlations for tumor and tumor adjacent tissues were discovered
(Supplementary Figures 3C-F), which confirms the absence of significant differences

between tumor and tumor adjacent tissue microbiome profiles. At the DNA level, the

10 / 19




common cluster consisted of Phy6 (Neisseria), Phy15 (unclassified Prevotellaceae), Phy23
(Neisseria perflava), Phy29 (Prevotella melaninogenica), Phy87 (Solobacterium), and Phy98
(Prevotella). The common cluster at the RNA level included phylotypes such as Phy7
(Reyranella), Phy33 (Sediminibacterium), Phy46 (Propionibacterium acnes), Phy94
(Methyloversatilis), Phy107 (Pseudomonas aeruginosa), and Phyl08 (Sphingomonas
echinoides). Detected clusters were not found in the control group.

Generally, under the same analysis conditions, GC patients displayed a simpler
bacterial network at both the DNA and RNA levels. At the DNA level, control, the
tumor, and tumor adjacent groups had 85, 25, and 23 bacteria, respectively; at the RNA
level, they had 75, 21, and 18, respectively. Moreover, analysis of bacterial interactions
in controls had not only positive but also negative correlations, while GC analysis

showed mostly positive correlations.

GC microbiota alterations and clinical parameters

At the DNA level, according to clinical parameters, statistically significant differences
were found only in the decrease in bacterial richness between smaller tumors (T1-T2)
and extended tumors (T4). The RNA level turned out to be more sensitive and allowed
us to detect richness differences between grade II and grade III (Figures 4A and 4B).
Moreover, at the RNA level, the relative abundance of the Phy7 (Reyranella) and Phy33
(Sediminibacterium) phylotypes was lower in the diffuse type of GC than in the intestinal
type (Figures 4C and 4D). No differences were found between subgroups at the DNA

level.

The effect of H. pylori inferﬂ'on on stomach microbiota

PCoA showed Helicobacter to be the major determinant for differentiating samples based
on their bacterial composition in the stomach (Supplementary Figure 4). Overall, H.
pylori was detected in 115 and 117 DNA and RNA samples, respectively. In the control
group, H. pylori was lower than that in the GC groups at both the DNA and RNA levels
(Figure 5A). The tumor adjacent sample group showed the highest number of samples
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with high H. pylori abundance (Figure 5B). Both in tumor and tumor adjacent groups
the mean abundance of H. pylori was increased at the RNA level, although no
significant differences between DNA and RNA samples were found.

High H. pylori relative abundance (> 15%) led to an increase in the relative abundance
of Proteobacteria and a decrease in other major bacterial phyla, such as Firmicutes,
Bacteroidetes, and Fusobacteria (Figure 5C). In tumor tissues analyzed at the DNA and
RNA level, Helicobacter was only one genus which changed significantly between
samples with high and low H. pylori abundance (Figure 5D, Supplementary Table 5). On
the other hand, in tumor adjacent tissues, more bacteria were found, the number of
which changed together with Helicobacter. At the DNA level, as the relative abundance
of H. pylori increased, the abundance of Porphyromonas and Prevotella significantly
decreased. In line with our previous results, more significant differences were found at
the RNA level: Staphylococcus significantly increased and seven bacteria (Campylobacter,
Fusobacterium, Prevotella, Pseudomonas, Reyranella, Sediminibacterium, Streptococcus)
decreased (Figure 5C, Supplementary Table 5). Porphyromonas tended to decrease in
tumor adjacent RN A samples as well, although it did not reach a statistically significant

level (Supplementary Table 5).

DISCUSSION
Despite growing interest in the study of microbiota, there is still limited agreement on
the most appropriate standard for such studies, especially using 16S rRNA sequencing.
Here, we performed systematic analysis of bacterial communities at both the 165 rRNA
gene and 16S rRNA transcript levels. To estimate the impact of the different
approaches, we used the GC model and considered not only healthy gastric tissues but
also GC tumor and adjacent tissues.

The analysis of the study results showed that there were significant differences in the
relative abundance of the gastric tissue microbiome between 165 rRNA gene transcript

and 16S rRNA gene levels in all study groups (control, tumor, and tumor adjacent). This
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is the first GC study indicating that active and standing gastric microbiomes are distinct
even at the largest taxonomic levels.

