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Abstract

Artificial intelligence (AI) has experienced substantial progress over the last ten years in
many fields of application, including healthcare. In hepatology and pancreatology,
major attention to date has been paid to its application to the assisted or even
automated interpretation of radiological images, where Al can generate accurate and
reproducible imaging diagnosis, reducing physicians’ workload. Al can provide
automatic or semi-automatic segmentation and registration of the liver and pancreatic
glands and lesions. Furthermore, using radiomics, Al can introduce new quantitative
informatjon which is not visible to the human eye to radiological reports. Al has been
applied in the detection and characterization of focal lesions and diffuse diseases of the
liver and pancreas, such as neoplasms, chronic hepatic disease, or acute or chronic
pancreatitis, among others. These solutions have been applied to different imaging
techniques commonly used to diagnose liver and pancreatic %eases, such as
ultrasound (US), endoscopic ultrasonography (EUS), computerized tomography (CT),
magnetic resonance imaging, and positron emission tomography/CT. However, Al is
also applied in this context to many other relevant steps involved in a comprehensive
clinical scenario to manage a gastroenterological patient. Al can also be applied to
choose the most convenient test prescription, to improve image quality or accelerateés
acquisition, and to predict patient prognosis and treatment response. In this review, we
summarize the current evidence on the application of Al to hepatic and pancreatic

radiology, not only in regard to the interpretation of images, but also to all the steps
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involved in the radiological workflow in a broader sense. Lastly, we discuss the

challenges and future directions of clinical application of Al methods.
Key Words: Artificial intelligence; Machine learning; Deep learning; Imaging; Liver;
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Core Tip: The gastroenterology field is changing with the application of artificial
intelligence (AI) solutions capable ssisting and even automating the interpretation
of radiological images (ultrasound, endoscopic ultrasound, computerized tomography,
magnetic resonance imaging, and positron emission tomography), generating accurate
and reproducible diagnoses. Al can further be applied to other steps of the radiological
workflow beyond image interpretation, including test selection, image quality
improvement, acceleration of image acquisition, and prediction of patient prognosis
and outcome. We herein discuss the current evidence, challenges, and future directions

on the application of Al to hepatic and pancreatic radiology.

INTRODUCTION

Malignant tumors of the liver and pancreas are among the most common and lethal
types of cancer. According to the recent GLOBOCAN 2020 datal'l, liver and pancreas
are the 6" and 12" most common sites for primary cancer, with 905677 and 495773 new
cases in 2020, respectively. However, they also represent the 3rdand 7t neoplasia with
the highest mortality, causing 830180 and 466003 deaths worldwide in 2020,
respectively. If taken combined, cancer at the liver or pancreas thus represent the 5"

most incident and the second most lethal one.
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Cancer at these locations account for almost as many deaths as cases. Five-year
survival rates are 20% for liver cancerl?l and as low as 11% for pancreatic cancerl3,
making them two of the cancer sites with the poorest prognosis. ather non-oncologic
diseases affecting these organs are also highly prevalent, such as diffuse liver disease,
including chronic liver disease, which affects tens of millions of people globally and
represents a substantial socioeconomic burdenll.

Clinical outcomes of patients with these types of disease depend on a variety of
factors, including stage and disease extension as assessed by imaging, and correct
election of treatment. Thus, there is an unmet need for new tools capable of assisting
spﬁialists in early detection, characterization, and management of these diseases.

In recent years, artificial iﬁelligence (AI) has shown promise in different areas of
healthcare. The evaluation of medical images by machine learning (ML) approaches is a
leading research field which, in gastroenterology, has applications in automatic analysis
of different types of images, such radiology, pathology, and endoscopy studiesl5.

The first applications of Al to radiology have been dominated by anatomic locations
such as the brain or the breast. Image analysis of abdominal organs, such as the liver
and pancreas, are more challenging. Magnetic resonance imaging (MRI) in these
locations, especially at 3 T, is prone to motion and field inhomogeneity artifacts, which
are aggravated by larger fields of viewl’l. As a result, advances in automatic analyses of
abdominal images have gathered comparatively less attention. Nonetheless, the
application of Al ip_liver and pancreas imaging is also gaining increasing interest
(Figure 1). The goalythis review is to summarize the current experience on the use of
Al to assist radiologists in their workflow, acquisition, and interpretation of medical

images of the liver and the pancreas.

AT IN RADIOLOGY: BASIC PRINCIPLES

Artificial intelligence is expected to revolutionize the medical field, deeply impacting
the hospital and clinical settings by potentially improving diagnostic accuracy,

treatment delivery, and allowing a more personalized medical carel’l. Radiology will
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arguably be one the most changed areas of medicine because of Al implementation in
its workflows, as the information-rich images generated in this field are an excellent
source of data for the development of Al algorithms. Broadly, the term Al refers to a
wide range of technologies and computing processes capable of imitating human
intelligence to extract information from input data to solve a problem. This rapidly
evolving area has a vocabulary of its own (Figure 2) that can be daunting to those not
familiar with the field, including terms that are oftentimes used as synonyms to Al,
such as ML.

ML is actually a subset of Al consisting of those methods capable of training a
computer system to perform a given task based on provided information or experience
without explicit programming, thus conferring machines the ability to learn®l. The aim
of ML is to predict an output based on a given input (a training dataset). Common ML
applications in radiology include classification, image segmentation, regression, and
clusteringl?l. ML can be sub-divided into supervised and unsupervised learning(!?l. In
supervised learning, the most common type used in medical research, the algorithm is
trained with labeled examples (i.e., the correct output for these training data, known as

und truth, is already known). Among the methods employed in supervised learning,
random forest (RF), and specially, support vector machine (SVM), are powerful
algorithms frequently used for the classification of imagesl’], including image
segmentation. Conversely, in unsupervised learning, the ground truth is not known, as
the algorithm is trained with unlabeled data that must be classified by the algorithm
itself.

