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Abstract

Chronic wound healing has long been an unmet medical need in the field of wound
repair, with diabeteg_being one of the major etiologies. Diabetic chronic wounds
(DCWs), especially diabetic foot ulcers, are one of the most threatening chronic
complications of diabetes. Although the treatment strategies, drugs, and dressings for
diabetic chronic wounds have made great progress, they remain ineffective in some
patients with refractory wounds. Stem cell-based therapies have achieved specific
efficagy in various fields, with mesenchymal stem cells (MSCs) being the most widely
used. Although MSCs have achieved good feedback in preclinical studies and clinical
trials in the treatment of cutaneous wounds or other situations, the potential safety
concerns associated with allogeneic/autologous stem cells and unknown long-t
health effects need further attention and supervision. Recent studies have reported that
stem cells mainly exert their trauma repair effects through paracrine secretion, and
exosomes play an important role in intercellular communication as their main bioactive
component. MSC-derived exosomes inherit the powerful inflammation and immune
modulation, angiogenesis, cell proliferation, and migration promotion, oxidative stress
alleviation, collagen remodeling imbalances regulation of their parental cells, and can
avoid the potential risks of direct stem cell transplantation to a large extent, thus

demonstrating promising performance as novel "cell-free" therapies in chronic wounds.




This review aimed to elucidate the potential mechanism and update the progress of
MSC-derived exosomes in diabetic chronic wound healing, thereby providing new
therapeutic directions for diabetic chronic wounds that are difficult to be cured using

conventional therapy.
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Core Tip: Diabetic chronic wounds are one of the most serious chronic complications of
diabetes, and the efficacy of stem cell therapy for refractory chronic wounds has been
studied previously. Stem cell-derived exosomes are one of the important active
components of stem cell paracrine secretion, which inherit the wound repair capacity of
parental cells as parts of novel cell-free therapies ilﬁddition to cell-bases ones. Herein
we discuss the mechanism and latest progress of mesenchymal stem cell-derived

exosomes in promoting diabetic chronic wound healing.

INTRODUCTION

Wound healing after skin tissue injury relies on a dynamic chain of physiological
reactions including hemostasis, inflammation, cell proliferation, and tissue
remodelingl!l. Any step out of balance, such as excessive inflammation, impaired
fibroblast migration and proliferation, abnormal collagen formation and deposition,
and hindered re-epithelializat'ﬁ'l, ultimately leads to delayed wound healing and
formation of chronic wounds. Chronic wounds are those that have failed to proceed
through an orderly and timely reparative process to produce anatomical and functional
integrity of the injured sitel?l. They refer to wounds caused by multiple factors that have

not healed or have not demonstrated a tendency to heal after a certain period clinically,




with a chronic duration ranging from 4 to 12 wk[34]. Various pathological states result in
chronic wound development, including diabetes, pressure injuries, infections, and
arterial/venous insufficiency of which reports are similar in China and developed
Western countriesl*¢l, which have the most complicated pathogenesis and therapeutic
stratﬁies being diabetic chronic wounds (DCWs).

Diabetes mellitus (DM) is a metabolic disease characterized by elevated blood
glucose levels, of which DCWs are among the most threatening cEplications. The
combination of a high-glucose environment and several biological factors, including
ischemia and hypoxia, abnormal inflammatory response, excessive oxidative stress, and
peripheral neuropathy, contributes to wound formation”?l. Such wounds have
problems of protracted healing, long treatment time, difficulties in management, high
cost, repeated attacks, and high disability/mortality rates, resulting in heavy physical,
psychological and economic burdens(®!!l, The intervention of DCWSs cannot be
underestimated based what is mentioned above. Hence, solving persistent
inflammation, impaired cell proliferation and migration, decreased angiogenesis, and
remodeling of the extracellular matrix (ECM) is important. Innovative wound repair
methods, such as local negative pressure, growth factors, and autologous platelet-rich
gels, have remarkable effects on healing DCWsl'2-15]. However, more specific treatment
options are required for refractory and contraindicated wounds.

With the rapid development of tissue enﬁeering, cell therapies have gradually
become widely used in various disciplines. Stem cells can be used i generative
medicine and play an indispensable role in wound repairl'¢l, of which mesenchymal
stem cells (MSCs) are the most commonly used. MSCs have self-renewal abilities and
multi-directional differentiation potential, participating in damage repair through
intercellular communication and bioactive factor secretion, finally achieving the effect
of promoting wound healing/'7l. Clinical trials of Cs for treating various types of
cutaneous wounds are currently in full swing, and their efficacy and safety in
promoting wound regeneration have been initially demonstrated. As clinical trials

continue to progress, further attention and supervision need to be paid to their potential




safety issues of proliferative lesion formation, abnormal organ reaction and unknown
long-term health effects after transplantation(18-20].

