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Abstract

Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal
compared with normal wounds and can easily deteriorate, leading to amputation.
Common treatments cannot heal diabetic wounds or control their many complications.
Growth factors are found to play important roles in regulating complex diabetic wound
healing. Different growth factors such as transforming growth factor beta 1, insulin-like
growth factor, and vascular endothelial growth factor play different roles in diabetic
wound healing. This implies that a therapeutic modality modulating different growth
factors to suit wound healing can significantly improve the treatment of diabetic
wounds. Further, some current treatments have been shown to promote the healing of
diabetic wounds by modulating specific growth factors. The purpose of this study was
to discuss the role played by each growth factor in therapeutic approaches so as to

stimulate further therapeutic thinking.
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Core Tip: This review summarizes the main causes of poor wound healing in diabetes
and the role of various therapeutically available growth factors in wound healing. In
terms of treatment, it summarizes the treatment methods and drug delivery systems of
various growth factors, and discusses the therapeutic effects of different methods and
the special properties of drug delivery systems. We hope these discussions will provide
the basis for more effective treatments, advance growth factor research, and help more

people with diabetes heal their wounds.

aTRODUCTION
The prevalence of diabetes coptinues to increase at an alarming rate worldwidel2.
According to a recent sis, the global prevalence of diabetes among adults aged 20-
79 years is gurrently at 536.6 million and is projected to rise to 783.2 million by 2045°,
As of 2015, diabetes was a direct cause of death for about 1.5 million people worldwide
(WHO. _Accessible at http://www.who.int/diabetes/en, accessed on 26 November
2022). Complications such as cardiovascular disease, nephropathy, retinopathy,
neuropathy, and diabetic wounds occur in patients with diabetes. Diabetic wounds are
one of the consequences having a lasting impact on patients with diabetes. Diabetic foot
ulcer (DFU) is the most common type of diabetic wounds, which has a recurrence rate
of 30%-50%[45]. Currently, no effective means of foreseeing the development of diabetic
sores exist. Thus, the primary goals of treating diabetic wounds include identifying
them early, performing a thorough examination, debriding and cleansing the wounds,
and preventing or controlling the spread of infection.

One of the trickiest aspects of managing diabetes is dealing with wounds. Normal
wound care is insufficient for diabetic wounds due to the differences in blood

composition, vascular development, nerve survival, and inflammatory processesl®7.
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Many therapies have been developed for diabetic wounds in recent yearsl*8l, but those
involving growth factors (GFs) have gained the maximum attention. GFs govern most
of the processes involved in wound healingPl. Although several GFs have been shown
to be useful in treating diabetic wounds, only a few have been authorized fgr use in
clinical practice. Among the three GF products available, only Regal Maltose has been
approved by the Food and Drug Administration for treating neuropathic diabetic
ulcers. The limitations in trial design, poor patient compliance, risk of immunogenicity,
protein degradation, and variation in the responsiveness and healing support supplied
by surrounding tissues are only a few of the many obstacles that stand in the way of the
therapeutic application of GF products. It is essential, therefore, to have a firm grasp on
the specifics of diabetic wounds, the healing effects of various GFs, and the provision of
a endable and efficient GF delivery system to propose a GF therapy.

In this review, we summarized the major factors contributing to impaired wound
healing in patients with diabetes, and the significance of several GFs currently available
for therapeutic use. We also conducted illustrative GF treatment experiments to explore
various delivery mechanisms and facilitate an understanding about the therapeutic

effects of various strategies.

WHY IS THE HEALING OF DIABETIC WOUNDS DIFFICULT?

Vascular complications

Intermittent claudication, ischemia-induced rest discomfort, skin ulcers, and avascular
necrosis are all symptoms of peripheral arterial disease (PAD), a group of disorders
caused by arterial stenosis distal to the aortic arch. A strong correlation exists between
diabetes and PAD; however, determining the true frequency of PAD in patients with
diabetes is challenging due to the many complicating factors/'?l. One cross-sectional
study indicated that 43.87% of patients with DFU also had peripheral artery diseasel!1l.
The most immediate effect of PAD, whether it affects local micro or macro vessels, is a
disruption in blood flow or even ischemial'?l. Further, a number of negative

consequences occur due to microcirculatory dysfunction. The microcirculation of
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patients with diabetes differs from that of patients without diabetes in several
important ways, including increased vascular permeability, poor autoregulation, and
unresponsiveness to vasodilatory stimulil'®®®l. The endothelial dysfunction due to
hyperinsulinemia or hyperglycemia is the primary cause of these characteristics[1415].
Capillary damage and oxidative stress are two complications of diabetes that can be
exacerbated by microcirculatory perfusion problems!®l.