Artificial neural networks (ANNs), named after their brain-inspired structure and
functioning process, can be trained via both supervised and unsupervised ML. In these
ANNSs, input information flows through a variable number of layers composed of
artificial neurons, joined by weighted connectors, that process the data to obtain an
output that matches the ground truth as closely as possible. Generative adversarial
networks (GANs) are an example of ANN trained viz unsupervised learning. GANs

include two networks: One which creates new data based on input examples (i.e.,

4/29




generator), and one which distinguishes between different types of data (i.e,
discriminator)[1ll. These networks can be used to produce realistic, synthetic images as a
strategy for data augmentation!'?. Similarly, the structure of convolutional neural
networks (CNNs), a type of ANN specially designed for computer vision tasks, is based
on that of the animal visual cortex. Typically used in image recognition and
classification, in CNNs the input information is filtered and analyzed through a
convolutional layer, and the size of the resulting image is subsequently reduced by a
pooling layer. This two-step process will be repeated as many times as layers integrate
the CNN, with a final step in which an ANN will classify the image (Figure 3). Fully
convolutional networks (FCNs, a type of ANN that only performs the convolution step)
are the basis for U-net, a modified architecture that consists of a contracting path
including several convolutional and pooling layers to capture context, followed by a
symmetric expanding path including a number of up-sampling and convolutional
layers to enable accurate localization. U-net is a popular network for the development
of automatic segmentation algorithms, as it requires relatively small datasets for
algorithm training('3l.

Deep learning (DL) is a section of ML that utilizes multi-layered ANNS, referred to as
deep neural networks (DNN), allowing the exploration of more complex datall. DL
algorithms are gaining attention and raising considerable enthusiasm thanks to their
scalability, easy accessibility, and ability to extract relevant information from the data
without further indications other than input data. The recently developed nnU-Net, a
publicly available DL-based segmentation tool capable of automatically configuring
itself, has set a new state-of-the-art standard thanks to the systematization of the
configuration process, which used to be a manual, complicated, and oftentimes limited
task in previous approaches!!’l. Improvement of the computational resources and the
developmentﬁaf cloud technologies are also contributing to the application of DL
arghitectures in a wide variety of research fields beyond medicinel4l.

Closely related to the development of AI, the term radiomics refers to the

computational extraction (vin ML and DL algorithms) of quantitative data from
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radiological image features!®l. A particularly useful and valuable application of
radiomics is the analysis of radiologic textures, defined as the differences in the
grayscale intensities in the area of interest, which have been associated with intratumor
heterogeneityl!7l, and that can potentially provide clinically relevant information that

otherwise would remain unknown.

IMAGE ACQUISITION

The ultimate aim of computerized tomography (CT) and MRI is to unveil clinically
relevant information; thus, the importance of this information relies heavily on the
quality of the image. For CT, radiation dose is a parameter as important as image
quality, and both are closely related to acquisition and reconstruction times. Iterative
reconstruction (IR) algorithmsl!8l are the current technique of choice to transform the
raw data into a 3D volume presented as an anatomical image. These algorithms
generate an image estimate that is projected forward into a synthetic sinogram;
subsequently, this image estimate is iteratively rectified by comparison with the real
raw data sinogram until the algorithm’s predefined endpoint condition is met, resulting
in enhanced image quality and thus allowing an important dose reduction!’l. DL
reconstruction algorithms (DLR) are currently being developed with the aim to further
improve image quality, therefore further reducing radiation doses. Compared to IR
algorithms, DLR algorithms trained with low-dose data offer an improved signal-to-
noise (SNR) ratio, as demonstrated by the U-net-based CNN developed by Jin et all2%],
thus facilitating the detection of lesions of any kind and the increased use of low-dose
imaging. Currently, there are two commercially available DLRs: TrueFidelity (GE
Healthcare, Chicago, IL, United States) and AiCE (Canon Medical Systemﬁatawara,
Japan). Akagi et all2!l employed AiCE in their study and reported improved contrast-to-
noise ratio and image quality in CT images, compared to images created with a hybrid
IR algorithm. Although the preliminary results are exciting, further validation for these
DLR algorithms is required, and real dose reduction in the clinical setting has yet to be

demonstrated.
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An important setback of MRI is the long acquisition time, forcing the patient to lay
still for a relatively long period and with any movement affecting the quality of the
image. One way to reduce acquisition time is compressed sensing, based on the idea
that if signal information is only present in a small portion of pixels, that sparsity can be
used to reconstruct a high-definition image from considerably less collected data
(undersampling). Kaga et all?l evaluated the usefulness of the Compressed SENSE
algorithm (Philips, Amsterdam, The Netherlands) in MRI of the abdomen using
diffusion weighted images (DWIs) and reported a significantly improved image noise
and contour of the liver and pancreas and higher apparent diffusion coefficient values,
thus offering superior image quality compared to parallel imaging (PI)-DWII[22].

Al applications have also been designed to automate MRI and CT protocol selection
with the aim to standardize workflows and increase effectiveness in the radiology
setting. The selection of an appropriate imaging protocol requires taking into account
factors including the type of procedure, clinical indication, and the patient’s medical
history. The increasing incorporation of electronic medical records and other digital
content has opened opportunities for the application of nawl language processing
(NLP) methods to extract structured data from unstructured radiology reports. Lopez-
Ubeda et al?® developed an NLP-based classification system for automated protocol
assignment that offered an overall accuracy of 92.25% for the CT and 86.91% for the
MRI datasets. This system has already been successfully implemented and is currently
in use at the HT Medica centers.

Information about the respiration of the patient can be used for functional studies,
overall monitoring, or motion compensation during the performance of an MRIL
Typically, breathing is measured wvia belts or nasal sensors that can potentially alter the
raw MRI data. Using adaptive intelligence, the laser-based VitalEye system (Philips)
registers a contactless continuous respiratory signal, with up to 50 body locations
analyzed simultaneously and in real time, thus producing a more robust respiratory
trace compared to traditional respiratory belts/24l. Moreover, as soon as the patient is

lying on the table, the BioMatrix Respiratory Sensors (Siemmens AG, Munich,
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Germany) embedded in the spinal coil produce a local magnetic field that changes with
the variation of lung volume during breathing. These changes are registered, and the
breathing pattern is integrated to optimize image quality®l. By standardizing and
accelerating the workflow, these advances allow technicians and radiologists to

concentrate on the patient.