Studies have revealed stem cells promote repair and regeneration mainly through
paracrine signaling, whereas exosomes are one of their important paracrine active
componentsi2ll. MSC-derived exosomes (MSC-Exos) carry genetic information,
functional RNAs, and proteins from parental cells, demonstrating wound healing
effects via intercellular communication after these biologically active substances are
acquired by recipient cells224. Thus, MSC-Exos have broad application prospects in
diabetic wound repairl®,_however, they have not yet been carried out in clinical
practice. The important role of MSC-Exos in all stages of diabetic wound healing and
the preclinical application are highlighted in this review, to pave the way for their use

as an effective tool in the management of these harmful diabetic complications.

DIABETIC CHRONIC WOUNDS: HEALING DISORDERS CAUSED BY VARIOUS
CHANISMS

DM is a metabolic disease characterized by elevated blood glucose levels, which poses a
serious threat to human health. The continuous progression of hyperglycemic toxicity
without effective control will affect macrovascular, microvascular, and peripheral
nerves throughout the body and involve various organs such as the brain, eyes, heart,
kidney, and skin, resulting in various diabetic chronic complications(2tl. DCWs are one
of the most common and threatening chronic complicatiﬁs, often accompanied by
infection or deep-tissue destruction/?l. Protracted wounds are the most common cause
of non-traumatic amputations. Diabetic foot glcers (DFUs) are characterized by wounds
on the feet, which are the most typical, and patients with DFUs have a 2.5 times higher
risk of 5-year mortality_than those with nonel®l. The overall mortality of DFUs within 5
years is nearly 50%[2], and approximately 20% of moderate-to-severe DFUs will lead to
amputation; the 5-year mortality rate after amputation exceeds 70%[3].

Impaired wound healing processes caused by hyperglycemia-induced disturbances

in wound-linked cellular behaviors contribute to diabetic wound healing difficulties(”:




3. Hyperglycemia, oxidative stress, and insulin resistance affect the function of

vascular smooth muscle cells, endothelial cells, and platelets, which in turn may lead to
abnormal coagulation processes and affect platelets of triggering for subsequent
inflammatory and proliferative phasesl®2l. The hyperglycemic microenvironment can
lead to dysfunction of immune and inflammatory cells and dysregulation of
inflammatory factors. Perpetuated inflammatory states induced by increased mast cell
degranulation®3], excessive extracellular traps produced by neutrophilsi®], dysregulated
and persistent M1 (pro-inflammatory) macrophage polarization!®], pro-inflammatory
factors (IL-1B, TNF-a, and IL-6) overexpression, and anti-inflammatory factors (IL-10
and TGF-f) deficiency finally hinder wound healingl?l. The proliferative phase of
diabetic wound healing is characterized by disturbed physiological functionsé
keratinocytesl3l, fibroblastsl®”l, and endothelial cells®], then the impaired re-
epithelialization, granulation tissue formation, matrix deposition, and angiogenesis
affect wound healing. Various factors also affect the function and activity of these cells
during this phase, including decreased chemokines with pro-angiogenesis produced by
macrophages, hemoglobin glycation, vascular stenosis, increased oxygen consumption
affecting oxygen-dependent cellular behaviors, and impaired nerve fiber

eneration”313%40] Remodeling of the ECM spans the entired'ljury response, and
fibroblasts are the major cell type responsible for this phasel®l. Sequential changes in
the ECM require a balance between collagen degradation and synthesis, achieved
through temporal regulation of the dynamic changes in the ratio of matrix
metalloproteinases (MMPs) to tissue inhibitors of metalloproteinases (TIMPs)4142]l. Such
changes in DCWs are unbalanced and lead to difficult wound healing and excessive
scarringl*"8l. However, no clear demarcation exists between the various stages of
wound healing, and functionally impaired cells can interact, eventually leading to poor
diabetic wound healing, progressing to local infection, gangrene, and even amputation.
Therefore, the most important aspect of effectively treating DCWs is to identify an
appropriate approach that can comprehensively improve abnormalities in all phases of

wound healing.




CURRENT STRATEGIES AND PROMISING DIRECTIONS FOR DIABETIC
CHRONIC WOUNDS REPAIR

Traditional strategies for DCWs management include glycemic control, conventional
dressings (e.¢., hydrocolloids, alginates, and silver ions, efc.), thorough debridement
(e.g., surgical, mechanical, ultrasonic waterjet, collagenase, and maggot, etc.), wound
off-loading, autologous skin and skin substitute grafting, infection control, and
revascularization, efc. These strategies are used to create the wound bed
microenvironment suitable for repair through moisture balance maintenance, necrotic
or inactivated tissues removal, systemic and local infections control, and local blood
flow improvementl134+-46l, Negative pressure wound therapy can also be used to achieve
its role in improving wound exudate drainage, enhancing local perfusion, removing
bacterial products, promoting granulation tissue growth, and facilitating wound
healingl¥l. However, these conventional treatments are often ineffective in many
patients because of impaired cell function around the wound sites caused by
underlying microenvironmental alterations*sl. Several innovative wound adjuvant
therapies, including exogenous supplementation of growth factors*’], platelet-rich
plasmal®], autologous platelet-rich gels('> 51], and hyperbaric oxygen therapyl2 have
been developed to promote the activity and function of damaged cells and offer the
possibility of treating unselected refractory wounds. However, an updated systematic
review has revealed that some measures had positive effects on accelerating wound
healing, while others had limited impacts on diabetic ulcer healingl>l. However, the
overall efficacy of various treatment modalities for DCWs remains unsatisfactory, and