Tissues surrounding diabetic wounds may suffer from hypoxia and anemia due to
circulatory abnormalities triggered by PAD. The activity and gene expression in cells of
injured tissues may be affected by hypoxiall7l. The combination of vascular damage and
increased tissue oxygen consumption can lead to hypoxia in diabetic wounds, just as it
does in regular wounds. However, hypoxia triggers hypoxia-inducible factor-1 (HIF-1)
to enhance wound repair in healthy individuals, but hyperglycemia inhibits HIF-1 and
hence slows wound healing in patients with diabetes'82l, Since hypoxia is detrimental
to healing rather than serving as positive feedback that accelerates diabetic wound
closure, it is no longer a factor in promoting wound closure. Lower oxygen levels in
DFU were linked to slower wound healing in a study on flow-mediated skin
fluorescence monitoring(?!l. Furthermore, anemia can inhibit the healing process by
inhibiting the metabolic pathways in injured tissues. Patients with diabetes often suffer
from anemia, and those with severe foot ulcers are particularly at riskl?>24l, Patients
with severe anemia have a higher likelihood of experiencing adverse malignant
outcomes, according to a number of studies. These outcomes include a more severe
disease-free interval, a more severe infection, and even deathl2527]. The impact of
anemia on DFU is still debatable, as some studies have shown that it is not significantly
linked to the severity or prognosis of DFUR82].

Moreover, diabetic wounds frequently exhibit impaired angiogenesis, which results
in reduced vascularity and capillary densityl®l. Inhibiting the death of important cells in
damaged tissue, providing proliferative support activity, facilitating the remodeling
phase of repair, and promoting healing growth are all facilitated by oxygen and

nutrients provided by angiogenesisl®33, However, in diabetic wounds, many factors
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that promote angiogenesis are disrupted due to hyperglycemia and chronic
inflammation, for example, the release of vascular endothelial growth factor (VEGEF)34
and platelet-derived growth factor (PDGF)®! and the composition ratio of
Angl/Ang2/Tie2 complex3637]. Moreover, the unique internal environment of diabetes
may also contribute to the effects of various anti-angiogenic factors, such as the anti-
angiogenic factor pigment epithelium-derived factorP8l. These factors interfere with
inflammation-mediated angiogenesis and delay the transition from inflammation to

proliferative remodeling in wound healing.

Hyperglycemia

Hyperglycemia can delay the healing of diabetic wounds and even exacerbate DFU
through the impaired function of various skin cells and peripheral neuropathy. In
patients with diabetes, hyperglycemia is an important factor causing dysfunction or
reduction of endothelial cellsP%#Il, which are essential for the healing of diabetic
woundsl44l. Further, hyperglycemia affects protein synthesis and migration and
proliferation of keratinocytes and fibroblasts, which disrupts important processes of re-
epithelializatiopld7#9], for instance, the altered expression of cytoskeletal keratin proteins
(K2/K6/K10) and a laminin-5 a3 chain precursor protein (LM-3A32) in DFU
keratinocytesl®l. Also, the fibroblasts from DFU exhibit morphological changes, GF
energy, extracellular matrix (ECM) deposition, and reduced proliferation and migration
of fibr%astsﬁl—f"ll. In the pathogenesis of neuropathy, hyperglycemia can damage
nerves through the polyol pathway, hexosamine pathway, oxidative stress, advanced
glycation end-products (AGEs) pathway, PARP pathway, NF-xB pathway, and so
forthl®s].

Hyperglycemia can also induce a delay in diabetic wound healing via free radicals or
reactive oxygen species (ROS). In patients with diabetes, hyperglycemia can induce
excessive ROS production through several pathwaysl¢: (1) reactions in
mitochondrial.58l; (2) impairment of intracellular antioxidative defense systems[5%60]; (3)

glycosylation and subsequent signal transductionl®2]; (4) lipid peroxidationl®®]; (5)
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activation of free radical generator enzymesl®®l; (6) polyol pathwayl!®®l; (7) protein

kinase C pathwayl®768; and (8) hexosamine pathwayl®l. These pathways have been
verified in patients with diabetes and are abnormally active and hence disrupt the
metabolism of ROS in hyperglycemia. Although the presence of ROS can, sometimes,
promote wound healing (e.g., bacterially infected wounds)[7071], excessive release of