IMAGE ANALYSIS

Segmentation of liver and pancreas

Image analysis has experimented a huge progression with the advent of Al, and
especially with DL, that has reached state-of-art performance in many biomedical image
analysis tasks (Table 1)(20-28]. Among them, segmentation is one of the most important in
radiology. For instance, accurate pancreas segmentation has applications in surgical
planning, assessment of diabetes, and detection and analysis of pancreatic tumorsl?9.
Another key application of organ and lesion contouring is treatment volume calculation
for radiotherapy planning. However, boundary delimitation of anatomical structures in
medical images remains a challenge due to their complexity, particularly in the upper
abdominal cavity, where there are constant changes in the position of the different
organs with the respiratory cycle, as well as the occurrence of anatomical variants and
pathological changes of organs!®.

The intersubject variability and complexity of the pancreas make segmentation of this
organ a demanding task. Segmentation of pancreatic cancer lesions is particularly
challenging because of their limited contrast and blurred boundaries against the
background pancreatic parenchyma in CT and MR imagesl®l. In addition, other factors
such as body mass index, visceral abdominal fat, volume of the pancreas, standard
deviation of CT attenuation within pancreas, and median and average CT attenuation in
the immediate neighborhood of the pancreas may affect segmentation accuracyl29321.

These problems lead to high _segmentation uncertainty and inaccurate results. To
tackle these problems, Zheng et all®! proposed a 2D, DL-based method that describes

the uncertain regions of pancreatic MR images based on shadowed sets theory. It
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demonstrated high accuracy, with a dice similarity coefficient (DSC) of 73.88% on a

cancer MRI dataset and 84.37% on the National Institutes of Health (NIH) Pancreas
dataset (which contains 82 CT scans of healthy pancreas), respectively. The same
authors reported®! a more sophisticated 2.5D network that benefits from multi-level
slice interaction. They surpassed state-of-art performances in the NIH dataset, with a
DSC of 86.21% + 4.37%, sensitivity of 87.49% + 6.38%, and a specificity of 85.11 + 6.49%.

The liver is also a popular target for automated segmentation algorithms. Automatic
segmentation of this organ is regarded as somewhat less challenging than that of the
pancreas, with reported DSC scores typically in the > 0.90 rangel33l.

Li et alB%l presented a liver segmentation method from abdominal CT volumes for
both healthy and pathological tissues, based on the level set and sparse shape
composition (SSC) method. The experiments, performed using public databases
SILVERO7 and 3Dicardb, showed good results, with mean ASD, RMSD, MSD, VOE, and
RVD of 0.9 mm, 1.8 mm, 19.4 mm, 5.1%, and 0.1% respectively. Moregyer, Winther et
all¥”l used a 3D DNN for automatic liver segmentﬁion along with a Gd-EOB-DTPA-
enhanced liver MR images dataset. Results show an intraclass correlation coefficient
(ICC) of 0.987, DSC of 96.7% + 1.9%, and a Hausdorff distance of 24.9 mm + 14.7 mm
compared with two expert readers who corresponded to an ICC of 0.973 and a DSC of
95.2% £ 2.8%. Finally, Moha hi et all®l used a CNN but further incorporated prior
knowledge. The model learnt the global shape information as prior knowledge by using
a convolutional denoising auto-encoder; then, this knowledge was used to define a loss
function and combine jt yith the Dice loss in the main segmentation model. This model
with prior knowledge improved the performance of the 3D U-Net model and reached a
DSC of 97.62% segmenting CT images of the Silver07-liver dataset.

Orﬁn segmentation is even more challenging in pediatric patients studied with CT,
as it is acquired at a low dose to minimize harmﬂ.ﬁadiation to children, thus having a
lower SNR ratio. Nakayama et all®! proposed a liver segmentation algorithm for

pediatric CT scans using a patient-specific level set distribution model to generate a
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probabilistic atlas, obtaining a DSC index of 88.21% in the segmentation. This approach
may be useful for low dose studies in general, i.e., also in the adult population.

Algorithms for automatic segmentation of liver using MR images have proven
equally efficient. For instance, Bobo et all*?l used a 2D FCN architecture to segment
livers on T2-weighted MR images with a DSC score of 0.913. In a recent paper, Saunders
et all*!] systematically analyzed the performance of different types of MR images in the
training of CNN for liver segmentation, using a 3D U-net architecture. Water and fat
images outperformed other modalities, such as T2* images, with a DSC of 0.94.

Conversely, high-quality automatic segmentation of liver lesions is not an easy task,
since the low contrast between tumors and healthy liver parenchyma in CT images,
their inhomogeneity, and its complexity pose a challenge for liver tumor segmentation.
In addition, motion-induced phase errors due to peristaltic and respiratory movements
negatively affect ilﬁge quality and assessment of liver lesions in MR images. A 3D
CNN was used by Meng et all*2l where a special three-dimensional dual path multiscale
convolutional neural network (TDP-CNN) was designed for liver tumor segmentation.
Results achieved in the LiTS public dataset were a DSC of 68.9%, Hausdorff distance of
7.96 miy,_and average distance of 1.07 mm for liver tumor segmentation and a DSC of
96.5%, Hausdorff distance of 29.162 , and average distance of 0.197 mm for liver
segmentation. A different approach for liver tumor segmentation was proposed by
Chen et all#3]. In this work, adversarial densely connected network algorithm was
trained and evaluate& using the Liver Tumor Segmentation challenge dataset. Results
revealed an average Dice score of 68.4% and ASD, MSD, VOE, and RVD of 21 mm, 124
mm, 0.46%, and 0.73%, respectively.