effective therapeutic strategies need to be continued.

STEM CELL-BASED THERAPIES BECOME HOT TOPICS, COMING EXOSOMES

ﬁTO BEING
tem cells have the potential for self-renewal and multidirectional differentiation with

great research and application value in life sciences, clinical trials and disease research.




Stem cell-based therapies are now approved by several countries, and have been widely
used in various disciplines. MSCs are currently the main experimental cell sources and
have shown their excellent therapeutic potential and value in clinical trials in the field
of regenerative medicine[1654].

MSCs provide assistance in all phases of wound healing by exerting their functions of
regulating skin homeostasis and wound healing through migration into the skin
damage site and interaction with skin cells and can influence the function of these cells
by paracrine secretion of bioactive factors and differentiation into them/[>>%l. As MSCs
have exhibited wound healing in many preclinical studies as powerful tools for
regulating inflammation, promoting cell proliferation and migration, angiogenesis, and
collagen synthesisl®”%], the application of MSCs for DCWs contributes to progress
toward clinical trials. Twenty-five clinical trials of MSCs for diabetic ulcers have been
conducted or are recruiting subjects, which are recorded in the ClinicalTrials.gov
database (clinicaltrials.gov).

Previous clinical studies have demonstrated that MSC transplantation in patients
with DFUs is safe and feasible with the properties of impm\ﬁ"lg microcirculation,
wound healing, ulcer recurrence, and amputation!®-%3l. However, stem cell therapies are
still in their early clinical stage, further attention and supervision are required of
declined performance during production and application as cellular senescence and loss
of multipotency during ex vivo expansion and from variable donorsl®65], decreased
survival rate caused by advanced glycosylation end productsl®l, potential safety issues
as proliferative lesion formation and abnormal organ reaction/?’l, and unknown long-
term health effects after transplantation. Basjc and clinical researches related to
allogeneic/autologous stem cells are subject to the International Society for Stem Cell
Research Guidelines for Clinical Translation of Stem Cells and national ethical
guidelines and related guidelines/regulations[2067].

MSCs exert their repair and regenerative effects mainly through paracrine signaling,
and exosomes are one of the important active components!2!l that provide a more stable

entity that minimizes the potential safety concerns for cell transplantation. MSC-Exos




play an important role in intercellular communication by carrying various important
functional substances of parental cells, being used of promoting wound healingl6869.
Compared to direct cell transplantation, MSC-Exos avoid the immune rejection because
of low immunogenicity; allow to cross various biological barriers and avoid the risk of
embolism from intravenous injection based on their smaller sizes!”]; the dose and
fraction can be adjusted artificially and genetic modifications are easier and saferl”";
avoid the problem of malignant transformation; and allow to repair diabetic
complications through multiple actions/”2l. They can also be used as ideal carriers for
carrying and delivering therapeutic drugs, genes, enzymes, or RNAsI73, and their
efficiency and targeted transport capacity can be tuned through pretreatment or
engineering transformation!”’!, demonstrating their promising applications in the field

of repair and regeneration.

STEM CELL-DERIVED EXOSOMES: NOVEL CELL-FREE STRATEGIES

osomes biology
The concept of “exosomes” was first proposed in 1981 by Trams et all?>], using to
collectively refer to extracellular vesicles (EVs) that originated from the exudation of
various cell line cultures. The currently defined exosomes were first discovered in sh
reticulocytes and considered cellular wastel”®78]. Of note, “EVs” is the preferred term by
the International Society for Extracellular Vesicles (ISEV) to describe all nanoparticles
with lipid bilayer structures released by cells[7I.