Differences in bacterial communities at the DNA and RNA levels could be explained
by several possibilities. Using DNA as a research material summed up all bacteria, both
biologically active passive in the form of endospores, and DNA sequences of already
destroyed and dead bacterial>®l. The presence and number of ribosomes in bacteria
reflects their metabolic activity; thus, the analysis at the RNA level shows the metabolic
activity of live and active bacteria in the communityl®-33l. For instance, previously GC-
associated bacteria such as Prevotella, Veillonella, and Neisseria in our study were present
in high abundance in all analyzed groups at the DNA level but were greatly reduced at
the RNA level. In contrast, Pseudomonas, Reyranella, and Staphylococcus were present in
higher abundance at the RNA level in all groups. However, it is erroneous to assume
that only active bacteria can influence host responses. Many studies have shown that
inactivated bacteria or parts of their cells can also influence inflammatory processes or
other responses in host tissues. For example, Rabie et all34 showed that thermally
inactivated Salmonella, Staphylococcus, Escherichia, and Pseudomonas strains with
unchangeable surface proteins cause colon and breast cancer cell proliferation. In
Suprewicz et al®'s study, heat-inactivated Enterococcus faecalis, Actinomyces
odontolyticus, and Propionibacterium acnes caused cell proliferation changes in lung,
breast, and ovarian carcinoma. Postbiotics work based on the same principle. To avoid
possible bacterial infection during therapy, instead of active bacteria, their metabolites,
which are involved in anti-inflammatory and anticancer mechanisms, are used/3¢l.

It is also cannot be excluded that the shift in bacterial abundance between DNA and
RNA levels might stem from varying numbers of copies of the 165 rRNA genel*] or
target sequence quantity inequalityl®]l. Bacterial rRNAs (165 rRNA, 23S rRNA and 55
rRNA) are typically organized into one operon, and their transcription occurs together,
with the number of such operons varying from 1 to 153, In the case of active bacteria,

an increase in 16S rRNA gene copies proportionally increases the pool of 16S rRNA
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transcripts. However, in the case of inactive bacteria, a larger number of 165 gene copies
enables the detection of some bacteria, which could not be detected at the RNA level.

The amount of target sequences using the 16S rRNA gene and its transcript are not
the same. Of all types of RNA molecules present in the cell, the most common (80 %-
90%) are included in the ribosome structure rRNAs[*I. 165 rRNAs make up one-third of
the total rRNAs. On the other hand, when analyzing the microbiota using the 16S rRNA
gene, only one gene is amplified out of the total number of genes, which in different
bacteria varies from 1500 to 70001%l. Thus, the initial larger amount of the bacterial
target sequence at the RNA level makes it possible to increase the depth of sequencing
and detect more rare bacteria that would be lost during DNA-level analysis. In
addition, a shift toward DNA or RNA levels can also be caused by ingestion of bacterial
parts from the higher parts of the digestive tract.

Our analysis revealed that the profile of differences found between GC and control
tissue depended on the chosen modality: At the DNA level, 17 bacterial genera were
detected, and at the RNA level, 27 bacterial genera were detected. Ten of those bacteria
(Actinomyces, Alloprevotella, Atopobium, Granulicatella, Lactobacillus, Megasphaera,
Propionibacterium, Rothia, Streptococcus, Veillonella) were found to be different from the
control group at both levels of sequencing; seven bacterial taxa (Campylobacter,
Clostridium sensu stricto, Leptotrichia, Oribacterium, Prevotella, Saccharibacteria genera
incertae sedis, Stomatobaculum) were found uniquely only at the DNA level; and 17
(Anaerococcus, Corynebacterium, Eubacterium, Flavobacterium, Gemella, Legionella,
Limnohabitans, Massilia, Methylobacterium, Methyloversatilis, Parvimonas, Pseudomonas,
Reyranella, Rhodoluna, Sediminibacterium, Solobacterium, Staphylococcus) were found
uniquely only at the RNA level. These results confirm the importance of unifying the
procedures for studying the microbiota.