Automatic contouring of hepatic tumor volumes has also been reported using CT
scans, a modified SegNet CNNI#l, and dynamic contrast enhanced (DCE)-MRI images
in a U-net-like architecturel*], for example.

Some medical imaging vendors incorporate solutions for liver segmentation and
hepatic lesion characterization integrated in the proprietary radiologist’s workflow. For

instance, the Liver Analysis research application from Siemens Healthcare (Erlangen,

10/ 29




Germany) aims to provide Al support for liver MRI and CT reading. The tool includes
DL-based algorithms for automatic segmentation of whole liver, functional liver
segments, and other abdominal organs like spleen and kidneys (Figure 4A). It also
features an Al method to automatically detect and segment focal liver lesions,

providing lesion diameters, volume, and 3D contours (Figure 4B).

egistration

Medical image registration seeks to find an optimal spatial transformation that best
aligns the underlying anatomical structures. Medical image registration is used in many
clinical applications such as image guidance systems (IGS), motion tracking,
segmentation, dose accumulation, image reconstruction, etd?l. In clinjcal practice,
image registration is a major problem in image-guided liver interventions, especially for
the soft-tissues, where organ shape changes occurring between pre-procedural and
intra-procedural imaging pose signiﬁcﬁt challenges#’l. Schneider et all*®! showed how
semi-automatic registration in IGS may improve patient safety by enabling 3D
visualization of critical intra- and extra-hepatic structures. A novel IGS (SmartLiver)
offering augmented reality visualization was developed to provide intuitive
visualizatiﬁ by using DL algorithms for semi-autﬁlatic image registration. Results
showed a mean registration accuracy of 10.9 mm + 4.2 mm (manual) vs 13.9 mm + 4.4

(semi-automatic), hence significantly improving the manual registration.
Kuznetsova et all*l assessed the performance of structure-guided deformable image
registration (SG-DIR) relative to rigid registration and DIR using TG-132
recommendations for 14 patients with liver tumors to whom stereotactic body radiation
therapy (SBRT) was applied,_The median DSC for rigid registration was 88% and 89%
for DIR, and 90% for both SG-DIR using liver contours only and using liver structures
along with anatomical landmarks. wever, most of the existing volumetric
registration algorithms are not suitable for the intra-procedural gtage, as they involve
time-consuming optimization. In the report by Wei et al#7l, a fast MR-CT image

registration method was proposed for overlaying pre-procedural MR (pMR) and pre-
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procedural CT (pCT) images onto an intE-procedural CT (iCT) image to guide thermal
ablation of liver tumors. This method, consisting of four DL-based modules and gpe
conventional ANTs registration module, showed higher Dice ratios (around 7%
improvement) over tumors and compatible Dice ratios OEI' livers. However, its main
advantage was the computational time cost of around 7 s in the intra-procedural stage,
which is only 0.1% runtime in the conventional way (i.e.,, ANTSs).

Treatment planning concepts using the mid-ventilation and internal-target volume
concept are based on the extent of tumor motion between expiration and inspiration.
Therefore, four-dimensional (4D) imaging is required to provide the necessary
information about the individual respiration-associated motion pattern. Weick et all>]
proposed a method to increase the image quality of end-expiratory and end-inspiratory
phases of retrospective respiratory self-gated 4D MRI data sets using two different non-
rigid irrage registration schemes for improved target delineation of moving liver
tumors. In the first scheme, all phases were registered directly (dir-Reg), while in the
second next neighbors were suﬁcessively registered until the target was reached (nn-
Reg). Results showed that the Median dir-Reg coefficient of variation of all regions of
interest (ROIs) was 5.6% lower for expiration and 7.0% lower for inspiration compared

with nn-Reg. Statistically significant differences were found in all comparisons.

DIAGNOSIS

Two decades ago, the methods proposed for ML-based diagnosis required manually
extracting the features from the images. This tedious step has been partially relieved
withthe irruption of CNNs. However, techniques such as radiomics are still in use to
try to improve the performance of novel Al methods for medical diagnosis. Radiomics
concerns the high throughput extracting of comprehensible features from radiological
images that can be further analyzed in ML algorithms for classification or regression
tasks. In this section, different methods proposed for liver and pancreas imaging

diagnosis are reviewed (Table 2).
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Liver-CT
Starting with chronic liver disease, Choi et all51l presented a CNN model for staging
liver fibrosis from contrast-enhanced CT images. Before using the CT image as input of
the CNN, the liver is segmented. The testing dataset included 891 patients and the CNN
achieved a staging accuracy of 79.4% and an AUC of 96%, 97%, and 95% for diagnosing
significant fibrosis, advanced fibrosis, and cirrhosis, respectively. A different approach
ﬁs proposed by Nayak et all52], where SVM was used instead of CNN for aiding in the
diag&osis of cirrhosis and hepatocellular carcinoma (HCC) from multi-phase abdomen
CT. Features were extracted from the segmented liver in all the phases, which were
previously registered. Using 5-fold cross validation, they reported an accuracy of 86.9%
and 81% for detection of cirrhosis and HCC, respectively. o
There are also several reports exploring the role of DL in the characterization of focal
liver lesions (Figure 5). In this sense, Matake et all>] applied an ANN to assist in the
diagnosis of hepatic mases using clinical and radiological parameters exﬁcted from CT
images. The authors used 120 cases of liver diseases and implemented a leave-one-out
cross-validation method fgr training and testing the ANN, reporting an AUC of 96.1%.
Also using CT_images, Yasaka et all*] used a CNN for the differentiation of five
different types of liver masses from contrast-enhanced CT. For testing, they used 100
Liver mass images, reporting an accuracy of 84%. Similarly, Khan and Narejol]
proposed Fuzzy Linguistic Constant (FLC) to enhance low contrast CT images of the
liver before training a SVM to distinguish betwegn cancerous or non-cancerous lesions.
The classification accuracy reported was 98.3%. The proposed method also showed the

ability to automatically segment the tumor with an improved detection rate of 78% and

a precision value of 60%.