Exosomes, the biological nanoscale spherical lipid bilayer vesicles[®, can be reted
by almost all cell types and are widely present in cell culture supernatants and many
body fluidsl8!l, Their diameters range from 10 to 200 nm. In addition to exosomges, EVs
also include microvesicles that are also called ectosomes with a diameter of 100-1000
nm, and apoptotic bodies larger than 1000 nm according to different sizes and
biogenesis!®283l. The types and functions of the bioactive substances carried by exosomes
differ according to their cellular origins and adjacent cellular components!34. The major

substances include genetic information, RNA species (nRNA, tRNA, rRNA, miRNA,




IncRNA, circRNA, efc.), proteins, lipids, cytokines, and growth factors/®35¢l. Exosomal
proteins include intrinsic components involved in exosome biogengsis, such as fusion-
related proteins (GTPases, annexins, flotillin, and Rab proteins), heat shock proteins
(HSP70 and HSP90), tetraspanins (CD63, CD81, CD82, and CD9), ESCRT complex, and
specific functional proteins originating from parental cells87l. Apart from serving as a
medium for cellular communication, some proteins are also involved in the membrane
composition and biosynthesis as identified biomarker proteins and can provide stability
and permeability in concert with phospholipid bilayers.

Exosomes originate from endosomes durin%eneration, circulation, degradation, and
liberation!8l. Extracellular substances fuse with early sorting endosomes through
plasma membrane invagination and endocytosis, and begin to accumulate bioactiﬁ
substances. Eventually, they mature into late sorting endosomes, which invaginate to
form intraluminal vesicles &lat can then generate multivesicular bodies (MVBs)[6888],
MVBs can be absorbed by lysosomes comprising a degradative pathway, or they can
undergo a specific exocytotic process whereby they fuse with the plasma membrane to
release exosomes into the extracellular spacel®l. After release, they act as mediators of
intercellular a intra-organ communication to transfer the contained bioactive
substances to recipient cells through direct fusion, endocytosis, and receptor-ligand
binding to affect their functions/®?l, participating in the body's physiological and

pathological state adjustment(%2I.

Isolation and characterization of exosomes

The extraction of exosomes is primarily based on their physicochemical properties. This
process is difficult b se of the heterogeneity of exosomes derived from different cell
origins, the possible existence of subpopulations of exosomes with different functions
and phenotypes even when extracted from a single cell line, and multiple EV subtypes
with similar biophysical properties!®3l. Therefore, different isolation methods should be
targeted for different purposes!®’l. Differential ultracentrifugation is the most widely

used separation technique and is also known as the gold standard for isolation, while




the main principle is to harvest the desired components based on size and density
differences/?l. Polymer precipitation uses polyethylene glycol to harvest exosomes
under centrifugal conditions by reducing their solubilityl®. Size-exclusion
chromatographyl?tl and ultrafiltration!*”l are both based on size differences between
exosomes and other components, alﬂﬁugh they may adulterate other particles of
similar size. Inmunoaffinity capture is based on the specific binding of antibodies and
ligands to isolate exosomes from a heterogeneous mixturel®l. Current isolation and
purification techniques have varying effects and many problems such as low purity and
recovery, structural damage, and time and cost consumption, making achieving
efficient enrichment difficult, which has become a bottleneck of the translational
applications of exosomes/®¥l. Hence, continuously exploring new dsolation and
purification techniques or combining multiple techniques is necessary to improve the
isolation efficiency and thus obtain ideal exosomes.

Exosomes are mainly characterized by external characteristics (morphology and size
detection) and the identification of surface markers(f7l. As mentioned above, some
protein components of exosomes serve as surface protein markers for identification. The
ISEV has proposed the need to identify two apes of proteins as follows: one is the
biomarker proteins shared by exosomes to determine whether the extracted
components are exosomes, and the other is cell-type-specific exosomal proteins that
need to be identified to deterrgine cellular originl”l. Therefore, exosomes can be
characterized by detecting their morphology using transmission electron microscopy,
their size and concentration by dynamic light scattering, and nanoparticle tracking
analysis technology, and their marker proteins by western blot, enzyme-linked

immunoassay, and flow cytometry!®7l.

MSCs derived exo es and biological functions
Stem cells have self-renewal abilities and multi-directional differegtjation potential,
while MSCs are one of the most frequently used and promising adult stem cells that can

be derived from most adult tissues such as the bone marrow, adipose tissue, and




umbilical cord[®1%l. Bone marrow-derived MSC-Exos (BMSC-Exos) are biologically
stable, have low immunogenicity, and exhibit good proliferation and viability after
transplantation. They are most commonly used in clinical trials and can play a
prominent role in various disorders, especially bone-related diseases(!?ll. Umbilical
cord-derived MSC-Exos (UCMSC-Exos) can be isolated non-invasively, with low
immunogenicity and strong self-renewal and proliferation ability, although it has
limitations in maintaining bioactive and clinical therapeutic transport[102. Adipose-
derived MSC-Exos (AMSC-Exos) have relatively abundant sources that can be easily
obtained by painless minimally invasive surgery; they are also pluripotent, plastic, easy
to store, and stable in blood or body fluids!!®l. Exosomes of different origins share most
of their bioactive factors and are generally similar in their biological functions; however,
their specific biological properties depend on the molecules that are specifically
expressed 104,
23