Although our study focused on differences in methodology, it did reveal several
important findings for the GC study as well. Fourteen bacteria genera were identified to
be decreased in patients with GC. Eleven of these bacteria (Actinomyces, Atopobium,

Propionibacterium, Streptococcus, Granulicatella, Veillonella, Rothia, Parvimonas, Gemella,
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Prevotella, Leptotrichia) were previously established in the stomach of healthy people in
the absence of gastrointestinal diseasesl%l. Most of them are common members of the
upper gastrointestinal tract and have strong enzymatic activities. Our study also found
four bacteria genera, which were significantly increased in GC patients’ stomach
biopsy: Lactobacillus, Clostridium sensu stricto, Staphylococcus, and Pseudomonas.

Lactobacillus is commonly used as a probiotic; however, it has been verified in
multiple studies to be enriched in GCI41l. Lactobacillus strains, as well as Clostridium and
Staphylococcus, can reduce nitrate to nitritel*243]. During the nitrate-reducing process,
many N-nitroso compounds are formed that inhibit cell apoptosis and promote
mutagenesis and protooncogene expressionl#47l. Clostridium is part of the normal
gastrointestinal tract; however, in several previous studies, as in ours, an increase in the
number of Clostridium sensu stricto was found8-30l. Interestingly, Lertpiriyapong et all’!
showed earlier onset and faster progression of GC in INS-GAS mice with restricted
microbiota (including Clostridium, Lactobacillus, and Bacteroides), highlighting a possible
role of these bacteria in GC. Additionally, several studies have detected increased levels
of Staphylococcus in patients with upper gastrointestinal diseasesl®'%3. One of the
reasons for this may be that stains of Staphylococcus have the enzyme urease, and are
able to catalyze the hydrolysis of urea to carbon dioxide and ammonia, which can
neutralize gastric hydrochloric acid, thus promoting bacterial existence. Although we
found an increased number of Pseudomonas, this bacterial infection affects people with
weakened immune systems (inclulding patients with cancer), and thus, it is more likely
that this finding is the result of already developed pathological processes.

We did not detect significant bacterial abundance, richness, or diversity alterations at
either the DNA or RNA level between tumor and tumor adjacent tissues. This result is
consistent with two previous studiesl5#%5] but contradicts recent GC studies where
significant differences between tumor-affected and nearby healthy tissues were
found|27.56], Moreover, we found the same clusters of bacterial networks in tumor and
tumor adjacent tissues at both the DNA and RNA levels. These results may suggest that

with the onset and development of carcinogenic processes, local changes in stomach
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tissues lead not only to a change in the bacterial composition but are also precise
uniformity between cancer-affected and still healthy tissues (at least within a radius of 5
cm from the tumor area).

Studying GC samples at the RNA level, we managed to identify microbiome
associations with clinical data. Analysis revealed two phylotypes (Phy7 and Phy33)
related to Reyranella and Sediminibacterium, respectively. The relative number of those
phylotypes gradually decreased from healthy to GC patients through intestinal growth
type (considered as less aggressive cell growing type) to GC patients with diffuse
growth type of cancer cells with worse outcome prognosis. To our knowledge, this is
the first mention of these bacteria associated with the GC cell growth type. Reyranella is
part of Proteobacteria and has previously been associated with the main chemokine
expression, which is involved in T-cell attraction during cancerogenesis!*.5l. In another
study, it was shown that there are significantly lower amounts of circulating natural
killer and Treg cells in patients with diffuse/mixed-type GC compared to intestinal-
type GCP91. Taken together, these results suggest that Reyranella may be involved in the
decrease in T-cell number and thus stimulation of cell growth of diffuse-type GC.
Sediminibacterium was reported to be associated with GC, but there is no knowledge
about the possible role of this bacteria in the pathophysiological processes[®061l.
Therefore, more detailed research on the effects of Reyranella and Sediminibacterium on
GC cells is needed to be able to use these bacterial phylotypes as potential biomarkers.

H. pylori is the most common bacterial infection worldwide, as well as the main risk
factor for GCI40L. It has been shown that during the transition from H. pylori-induced
inflammation to the growth and development of carcinogenic cells, H. pylori is no
longer detected in the affected areas in such large abundancel®?l. Our results, showing
that more H. pylori were found in tumor adjacent tissue than in tumor tissue, both at the
DNA and RNA levels, confirm this. According to some previous reports, infection with
H. pylori promotes the proliferation of non-Helicobacter bacteria from Proteobacteria,
Spirochetes, and Acidobacteria and limits the spread of bacteria such as Actinobacteria,

Bacteroidetes and Firmicutesl®%4l, Although most of the bacteria we found with altered
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numbers in GC were not associated with H. pylori, changes in the number of bacteria,
such as Granulicatella, Lactobacillus, Rothia, Pseudomonas, Gemella, Prevotella, Leptotrichia,
Clostridium sensu stricto, and Fusobacterium, were associated with high H. pylori
abundance.