Liver and biliary system MRI
Techniques concerning MR images have also been developed for the diagnosis and
classification of focal liver lesions (Figure 6). Zhou et all>] proposed a method using a

novel CNN to grade HCC from DWIs. They applied a 2D CNN to log maps generated
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from different b-value images. In their work, they reported a validation AUC of 83%
using 40 cases. A CNN was also trained by Hamm et all5’] and Wang et all>8] to classify
six different focal hepatic lesions from T1-weighted MR images in the postcontrast
phase. They used 60 cases for testing and reported a sensitivity and specificity of 90%
and 98%, respectively. In the second part of their study, they transformed it into an
“interpretable” DL system by analyzing the relative contributions of specific imaging
features to its predictions in order to shed light on the factors involved in the network’s
decision-making process. Finally, DCE-MRI and T2-weighted MRI, together with risk
factor features, were applied to build an extremely randomized trees classifier for focal
liver lesions!*], achieving an overall accuracy of 77%.

Some advancements have also been reached in the automatic diagnosis of lesions in
the biliary system from MR cholangiopancreatography (MRCP) sequences.
Logeswaranl®0®1l trained an ANN classifier for assisting in the diagnosis of
cholangiocarcinoma. He utilized 55 MRCP studies for testing and reported an accuracy
of 94% when differentiating healthy and tumor images and of 88% in multi-disease
tests.

MRI is a superior technique in the evaluation of chronic liver disease in comparison
with CT, but making the most of it requires considerable skills and optimization at the
acquisition, post-processing, and interpretation phases!®. Al has proved ﬁeful to assist
radiologists in the MR-guided diagnosis and grading of these diseases, including liver
fibrosis and non-alcoholic fatty liver diseasel®l.

Radiomics studies have been proposed to aid in the diagnosis of liver fibrosis. Kato et
all*Yl performed texture analysis of the liver parenchyma processed by an ANN to detect
and grade hepatic fibrosis, with varying success depending on the type of MR sequence
used (AUC of 0.801, 0.597, and 0.525 for gadolinium-enhanced equilibrium phase, T1-
weighted, and T2-weighted images, respectively).

Later, Hectors et allol developed a DL algorithm for liver fibrosis staging using
gadolinium enhancement sequences acquired in the hepatobiliary phase, which showed

good to excellent diagnostic performance, comparable to that of MR elastography.
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Liver-US

Ultrasound (US) and endoscopic ultrasonography (EUS) are commonly used in the
diagnostic work-up of several pancreatic and liver lesions. Al-based solutions have also
been applied to US images in the assessment of focal and diffuse liver diseases in order
to enhance their diagnostic capabilities. Acharya et all®®l suggested a method for aiding
in the diagnosis of focal liver lesions from liver US images. The authors extracted
features from US images and trained several classifiers, obtaining the highest AUC
(94.1%) using a PNN classifier. Another approach is shown in Yao et all*’], where a
radiomics analysis was established for the diagnosis and clinical behavior prediction of
HCC, showing an AUC of 94% for benign and malignant classification. Rightly, CNN
architectures have also been developgd for US images as in the report by Schmauch et
all®8l, where a CNN was employed to help in the diagnosis of focal liver lesions from US
images. The authors used a dataset composed by 367 2D US images for training and
another dataset from 177 patients for testing, reporting a mean score of 89.1%.

There is limited experience in the use of Al with US images with regards to diffuse
liver disease. Li ef all®°l used a SVM classifier to help in the diagnosis of fatty liver from
US images. Input features were computed from ROIs selected by examiners. A total of
93 images were used for training and testing using leave-one-out cross-validation. The
authors reported an 84% accuracy for normal livers and 97.1% for fatty livers.
Moreover, a mix of radiomics features and DL techniques were used with two-
dimensional shear waver elastography (2D-SWE) for assessing liver fibrosis stages in
Wang et all”0]. Results reached AUCs of 97% for cirrhosis, 98% for advanced fibrosis, and

85% for significant fibrosis.

Pancreas CT and PET/CT
The role of Al in the detection of pancreatic lesions from CT has extensively been
investigated. Pancreatic cancer detection is_a challenging task for radiologists and its

improvement is a hot research topic. Chen ef all”!l developed a DL-based tool including
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a segmentation CNN and a 5-CNN classifier for the detection of pancreatic cancer
lesions, with a special focus on lesions smaller than 2 cm, in abdomina scans. Their
model was able to distinguish between cancer and control scans with an AUC of 0.95,
89.7% sensitivity, and 92.8% specificity. Sensitivity for theéetection of lesions smaller
than 2 cm was 74.7 %71, Still focused the identification of lesions smaller than 2 cm,
Alves et al”l proposed an automatic framework for pancreatic ductal adenocarcinoma
(PDAC) detection based on state-of-the-art DL models. They trained an nnUnet
(nnUnet_T) on a dataset including contrast-enhanced CT scans from 119 PDAC patients
and 123 healthy individuals for automatic lesion detection and segmentation.
Additionally, two other nnUnets were trained to investigate the impact of anatomy
integration, ﬂth nnUnet_TP segmenting both the pancreas and the tumor and
nnUnet_MS segmenting the pancreas, tumor, and adjacent anatomical stryctures. All
three networks were compared on an open access external dataset, with nnUnet_MS
offering the best results with an AUC of 0.91 for the entire dataset and of 0.88 for lesions
smaller than 2 cml72l. Several studies have focused on the role of Al-based sﬁutions in
the detection of pancreatic cystic lesions. Wei et all”! presented a ML-based computer-
aided diagnosis system to help in the diagnosis of pancreas serous cystic neoplasms
from CT images. They extracted radiomic features from manual ROIs outlining the
peripheral margin of each neoplasm. After selecting the most important features by
using le absolute shrinkage selection operator regression, they trained a SVM
classifier by a 5-fold cross validation with 200 patients. The authors used a validation
cohort of 60 patients and reported and AUC of 83.7%, a sensitivitﬁof 66.7%, and a
specificity of 81.8%. Along the same lines, Li et all¥ also proposed a computer-aided
framework for early differential diagnosis of pancreatic cysts without pre-segmenting
the lesions by using densely connected convolutional networks (Dense-Net). In this
approach, saliency maps were integrated in the framework to ist physicians to
understand the decisions of the DL methods. Accuracy reported on a cohort of 206