MSC-Exos are involved in intercellular munication through the transfer of
proteins, RNA, DNA, and bioactive lipj that can be delivered to target cells to
regulate their activities and functionsl®l. They are generally involved in the regulation
of cell survival and differentiation, the immune system, and inflammation modulation,
and are also capable of promoting angenesis and tissue remodeling!™l. Considering
these multiple biological functions, several studies have also reported that the MSC-
Exos play a therapeutic role in autoimmune diseases!1%], ischemic injuries(!%], and
metabolic diseases!!7], and are also related to dynamically modulating tumor biological
functions!®] , promoting repair and regeneration of damaged osteochondral, neural,
and tendon tissues, and facilitating wound healing1-112] Current studies also
discovered that they can improve COVID-19-related cytokine storms and the

deterioration of lung function due to severe pneumonialt'3l.

MESENCHYMAL STEM CELL-DERIVED EXOSOMES FOR REPAIRING
DIABETIC WOUNDS




MSC-Exos play an important role in each phase of wound heali_ng[g”. They can regulate

diverse cell types related to wound repair by enhancing 0ésuppressing certain
bioactivities, achieving hemostasis, inflammatory regulation, cell migration to the
wound site, cell proliferation, and differentiation to form granulation tissue,
angiogenesis, and ECM reorganization!®’l. They can also be expected to be therapeutic
agents for different types of diabetes by alleviating autoimmune damages('4,
attenuating insulin resistance, and improving p-cell exhaustion(!5l. Additionally, they
can be used to prevent and treat DM-related complications. Based on these potentials,

MSC-Exos may be of considerable importance in DCW treatment.

Hemostasis

Tissue factor (TF) is an initiator of coagulation activation and was identified in the
plasma membrane of exosomesllel. TF can transfer to the platelets and initiate the
extrinsic coagulation cascade, leading to the conversion of prothrombin to thrombin
and fibrin clot fogna’rionl'L 171, Induced coagulation and stimulated thrombogenicity were
observed using EVs carrying TF from the pericardial blood of patients who received
cardiac surgery(116l. Rat BMSC-Exos were applied to the bleeding site in the hemorrhage
liver model, which exhibited an inhibited amount of bleeding and shortened bleeding
time, demonstrating their excellent hemostatic properties. However, no studies related
to exosomes' promotion of coagulation in cutaneous wound healing have been
conducted. Further studies are needed to demonstrate the potential role of exosomes in

the hemostasis phase of wound healing.

Inflammation

Excessive inflammation is a major cause of persistent diabetic wounds. Abnormal
macrophage polarization and cytokine overexpression lead to an uncontrolled and
persistent inflammatory state and can cauE secondary tissue damagel’l. MSCs-Exos can
inhibit the differentiation, activation, and proliferation of T cells as well as reduce IFN-

y releasel8l. They can reduce the concentration of the inflammatory cytokines, TNF-a,




iNOS, IL-1B, and IL-6['"1 and upregulate the e&ession of the anti-inflammatory
cytokine IL-100(20121] MSCs-Exos can also induce M2 polarization of macrophages to
promote wound healing by delivering exosome-derived miR-223 to target regulating
the expression of pknox1 protein!!22].
Such abilities can also be observed in diabetic wounds. Topical application of native
C-Exos to diabetic mice dorsal full-thickness skin wounds also downregulated
inflammatory cytokines (IL-6, TNF-a, CD14, CD19, and CD68) expression and
promoted wound healing!'®l. Similar alleviated inflammatory effects achieved by
regulating inflammatory factors could also be observed in the combination of
intraperitoneal Nrf2 pharceutical activator and BMSC-Exos subcutaneous injection,
demonstrating decreased inflammatory cytokines TNF-a and IL-1p and increased anti-
inflammatory cytokines IL-4 and IL-10124]. Intradermal injection of MSC-Exos derived
from human menstrual blood could induce macrophage polarization from the M1 to
M2 phenotype, while this capacity is better than that of menstrual blood-derived
MSCsl123], Significantly lower M1 polarized macrophages and higher M2 polarized
macrophages were also observed in the diabetic mouse air pouch model and diabetic
rat full-thickness skin wound model using BMSC-Exos, while melatonin-stimulated
BMSC-Exos (MT-Exos) had stronger effects!'2'. Immunomodulata’y capacity was
enhanced after preconditioning. Moreover, MT-Exos could improve wound healing by
activating the PTEN/PI3K/AKT signaling pathway to promote macrophage M2
polarization, angiogenesis, and collagen synthesis; promote the resolution of persistent
inflammation; and drive the transition from inflammation to proliferation(!2!l.
HUCMSC-Exos pretreated with lipopolysaccharides have better regulatory properties
for macrophage polarization and resolution of chronic inflammation by transferring
miR-let7b, while the TLR4/NF-kB/STAT3/AKT pathway is important in regulating
this mechanism to promote wound healing/'2l. use of engineered TNF-a/hypoxia-
pretreated HUVMSC-Exos in infected DCWs also decreased proinflammatory cytokines
(TNF-a, IL-1B, and IL-6), induced M2 macrophage polarization, reduced bacterial

burden, and bacterial colonization at the wound sites. Reduced levels of oxidative




biomarkers and increased levels of antioxidant mediators also demonstrated the ability
of oxidative stress suppression/17l. The combination of BMSC-E and carboxyethyl
chitosan-dialdehyde carboxymethyl cellulose hydrogel revealed skewed macrophage
functional polarity from M1 toward an anti-inflammatory M2 phenotype, as well as

enhanced antibacterial effects by significantly inhibiting bacterial growth!(12s].