ROS can lead to cell and tissue damage and delayed wound healing in DFUI"2.,

Neuropathy

More than 90% of patients with DFU also have diabetic neuropathy!”. The most
common types of neuropathy are sensory, motor, and autonomic neuropathies of the
peripheryl7l, Diabetes can cause neuropathy in numerous ways, the most common of
which are: (1) autoimmunity; (2) microvascular dysfunction; and (3) various humoral
variables (hyperglycemia, hyperinsulinemia, and so on)[75-791,

An important risk factor for wound formation in neuropathy is the deterioration of
subjective sensation(80-$2l. The selective targeting of C and A0 fibers by neuropathy in
diabetes can lead to neuropathic pain and/or sensory lossl®3l. Studies have shown
reduced cutaneous innervation in the biopsies of patients with diabetes based on
reduced immunoreactivity of protein gene product 9.5 (PGP9.5) (detecting sensory
neurons) and various neuropeptides, specifically calcitonin gene-related peptide,
substance P (SP), and neuropeptide Y881 Reduced nerve density, a more fragmented
distribution across the dermis/3¢#7], and reduced nerve afferents in the epidermis(8-911
and dermal papillael® are found in the skin of patients with diabetes, even in the
absence of clinically detectable sensory neuropathyl®3l. Moreover, patients with diabetes
may show a significant reduction in amplitude and nerve conduction velocity
associated with nerve fiber lossl?l. Patients may have trouble deciphering the severity
of their sores or ulcers in the limbs, especially if their pain threshold has been drastically
lowered(®l. These variables increase the likelihood of diabetic wound development and
may also contribute to the progression of existing wounds. The upper-body paralysis

from autonomic neuropathy reduces perspiration production, leading to dry, cracked
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skin that can increase susceptibility to irritation and infection while slowing the healing
processl7278l. In dull pain, the increased pressure on the plantar surface of the foot
caused by motor neuropathy can cause ischemia and possibly death of tissues in the
affected areal?sl.

Skin innervation is important for normal wound healing and can impact wound
healing processes such as keratinocyte proliferation/®l, wound re-epithelialization7],
wound contraction8l, and production of granulation tissuel®l. However, in diabetic
wounds, neuropathy can impede these steps, delaying the healing of wounds!%0.
Further, SP stimulates leukocyte chemotaxis to promote wound healing during the
inflammatory phase of a woungd[1?l. However, reduced SP levels in denervated tissues
in patients with diabetes may lead to delayed wound healing['21%]. Denervation leads
to delayed protein extravasation and cell migration(194105. Animals exposed to capsaicin
have no vasodilation and plasma protein extravasation at the time of injuryl'%l. A
similar delay in inflammatory cell migration was observed in mice with diabgtes[107-109],
Chemical and surgical denervation can reduce small nerve fibers in the skin by at least
70%, which leads to poor wound repairl'1%l. The reduction in skin sensory nerves by
subcutaneous injection of capsaicin in mice and rats without diabetes delayed re-
epithelialization, reduced epidermal stem cell migration, and inhibited angiogenesis
and VEGF expression[111-113],

In fact, many types of neuropathy are complicated by diabetes, and not every
neuropathy affects the efficiency of wound healing78114l. The neuropathy discussed in
this study refers to the ubiquitous disorders of the cutaneous nerves and dysregulation

of neuropeptide secretion.

Microbial infection

The wounds in patients with diabetes are highly susceptible to microbial invasion, often
leading to life-threatening infections that delay wound closure. The damage of the skin
barrier, such as increased trans epidermal water loss and decreased secretion of

antimicrobial peptides, 1’51l has been linked to an increased risk of infection.
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Neuropathy and chronic inflammation have been proposed as possible causes of this
damagel72117]. Furthermore, the microbial composition of patients with diabetes differs
from that of healthy individualsM8121 Staphylococcus aureus and S. epidermidis, for
example, are more likely to colonize the skin of patients with diabetes!11%120. Diabetic
wounds have a more restricted microbiome than healthy skin and are home to bacteria
such as Klebsiella sp., Abiotrophia sp., Escherichia coli, and Peptoniphilus sp.l121-123],
Notably, S. aureus and Streptococcus genera predominate among the harmful
microorganisms in infected wounds('?#12l. The increased release of pro-inflammatory
cytokines and a prolonged inflammatory phase due to bacteria and endotoxins in an
infected wound are two factors that prevent the wounds from healing(!2¢l. Additionally,
the pathogenic bacteria or their secretions continuously damage the wound’s tissue and

cells, slowing the healing process.