tients with four pathologically confirmed subtypes of pancreatic cysts was 72.8%,

significantly higher than the baseline of 48.1% according to the authors. Park et all?!
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developed a 3D nnU-Net-based model for the automatic diagnosis of solid and cystic

pancreatic neoplasms gn abdominal CT scans. The model was trained on CT scans (852
patients) from both patients who underwent resﬁion for pancreatic lesions and
subjects without any pancreatic abnormalities, and performance was evaluated using
receiver operating characteristic analysis in a temporally independent cohort (test set 1,
including 603 patients) and a temporally and spatially independent cghort (test set 2,
including 589 patients). This approach sho a remarkable capacity to identify solid
and cystic pancreatic lesions on CT, with an AUC of 0.91 for the test set 1.00 and 0.8Z for
the test set 2. Furthermore, it offered a high sensitivity in the identification of solid
lesions of any size (98%-100%) and cystic lesions of at least 1 cm (92%-93% )75

In the pursuit of more accurate models, some authors have combined CT images with
other biomarkers, such as molecular markers or multimodal images. For example, Qiao
et all’®l used CT scans and serum tumor markers (including serum carbohydrate
antigens 50, 199, and 242) to train different types of networks (CNN, FCN, and U-Net)
to diagnose pancreatic cancer with high sensitivity and specificity. Li ef all77] also used a
hybrid SVM-RF model to classify normal and pancreas cancer from PET/CT images.
First, they segmented the pancreas from CT images and registered the CT and PET
series, then they extracted features from the segmented ROI in both types of studies.
The authors tested the model using 10-fold cross validation with 80 cases and achieved

96.47 % accuracy, 95.23% sensitivity, and 97.51% specificity.

Pancreas-MRI
MR is the technique of election for the assessment of complex pancreatic conditions.
Thus, its association with Al is regarded as promising to help radiologists in diagnostic
dilemmas regarding this organ. For instance, radiomics has been proposed as a way to
predict the malignant potential of pancreatic cystic lesions, differentiating benign cysts
from those likely to transform into pancreatic cancer!7s.

There is limited experience with the use of Al in the detection of focal lesions with

pancreatic MR studies. Corral et all”®l proposed the use of SVM to classify intraductal
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pillary mucinous neoplasms (IPMN). First, features were extracted using a CNN
from T2-weighted and post-contrast T1-weighted MR images. For validation, authors
used 10-fold cross-validation using 139 cases. They achieved an AUC of 78%. Kaissis et
all®l also developed ﬁupewised ML algorithm which predicted the above-versus-
below median overall survival of patients with pancreatic ductal adenocarcinoma, with
87% sensitivity and 80% specificity, using preoperative DWIs.

Lastly, the generation of synthetic MR images of pancreatic neuroendocrine tumors
(PNET) has been explored using GANs. This data augmentation technique can alleviate
the relative low abundance of these type of pancreaﬁ tumors in order to train Al
models. Gao and Wang then used the synthetic images to evaluate the performance of a

CNN in the prediction of PNET grading on contrast-enhanced images!®!l.

Pancreas-EUS

Application of Al to EUS has focused on the differentiation of focal pancreatic lesions.
In this sense, Sdftoiu et all82l developed an ANN to help in the difficult differentiation
between PDAC and focal chronic pancreatitis (CP) with EUS-elastography. They
included 258 patients in the study and reported 84.27% testing accuracy using 10-fold
cross-validation. In addition, Kuwahara et all®3 used a CNN to assist in the distinction
between benign and malignant IPMNs of the pancreas from EUS images. Fﬁr testing,
the authors used images from 50 patients, obtaining an AUC of 98% and sensitivity,
specificity, and accuracy values of 95.7%, 92.6%, E 94%, respectively. Finally, in the
report by Marya ef all34 an EUS-based CNN model was trained to differentiate
autoimmlﬁle pancreatitis (AIP) from PDAC, CP and normal pancreas (NP). Results
obtained from 583 patients (146 AIP, 292 PDAC, 72 CP, and 73 NP) degonstrated a
sensitivity of 99% and a specificity of 98% to distinguish between AIP and NP, 94% and
71% for AIP and CP, and 90% and 93% for AIP and PDAC. Furthermore, the sensitivity
and specificity to distinguish AIP from all study conditj (ie., PDAC, CP, and NP)

were 90% and 85%, respectively. In view of these results, the application of Al to EUS in
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the assessment of focal pancreatic lesions is promising, although limited due to the

short number of available databases for algorithm training and validation[85L.

TREATMENT PREDICTION

Prediction of treatment response and patient outcome based on Al is a very appealing
idea which has been explored in a number of liver and pancreatic diseases, particularly
in patients with HCC (Eble 3).
The idea of using ML to predict the prognosis of patients with HCC emerged decades
ago. Already in 1995 the progression of hepatectomized patients with HCC was
analyzed using ANNI5¢]. Liver volume, which was measured in CT studies, was used,
among others, as an input parameter. Fifty-four example cases were used to train an
ANN composed of three layers, and the model was successfully used to predict the
prognosis of 11 patients. Nevertheless, the model was not tested with enough cases to
determine its usefulness in actual clinical activity. However, the rise of Al has prompted
many more works to be developed in the last few years. The response to intra-arterial
ﬁeatment of HCC prior to intervention has been predicted using MLI®748], Specifically,
gistic regression (LR) and RF models were trained with 35 patients using features
extracted from clinical data and the segmentations of liver and liver lesions in a
contrast-enhanced 3D fat-suppressed spoiled gradient-echo 'Iﬁ-weighted sequence in
the arterial phase. Both trained models predicted treatment response with an overall
accuracy of 78% (62.5% sensitivity, 82.1% specificity). Qther authors tried to predict the
early recurrence of HCC employing a CNN model based on the combination of CT
images and clinical datal®!. They used 10-fold cross-validation with data from 167
patients and reported an AUC of 0.825. A RestNet CNN model was also trained for
preoperative response prediction of patients with intermediate-stage HCC undergoing
transarterial chemoembolizationl??l. The model used the segmented ROI of the tumor
area in a CT study as input. The training cohort included 162 patients and the two
validation cohorts included 89 and 138 patients, respectively. The authors reported an