Proliferation
Fibroblasts, keratinocytes, and endothelial cells participate in the proliferative phase.
Unlike the dual regulatory effects on the tumor, MSC-Exos directly affect the
proliferative phase of wound healing by stimulating the proliferation and
differentiation of these cells, as well as promoting angiogenesis at injury sites!'%4.
Enhanced migratory and proliferative capacity and inhibited apoptosis of keratinocytes
by activating the AKT/HIF-la and Wnt/p-catenin pathways were observed with
AMSC-Exosl122130],  BMSC-Exos demonstrated the ability to promote fibroblast
proliferation, migration, and secretion of growth factors and can induce tube forﬁtion
in human umbilical vein cells (HUVECs)[31l. AMSC-Exos induced angiogenesis in both
in vivo and in vitro experiments, and the promotion of angiogenesis in ECs was achieved
by transferring miR-125a to inhibit DLL4 expression, accompanied by the
downregulation of pro-angiogenic genes (Angl and Flkl1), and upregulation of anti-
angiogenic genes (Vashl and TSP1)[32. In addition to its pro-proliferative ability in
vitro, the pro-healing effect of MSC-Exos has also been observed in acute non-diabetic
wounds. MSC-Exos from human umbilical cord Wharton’s jelly could regulate HaCaT
cell function by s&pressing AIF nucleus translocation and PARP-1 hyperactivation,
thus attenuating full-thickness skin wounds by enhancina re-epithelialization and
angiogenesisl'3l. Fetal dermal-derived MSC-Exos accelerated wound closure in a mouse
full-thickness skin wound model by activating the Notch signaling pathway to promote
the motility and secretory capacity of fibroblasts[!3l.

Similarly, exosomes_from MSCs improve proliferation and angiogenesis in diabetic

wounds. AMSC-Exos accelerated cutaneous wound healing in diabetic mice with full-




thickness skin wounds model by enhancing cell proliferation, inhibiting apoptosis, and
promoting angiogenesis. They also repaired skin barrier functions, and produced large
amounts, regular arrangement, and dense distribution of new collagen!'?]. Shabbir et
all’31] have also reported that these cells significantly increased their proliferation when
treated with MSC-derived exosomes. Enhanced angiogenesis and fibroblasts
proliferation, migration, and differentiation abilities were observed in diabetic wounds
treated with human decidua derived MSC-Exos, as well as an improved fibroblast
senescent state, reduced scar width, and larger and better-organized collagen
deposition!135].

Various methods have been used to modify MSC-Exos to enhance fibroblast
proliferation and angiogenesis. Co-culture of IncRNA H19-transfected BMSC-Exos with
fibroblasts extracted from foot tissue of patients with DFUs revealed that overexpressed
exosomes regulated the PTEN:-mediated PI3K/AKT signaling pathway by
competitively binding miR-152-3p to enhance proliferation and migration of fibroblasts
and inhibit apoptosis and inflammation[13l. Injecting such exosomes into the peri-
wound tissue of diabetic mice revealed the same changes in expression and accelerated
wound healing[3¢]. Atorvastatin-pretreated BMSC-Exos promoted proliferation,
migration of HUVECs, and vascular endothelial growth factor (VEGF) expression and
accelerated wound healing in diabetic full-thickness skin injury rat models™],
Pioglitazone-pretreated BMSC-Exos-treated full-thickness wounds in diabetic rats
achieved faster-wound closure, with more adequate re-epithelialization and extensive
collagen deposition, significantly enhanced wound perfusion, and had significantly
upregulated levels of VEGF and CD31['3. Subcutaneous injection ofmmu_circ_0000250-
modified AMSC-Exos via miR-128-3p/SIRT1-mediated autophagy promoted wound
healing in diabetic mice, and increased capillary and granulation tissue production was
detected owing to promoted proliferation and migration and reduced apoptosis of
endothelial cells[!3].