Inflammation

Unlike nondiabetic acute wounds, DFUs have a nonlytic inflammatory phase, with
numerous Eltrophils and macrophages identified in the wound["?-° and persistent
release of pro-inflammatory cytokines such as leukocyte interleukin (IL)-1, tumor
necrosis factor-a (TNF-a), plasma C-reactive protein, and othersl128130131]  Poor
phagocytic activity and dysfunctional leukocytes are also common in patients with
diabetes!!3213]. However, in DFU, M1 macrophages continue to dominate the wound
milieu and perpetuate inflammation, whereas, in normal wounds, M2 macrophages
(promote tissue repair) progressively replace M1 macrophages (promote
inflammation)[1351371, Because of the ongoing inflammatory response, neutrophils
remain activated and secrete proteases, which indiscriminately destroy the wound
microenvironment(38. However, inflammation can stifle angiogenesis by limiting
VEGF production(’3140l, Diabetic wounds cannot heal properly because chronic
inflammation continues to cause harm to tissue cells even after the remodeling phase

has begunl1®l.
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Diabetic ggound healing requires specific treatment

Normal wound healing can be divided into four stages: hemostasis, inflammation,
hyperplasia and remodeling (Figure 1). But for diabetic wounds, the injuries, infections,
and other consequences can all be exacerbated by diabetes, which slows recovery
timel'41l (Figure 2). Excessive formation of AGEs, insufficient neovascularization,
insufficient concentration of GFs, imbalance between metabolism and nutrient delivery,
abnormal regulation of gene expression, and impaired vascularization are just some of
the factors making the healing of diabetic wounds difficult!!42l. Therefore, common
treatment measures cannot effectively improve the condition of diabetic wounds.
Currently, many treatments exist_for diabetic wounds, such as oxygen therapy,
negative-pressure wound therapy, platelet-rich plasma, stem cells, and cell- and tissue-
based products/443-150], Among these, GF therapy has been regarded as an important
means to treat diabetic wounds due to its ability to participate in promoting various

stages of healing.

ROLE OF GFS IN THE HEALING OF DIABETIC WOUNDS

GFs execute an important role in impaired wound healing, especially in diabetic
wounds. They affect many processes, such as the growth and movement of different
types of cells, endothelial cell stimulation, angiogenesis, fibroblast chemotaxis, and
changes in inflammatory cells. GFs that accelerate and promote wo&d healing through
their physiological effects mainly include VEGF, PDGF, epidermal growth factor (EGF),
fibroblast growth factor (FGF), transforming growth factor  (TGF-p), hepatocyte
growth factor (HGF), and so forth (Table 1)I108151-197],

VEGF

The VEGF family consists of a variety of GFs, among which VEGF-A and VEGE-C are
mainly involved in wound healing(i®ll. VEGF-A is produced by endothelial cells,
keratinocytes, fibroblasts, smooth muscle cells, platelets, neutrophils, and

macrophages[1%-2001_ It binds to the tyrosine kinase surface receptors Flt-1 (VEGF
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receptor 1) and kinase insert region receptor (KDR) (VEGF receptor 2) located on the

endothelial surface of blood vessels[201-203], By acting on these receptors, VEGF-A can
participate in the chemotaxis of endothelial cells and promote endothelial cell
proliferation, differentiation, and regulation of vascular permeability(204-206], EEGF-A
levels are elevated in nondiabetic woundsl'32207I. Other GFs that can enhance VEGF-A
expression include TGF-p1, EGF, TGF-a, KGF, bFGF, and PDGF-BB[2%82¥l, VEGF can
promote angiogenesis to restore tissue perfusion, re-establish microcirculation, and
increase oxygen tension in the wound(™®3L In diabetic wounds, VEGF-A can promote
early angiogenesis, especially the migration of endothelial cells, and improve the re-
epithelialization and granulation tissue formation of diabetic wounds!210211l, [n vivo, the
wounds in mice with diabetes exhibited accelerated re-epithelialization and contraction
of wound area after treatment with VEGF mRNA deliveryl212213]. Many drugs and stem
cells promote diabetic wound healing through VEGFI214-216],

VEGF-C is released primarily by macrophages and acts through VEGF receptor 3,
which is expressed on lymphatic endothelial cells, pore endothelial cells, and
monocytes/ macrophages/(217-21%, The proteolytically processed mature form of VEGF-C

also bind to KDR in the vascular endothelium to increase vascular permeability!220].
The proteolytically processed mature form of VEGF-C can also bind to KDR in the
vascular endothelium to increase vascular permeability?20221l, The administration of
VEGF-C via an adenoviral vector to diabetic wounds accelerated healing in animal

models of diabetes!222l.