accuracy of 85.1% and 82.8% in the two evaluation datasets.
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Radiomics has also been applied to predict treatment response of HCC to different
therapies based on studies of several imaging modalities. The early recurrence of HCC
after curative treatment was evaluated using an LR model based on radiomics
features(®!l, which were extracted from manually delineated peritumoral areas in CT
images. They used 109 patients for training and 47 patients for validation, reporting an
AUC of 0.79 with the validation dataset. Guo et al®? also predicted the recurrence of
HCC after liver transplantation. For that purpose, authors extracted radiomic features
from ROIs delinegted around the lesion in arterial-phase CT images. Then, they
combined clinical risk factors and iomic features to build a multivariable Cox
regression model. The authors used a training dataset of 93 patients and a validation
dataset of 40 patients and they reported a C-index of 0.789 in the validation dataset.

ML models have also been used to predict hepatobiliary toxicity after liver SBRTII.
The authors built a CNN mgqdel which was previously pretrained using CT images of
human organs. Then, using transfer learning, the model was trained with liver SBRT
cases. They used 125 patients for training and validation using a 20-fold cross-
validation approach, reporting an AUC of 0.79.

Regarding the pancreas, postoperative pancreatic fistulas were predicted using ML-
based texture analysisI®! performed to extract features from ROIs segmented in non-
contrast CT images. Then, after dimension reduction, several ML classifiers were built
using Auto-WEKA 2.0, obtaining the best results using a REPTree classifier. The authors
used 10-fold cross-validation using data from 110 patients, and reported an AUC of
0.95, sensitivity of 96%, and specificity of 98%.

DISCUSSION

In recent years, a large number of Al-based solutions have been developed with the aim
of easing and streamlining the radiologist’s workflow. Many of these tools are focused
on imaging of the liver, biliary system, and pancreas. The developed tools range from
improving image quality to the prediction of the patient’s prognosis after treatment.

The literature shows that many Al-based solutions targeting liver and pancreas imaging
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allow for improved disease detection and characterization, lower inter-reader
variability, and increased diagnostic efficiency. A key factor for their success in the
clinical setting is to attain a seamless integration in the radiologist’s workflow, requiring
minimal additional work by the radiologist and adding significant value to the
radiologist’s work. In this sense, it is crucial that there is a fluid collaboration between
the radiologists, technicians, and bioengineers in charge of the tools.

Image analysis and processing are transversal parts of most Al methods described in
this review. Improving their performance is thus a key task. Unfortunately, some image
processing techniques such as registration are still time-consuming, hence making the
incorporation of some of these procedures in clinical practice unfeasible. Some new
methods are arising to minimize this impact(®], especially in critical applications like
image IGS. Semi-automatic or even automatic segmentation is another important step
that some of the AI tools may incorporate for diagnosis or prognosis purposes!®l,
Therefore, it is of paramount importance for these algorithms to achieve a high level of
performance.

The literature reports many applications of Al to aid in the detection and
characterization of pancreatic and liver focal lesions using a variety of imaging
modalities as input, either single (e.g., T1-weighted MRI) or in combination with other
techniques and data (e.g., %weighted and DCE-MRI plus risk factors). In chronic liver
disease, radiomics-based tools have been developed to assist in the diagnosis and
grading of hepatic fibrosis, among others. These models have been built using different
imaging modalities, such as MRI or US.

With regard to the prognosis of liver, biliary or pancreatic diseases, tools based on
radiological information have hardly been developed. Many of these tools are focused
on the prognosis of HCC based on information extracted from CTI’l. In this field of
research, literature shows a clear trend toward integrating genetic information!-102l,
There are also studies that try to include variables extracted from clinical data and
laboratory valuesl(103104], In a scenario that advances towards integrated diagnosis,

increasing volumes of data of different nature are available. This should allow for the

21/29




generation of more accurate predictive models of clinical prognosis using information
from many sources.

For the Al-based tools developed_to be used in daily clinical practice, they must
obtain regulatory clearance, such as Food and Drug Administration (FDA) approval in
the United States or CE marking in Europe. Despite the explosive production of such
tools in the last years, to date only a small group of them have obtained this approval.
One of the main problems is the lack of appropriate annotated data. Without large
datasets of properly labeled studies, the performance of data-hungry algorithms like
CNNs will not be sufficient to be massively deployed in clinical environments.
Furthermore, algorithms demand diverse data, such as multi-centric and multi-vendor,
to avoid selection biases that would challenge their implementation in a real-world
environmentl1%5l. Another limitation of most Al-based tools found today is that they are
aimed at a very concrete application (narrow Al applications), within a specific imaging
modality, rather than being valid for a wide range of tasks at the radiologist’s work
practice.

Yet, the general attitude of radiology staff toward Al is positive. In a recent survey,
European radiographers declared excitement about AI (83%), although only 8% had
been taught on this matter in their qualification studies/%l.

In another survey, European radiologists regarded the outcomes of Al algorithms for
diagnostic purposes as generally reliable (75.7%), and algorithms for workload
prioritization as very helpful (23.4%) or moderately helpful (62.2%) to reduce the
workload of the medical staffl107].

The sentiment of gastroenterologists toward Al is also generally favorable, with a
wide majority of United Kingdom!'®! and European['® specialists perceiving it as
beneficial to key aspects of their clinical practice. Their main concerns according to
these studies are related to algorithm bias, lack of guidelines, and potential increase in

procedural times and operator dependence.