Biological scaffolds can improve the survival of exosomes in the inflammatory

environment of diabetic wounds and maintain their sustained release. UCMSC-Exos




combined with the Pluronic F127 hydrogel revealed promoted chronic wound healing
in diabetic mice. The elevated number of blood vessels and microvascular density,
enhanced regeneration of granulation tissue, and cell proliferation were also observed,
with the significant formation of new hair follicles in the center of the wounds,
sufficient subepidermal collagen deposition, and orderly arrangement of collagen
fibers'¥0l. Similar changes were observed in the wounds of diabetic mice using
engineered bioactive self-healing antimicrobial exosome hydrogels (FHE@exo), and the
elevated number of dermal appendages and differentiation and re-epithelialization of
the epidermis were also observed(4ll. The combination of human gingival tissue-
derived MSC-Exos (GMSC-Exos) and a chitosan/silk hydrogel sponge promoted re-
epithelialization, angiogenesis, and collagen deposition, while the increased nerve fiber

density also reflected enhanced neuronal ingrowth in the proliferative stagel'42l.

Matrix remodeling

In the final stage of wound healing, the production and remodeling of the ECM are key
factors in determining the time of wound healing and degree of scarring. Recently,
some studies have reported on the effects of exosomes on matrix remodeling. BMSC-
Exos have been demonstrated to restore normal skin morphology in rats with full-
thickness skin injuryl'43l, while these capacities relied on the downregulation of TGF-p1
and upregulation of TGF-B3 by ighibiting the TGF-/Smad signaling pathway.
UCMSC-Exos had large amounts of miR-21, miR-23a, miR-125b, and miR-145, while it
inhibited the differentiation and excessive aggregation of myofibroblasts and exerted an
anti-scarring effect via the TGF-p2/Smad2 pathway in vivol44. UCMSC-Exos can also
promote the phosphorylation of YAP, a key site (Ehe Hippo pathway, to negatively
regulate the Wnt4/[-catenin pathway to balance tissue regeneration and repair, with
excessive cell proliferation and collagen deposition in the remodeling stagell45L It was
noted that intravenous injection of ADSC-Exos could increase the ratio of type III
collagen to type I and TGF-3 to TGF-p1, prevent fibroblast-to-myofibroblast

differentiation, and reduce scarring at incisions in the full-thickness skin injury




models!#]. They could also induce the ERK/MAPK pathway in fibroblasts to increase

the expression of MMP3, thereby increasing MMP3/TIMP1 to regulate ECM
remodeling[140].

In contrast to the promoted cell proliferation and abundant granulation tissue in the
early stage of healing, proliferative activities were reduced during the late repair stage
to prohibit tissue hyperplasia when using FHE@exo, suggesting entry into the
remodeling phase that prevents excessive tissue proliferation to promote wound
healing!¥!l. The application of GMSC-Exos with chitosan/silk hydrogel sponga)n the
wounds of diabetic rats revealed more collagen deposition and thick wavy collagen
fibers that were arranged in an orderly fashion, which is similar to that in normal skin,
implying enhanced ECM remodeling['¥?. These were also observed in the local
transplantation of HUCMSC-Exos with polyvinyl alcohol/alginate nano hydrogel and
of miR-126-3p overexpressed synovial-derived SC-Exos with
hydroxyapatite/chitosan composite hydrogell147.148] Altogether, these studies indicate
that MSC-Exos play a pivotal role in the ECM remodeling phase of wound healing.

The various stages of woupgd healing are closely interwoven. MSC-Exos inherit the
genetic information of their parental cells and can transfer the therapeutic bioactive
substances to target cells to participate in intercellular communication, resulting in the
regulation of target cell function and promotion of wound healing[81'#l, We analyzed
the current preclinical application of MSC-Exos in diabetic wound models, and the cell
source, administration method, dose, frequency, animal type, wound diameter, efficacy,
and possible molecular mechanisms are summarized in Table 1. Additionally, MSC-
Exos were not only responsible for a specific stage but also promote microenvironment
changes in the wounds at each stage to exert a pro-healing effect. Although the
biological functions of promoting diabetic wound healing are generally similar, certain
differences exist in the regulated signaling pathways of different cell-derived exosomes
or receiving different preconditioning, according to previous studies. The regulatory

mechanisms most frequently studied in diabetic wound models and may potentially




confirmed in DCWs, as well as the microenvironmental changes in inflammatory and

proliferative stages of wound healing after using MSC-Exos, are depicted in Figure 1.