PDGF

Many different homologous and heterodimeric GFs exist in the PDGF family. Platelets,
macrophages, vascular endothelium, fibroblasts, and keratinocytes are the primary cell
types responsible for PDGF production in wounds[22-2251. PDGF is required for the
majority of wound healing processes. It is found in wound fluid and secreted from the
degranulated plate following injury(176226l. It promotes the proliferation and migration

of inflammatory cells such as neutrophils, fibroblasts, macrophages, and smooth muscle
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cellsl?-29 Furthermore, it promotes tissue debridement and granulation tissue
development via macrophages by increasing the production and secretion of GFs such
as TGF-BI2%I. Further, PDGF plays a crucial role in developing mature blood vesselsZ30l.
It promotes myofibroblast differentiation to rescue delayed wound healing after a
diabetic wound penetrates subcutaneously and causes muscle damagel®'l. The
combination of PDGF-BB, VEGF, and EGF has been shown to increase cell composition
and promote wound healing in diabetic wounds, and the use of PDGF-BB alone has
been approved for treating diabetic woundsl?*2. PDGF-D was also found to be highly
effective when applied to wounds in patients with diabetes and ischemial233l. PDGF is
often used in combination with VEGF, which has a significant positive effect on
angiogenesis and recovery in diabetic wounds®%2%*l. [n vivo, PDGF-BB can improve the
Ealing quality of full-thickness excision wounds in rats with diabetes; promote
angiogenesis, cell proliferation, and epithelialization; and led to thicker and more
organized collagen fiber deposition(27l. For clinical trials, the application of PDGF can
significantly reduce the healing rate of diabetic wounds and improve the probability of

complete healing[238-241],

EGF
Many members of the EGF family aid in wound healing, such as heparin-binding EGF
(HB-EGF) and TGF-al'®ll. The binding of these ligands to the EGF receptor (EGFR)
causes the receptor to dimerize and autophosphorylate, which in turn triggers the
tyrosine phosphorylation of downstream proteins inside the celll®®!l. Studies in vitro
demonstrated that EGFR activation facilitated re-epithelialization by increasing
keratinocyte proliferation and migration in wounds(242-246],

The paracrine action of EGF on keratinocytes is primarily mediated by its secretion
from platelets, macrophages, and fibroblasts[?47l. Wound re-epithelialization and tensile
strength were both remarkably improved by post-injury EGF upregulation in

nondiabetic patients/'%?]. However, EGF levels were found to be lower in diabetic

wounds, and a majority of EGFRs were found to be translocated to the cytoplasm rather
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than localized on the cell membranel'¢11%l. The addition of topical EGF to diabetic
wounds has been shown in clinical trials to improve epithelialization and speed up
healingl?#8249] Various attempts have been made to load EGF into various delivery
systems for treating diabetic wounds(23.231]. In vivo, the application of EGF balances
collagen distribution, increases granulation formation, and accelerates wound
healing!?'2%l, In a clinical trial of 68 patients treated with combined EGF and dressings,
52 had diabetic wounds, which healed completely within 2-14 wk with a low recurrence
rate(?4l,

TGF-a is mainly secreted by platelets, ke&tinocytes, macrophages, fibroblasts, and
lymphocytes(2>>2%8l. It has been shown to increase keratinocyte migration and
proliferation and induce the expression of K6 and K16[1%42592501_ In in vivo studies, TGF-a
played a role in early stimulation and maintenance of wound epithelialization in
partial-thickness wounds(?®'l. In vivo, TGF-a can be combined with PDGF-BB to make
the wound healing speed in mice with diabetes close to that of nondiabetic micel262].
However, TGF-a has not been applied to the clinical treatment of wounds so far.