CONCLUSION
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The rapid advance of Al is already transforming the gastrointestinal field with the
development of applications aimed to assist and streamline image diagnosis.
Traditional diagnostic imaging techniques such as US, EUS, CT, MRI, and PET/CT are
already benefitting from a variety of Al algorithms that can perform automatic or semi-
automatic segmentation and registration of the liver and pancreas and their lesions, aid
the diagnosis and characterization of pancreatic and liver focal lesions and diffuse
illnesses, improve image quality, accelerate image acquisition, and anticipate treatment
response and patient prognosis. Moreover, with the use of radiomics, Al can add
quantitative information previously undetected by radiologists to radiological reports.
The massive adoption of Al in radiology of pancreatic and liver diseases is still
incipient, but irreversible, and the sector is clearly moving in this direction. Advances in
the field, such as the availability of regulatory cleared, robust algorithms trained and
validated multicentrically, increased awareness on Al by the medical staff, and access to
products that seamlessly integrate with their workflow, should pave the way for a rapid
adoption of Al in the clinical practice, impacting outcomes of hepatic and pancreatic

patients for the better.

Figure 1 PubMed results by year using the search terms. Artificial intelligence

radiology (top) and artificial intelligence AND (liver OR pancreas) (bottom).

Figure 2 Relation between artificial intelligence and related subdisciplines, neural
network architectures, and/or techniques. ANN: Artificial neural network; FCN: Fully
convolutional network; CNN: Convolutional neural network; GAN: Generation
adversarial network.

Figure 3 Diagram of a convolutional neural network used for classification of a focal
liver lesion in a computerized tomography image. HCC: Hepatocellular carcinoma;

CT: Computed tomography.
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Figure 4 In-house experience on liver assessment with artificial intelligence.
Magnetic resonance studies of a patient with liver focal lesions (liver hemangiomas),
processed with the Liver Analysis research application from Siemens Healthcare. A:
Automatic segmentation of whole liver, liver segments, and other abdominal organs; B:
Automatic detection, segmentation, and measurement of the two liver hemangiomas.

Figure 5 Computerized tomography scan of a 61-year-old male patient with colon
carcinoma and liver metastases. The intensity histograms of regions with and without
metastases are different; hence, the first order radiomic features(110, which are based on

the intensity histogram will potentially be different.

Figure 6 Sixteen-seven-year-old patient with pancreatic carcinoma and liver
metastases treated with chemotherapy. The Digital Oncology Companion (Siemens
Healthineers, Germany) artificial intelligence-based prototype automatically segments
liver, portal and hepatic vessels, lesions, and surrounding anatomical structures. From
left to right: screenshots of the segmented liver, vessels, and lesions; and generated 3D

models.
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Table 1 Works proposed for automated image analysis

Image analysis Anatomical Modality Al model Ref.

area
Segmentation Pancreas MRI CNN [34,35,111]
UDCGAN  [112]
3D-Unet [36]
Liver CT SSC (no AI)  [38]
PA (Atlas-no [41]
Al)
MRI CNN [39,40,44,113]
GAN [45]
Registration Liver CT; MRI CNN [50]
SG-DIR (no [51]
Al

Cycle-GAN  [49]
+ UR-Net
4D-MRI Non-rigid [52]

MRI: Magnetic resonance imaging; CT: Computerized tomography; 4D-MRL
Four-dimensional magnetic resonance imaging; CNN: Convolutional neural
network; UDCGAN: U-Type densely connected generation adversarial
network; SCC: Sparse shape composition; Al: Artificial _intelligence; PA:
Probabilistic atlas; GAN: Generation adversarial network; SG-DIR: Structure-
guided deformable image registration; UR-Net: Unsupervised registration

network.

Table 2 Summary of works based in artificial intelligence for automated

diagnosis of pancreas and hepatobiliary system diseases

Anatomical Modality AI model What is diagnosed? Ref.
area
Liver Scintiscan ANN Chronic hepatitis and cirrhosis  [114]
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Biliary
system

Pancreas

MRI

usS

MRI

cT

ANN

CNN

SVM

KNN, SVM,
RF
CNN

Extremely
randomized
trees

PNN

SVM

CNN

ANN
SVM
Hybrid
SVM-RF
SVM
CNN

HCC, intra-hepatic peripheral
cholangiocarcinoma,
hemangioma, metastases
HCC, malignant liver tumors,
indeterminate mases,

hemangiomas, cysts

Liver fibrosis

Cirrhosis and HCC
Malignant liver tumors

HCC

HCC
Simple cyst,
hemangioma, FNH, HCC, ICC

cavernous

Adenomas, cysts,
hemangiomas, HCC,
metastases

Benign and malignant focal
liver lesions

Fatty liver

HCC

Focal liver lesions: Angioma,
Metastasis, HCC, Cyst, FINH
Liver fibrosis stages
Cholangiocarcinoma

Lymph node status in ICC

Pancreas cancer

Serous cystic neoplasms

IPMN, mucinous cystic

[56]

[57]

[53,54]

[55]
[58]
[115]

[59]
[60,61]

[62]

[68]

[71]
[69]
[70]

(72]
[63,64]
[116]
[77]

[74]
[75]
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neoplasm, serous  cystic
neoplasm, solid
pseudopapillary tumor
MRI SVM IPMN [79]
us ANN Chronic pancreatitis, [82]

pancreatic adenocarcinoma

CNN Malignancy in IPMN (83]
Autoimmune pancreatitis, [84]
pancreatic ductal
adenocarcinoma, chronic
pancreatitis

CT: Computerized tomography; MRI: Magnetic resonance imaging; US:
Ultrasound; ANN: Artificial neural networks; CNN: Convolutional neural
network; SVM: Support vector machine; KNN: K-nearest neighbors; REF:
Random Forest; PNN: Probabilistic neural network; HCC: Hepatocellular
carcinoma; FNH: Focal nodular hyperplasia; ICC: Intrahepatic

cholangiocarcinoma; IPMN: Intra-ductal papillary mucinous neoplasm.
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