The question regarding the causality in the gastric microbiome is still partially
unanswered. On the one hand, alterations in gastric microbiota have a causal role in the
progression of carcinogenesis (e.g., H. pylori). On the other hand, the role of other
bacteria is less understood. However, there are new studies that strongly suggest the
impact of the gastric microbiome on inflammation and carcinogenesis. For instance, a
recent study by Kwon et all®l showed that intestinal metaplasia or GC patient gastric
microbiome transplantation contributes to changes in the phenotype of premalignant
lesions. In this regard, a detailed understanding of the output of different sequencing
technologies and comparability between RNA/DNA-based analyses is critical.

Since systematic analysis to assess the differences with respect to GC has not been
performed before, we would like to point out some limitations of this work. While the
primary focus of the work was related to technical differences, thus food preferences,
sex, and aging can be potential contributing factors that have not been thoroughly
considered in this study. Overall, the focus was on providing a truly confirmed healthy
cohort for the most precise comparison to strengthen the differences. Nevertheless,
PERMANOVA and Mann-Whitney analyses performed in each of the study groups
(tumor DNA, tumor RNA, tumor adjacent DNA, tumor adjacent RNA, control DNA,
control RNA) did not reveal significant differences between the sexes and age (divided
by median) (Supplementary Tables 6 and 7). Furthermore, due to the sample size, we
did not consider the newly proposed TCGA classification for subsequent analysis nor to

assess the impact of 4 subtypes on bacterial composition in tumors.

CONCLUSION

In conclusion, our study provides evidence that the tumor microbiome of GC patients

has a distinct pattern compared to healthy controls, while the difference analyzed from

17 /19




adjacent tissue was rather low. Despite some overlap between the data obtained from
the 16S rRNA transcript and 165 rRNA gene, our results showed the critical importance
of the chosen study material on the resulting bacterial profile. Thus, researchers
comparing their results with previous studies might take into consideration which
initial material was used, either the 165 rRNA gene or 16S rRNA transcript. Our results
showed that the RNA level was more sensitive for detecting low abundance bacteria

and allowed us to detect differences according to GC clinical data.

ARTICLE HIGHLIGHTS

Research background

There is currently no gold standard for analyzing the microbiome in 165 rRNA studies.
Two common modalities are: Equencing of DNA (165 rRNA gene) and sequencing of
RNA (16S rRNA transcript). Gastric cancer (GC) remains one of the most common

cancers in the world and microbiome takes important place in its carcinogenesis.

Research motivation
Microbiota studies are becoming more relevant and widespread. Comparison of
different approaches for microbiome studying is necessary for correct interpretation of

other studies results, as well as for a deeper understanding of bacterial composition.

Research objectives
To investigate how the choice of sequencing modality affects the bacterial profile of
differences between case and controls as well as to characterize the microbiota of GC

tissues using 16S rRNA gene and its transcript.

Research methods
The study included healthy tissues from the control group, as well as tumor and tumor
adjacent tissues from GC patients. From all biopsies ENA and DNA were extracted. 165

rRNA V1-V2 region was sequenced for all samples. For significant differences between
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groups permutational multivariate analysis of variance and Mann-Whitney test

followed by false-discovery rate test were used.

Research results

Only a small portion of bacterial sequences overlapped on DNA and RNA levels in all
groups. Differences between GC and control groups also only partially overlayed on
DNA and RNA levels. RNA sequencing was more sensitive for detecting differences in
bacterial richness, low abundance bacteria, and changes in the relative abundance of
Reyranella and Sediminibacterium according to the type of GC. In each study group
differences between DNA and RNNA bacterial profiles were identified.

Research conclusions
Chosen study material (16S rRNA transcript or 165 rRNA gene) greatly affects

detectable microbiome profile as well as the differences between cases and controls.

Research perspectives
This study provides microbiome analysis applying two different methodologies using

GC gastric tissues as example and could serve as a reference for future research.
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