CURRENT TUS AND PROSPECTS OF CLINICAL APPLICATIONS OF
EXOSOMES IN DIABETIC CHRONIC WOUNDS

Preclinical studies have demonstrated the ability of MSC-Exos to promote diabetic
wound healing. No evident pathological abnormalities in the heart, liver, spleen, lung,
and kidneys sampled after exosome treatment were observed, and biomarkers
reflecting liver and kigney function blood biochemistry were also within normal
limits['27]. Meanwhile, no erythema, edema, or irritation was observed in the wound
area after exosome treatment('¥l, confirming the superior biosafety of exosome therapy.
We also searched for applications of exosomes secreted by stem cells from other
sources in diabetic wounds and summarized them in Suppl Table S1. Noteworthy, the
types of animals used for modeling were limited to mice and rats. Most of the studies
involved acute diabetic wounds, that is, exosomes were administered immediately after
successful modeling of full-thickness skin wounds. Only one study introduced
Staphylococcus aureus to establish infected chronic wounds after the establishment of
full-thickness cutaneous wounds and confirmed that exosomes were effective in
treating infectious DCWsl!?7]. The efficacy and safety of MSC-Exos need to be further
confirmed in larger animal models and DCW models. Because the islet morphology,
structure and function, blood biochemical indices, and skin structure of minipigs are
more similar to those of the human body, they are ideal animal models for studying
diabetic wounds(!39. Qur team has established a chronic skin ulcer model in diabetic
miniature pigs in the early stagel'®] and is researching on exosome products to explore
the optimal administration methods and dosages and to verify their therapeutic effects.
According to the search results in ClinicalTrials.gov, no clinical trials of MSC-Exos
and exosomes from other sources for diabetic cutaneous wound healing have been
registered. Therefore, we expanded the scope of clinical trials to search for exosomes

derived from any sources and exosome-enriched stem cell-conditioned medium in




various wound types (Table 2). None of the included four registered clinical trials had
related resulfs published, while they were all non-randomized one-arm pilot studies.
Thus, more high-quality randomized controlled trials are required to further confirm
these research results. Of note, the application of cell-free therapies in clinical patients
requires special attention to security, although no adverse reactions of exosomes have
been reported in preclinical studies. Moreover, ADSC-Exos has been confirmed to not
induce any irritation or toxicity in skin sensitization, irritation, or oral toxicity tests[161];
therefore, they can be considered in clinical practice to promote wound healing in
combination with basic wound care measures. Nevertheless, toxicological analysis of
different tissue-derived MSCs-Exos and more evidence of short and long-term health
safety assessments are required to confirm their safety.

Exosome research is still in its infancy, and the realization of the transformation from
preclinical research to clinical application still has great exploration value. The
problems of optimal preparation, extraction, isolation, and storage of exosomes on a
large scale and their production efficiency have not yet been determined; preparation
and identification of components due to different source cells and the high
heterogeneity of exosome components have not yet been solved; specific regulatory
mechanisms in DCWSs have not yet been fully elucidated; efficacy and safety of different
cell sources and/or administrations have not been proven, and reasonable and effective
methods of fusing exosomes with other biomaterials have not yet been implemented, all
these issues are barriers that limit the clinical application of exosomes.

Thus, efficient, stable, safe, and mass-producible stem cells and related products for
the treatment of diabetic wounds are yet to be explored and developed. More research
is required in future clinical trials and routine practice to determine the most effective
cell sources for diabetic wounds; to establish optimal large-scale culture conditions of
MSCs; to solve the preparation problem of huge heterogeneity of exosome components;
to explore standardized isolation, quality control, purification, and characterization
techniques of MSC-Exos; and to determine the best approach for long-term storagel162l.

Researchers also need to fully understand the abilities, loss, distribution, diffusion




efficiency, and clearance efficiency of exosomes after transporting them to target areas.
Physical, chemical, or biological methods for preconditioning, genetic engineering, and
transfection are used to specifically enhance a certain therapeutic potential to achieve
relatively better wound healing than native exosomes, thus becoming new treatment
directions(1®3l. Additionally, combining exosomes with biomaterials is possible to create
bioactive dressings to enhance or combine repair ability, provide local
microenvironment stability, and achieve sustained release of exosomes!74l. Additionally,
starting clinical trials as soon as possible is necessary to verify the optimal dosages,
administration methods, and efficacy evaluation of MSC-Exos in clinical patients,
looking forward to its broad application prospects in promoting DCW healing in

clinical practices!1¢?l,

CONCLUSION

DCWs, which are one of the most common chr%'c refractory wounds, pose a heavy
burden to patients, families, and society. Current studies have suggested that MSC-Exos
can play an important role in various aspects of wound healing and hold sufficient
promise for promoting diabetic wound healing. However, recent clinical applications of
MSC-Exos in DCW repair are still limited. Moreover, clinical translational issues, such
as exosome production, isolation, purification, and storage processes, the most effective
route of administration and dose, and efficacy evaluation remain. Accurate and efficient
exosome products need to be established, and experiments in animals that have a
greater resemblance to human skin tissues and clinical trials need to be initiated as soon
as possible to validate the optimal dosage and administration, and efficacy evaluation
for using MSC-Exos to provide safety assurance for further clinical applications.
Modification of MSC-Exos and integration with biomaterials to improve their efficacy
and reduce their elimination rate may be a promising direction. We look forward to the

clinical application of MSC-Exos for diabetic wound healing.
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