HB-EGF is also wupregulated in nondiabetic wounds and secreted by
keratinocytesl19%.263], HB-EGF can promote re-epithelialization by binding to the EGFR
subtypes HER1 and HER47212642%] [n pivo, HB-EGF is thought to play a role in
promoting keratinocyte migration, showing its importance in the early stages of re-
epithelialization[!89]. At present, HB-EGF has been widely regarded as one of the targets
for treating skin wounds and carried in various delivery systemsl?¢l. In a rodent
diabetic wound model, HB-EGF improved re-epithelialization and increased collagen
content and woupgd contraction via a heparin-based cohesive delivery system!?7l. In
vivo, HB-EGF can promote the proliferation and migration of epidermal keratinocytes in

full-thickness excision wounds of mice with diabetes and accelerate epithelialization[267],

FGF
FGF family is a cell signaling protein family comprising 23 members. The members of

this family mainly involved in skin wound healing are FGF2, FGF7 (or KGF1), and
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FGF10 (or KGF2). FGF2, the basic FGF, is mainly involved in granulation tissue

formation, re-epithelialization, and matrix formation and remodeling in woundsl161.182],
FGF7 and FGF10 stimulate keratinocyte proliferation and migration, promote re-
epithelialization, and increase the transcription of factors involved in ROS
detoxification[268269]. FGF2 is deficient in diabetic wounds, and wound closure is

accelerated following the topical application of FGF2[183184]

TGF-p

The TGF-p superfamily comprises many members playing essential roles in
development and repair. TGF-p1 and TGF-p2 are significant players in wound repair,
and can be potent stimulators of extracellular matrix protein and integrin
expression(168.270271] TGF-f1 is abundantly released from platelets immediately after
injury272l. Latent TGF-Bs in the wound matrix also allow the sustained release of
proteolytic enzymes. This combination of different cell sources ensures a continuous
supply of TGF-p throughout the repair processl?73l. Additionally, some researchers have
reported the presence of TGF-fs in wound fluid?7#27l. At the cellular regulatory level,
TGF-f has many cellular regulatory functions, such as attracting macrophages and
fibroblasts to the wound area to improve healing[276.2771. Also, TGF-p can promote re-
epithelialization mainly by enhancing keratinocyte migration via regulatory factor
forkhead box-1 after binding to receptors on the cell surfacel?77278]. Moreover, studies
show the involvement of TGF-f in scar formation, later wound repair, angiogenesis,
and granulation tissue formationl'6316172273279]  In diabetic wounds, TGF-f also
promotes wound healing['62l, Compared with other reduced GFs, TGF-p showed a lack
of upregulation in diabetic wounds, which might be a factor delaying the healing[27%280],
In vivo, the TGF-/Small mothers against decapentaplegic (Smad) pathway is often
activated as an important factor in promoting diabetic wound healing, for example,

WDR74 and Baicalinl281.282],

HGF
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HGEF is a GF capable of regulating the growth, motility, and morphogenesis of various
types of cellsl3-25] In wounds, HGF is mainly derived from fibroblasts, acts on
epithelial cells, keratinocytes, and endothelial cells, and participates in healing
processes such as suppression of inflaimmation, granulation tissue formation,
angiogenesis, and re-epithelialization!155177.179180] - Although no changes in HGF levels
have been reported in diabetic wounds, the delayed healing process appears to be
associated with an imbalance in the activation and inactivation of the HGF/c-Met
pathwayl®178286]. Moreover, HGF can assist other GFs in promoting healing in diabetic

woundsl287],

Nerve growth factor

Nerve growth factor (NGF) is a neurotrophic factor essential for the development and
survival of some sympathetic and sensory neurons in the central and peripheral
nervous systems/?8l. NGF levels increase when wounds appear. NGF mRNA is
detected in newly formed epithelial cells and granulation tissue fibroblasts at the
wound edgel®], with exceptionally high expression in granulation tissue
myofibroblasts2°0l. Additionally, NGF in wounds can also originate from salivary gland
secretion and be transported via serum(29. In wound healing, NGF mainly involves
keratinocyte proliferation; proliferation, differentiation, and migration of epidermal
stem cells; angiogenesis; fibroplasia; and peripheral nerve regeneration2%-2%7]. NGF
levels are much lower in diabetic wounds and surrounding tissue than in normal skin
wounds?#2%?. When NGF was applied explicitly to diabetic wounds, the healing and

efficacy rate significantly improved[300,301],

Insulin-like growth factor

Insulin-like growth factors (IGFs) are anti-catabolic and anabolic drugs having two
isoforms: IGF-1 and IGF-2132]. They can regulate the growth and differentiation of cells
throughout the bodyB®l. In normal skin, only a few cells express this protein. However,

all epidermal cells and some inflammatory cells were found to produce IGF in the initial
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1-3 d after injury(®™. IGF-1 may be involved in granulation formation in wounds,
inhibit apoptotic pathways, and attenuate pro-inflammatory cytokine prO%lCl‘iOI‘l[MZI. In
diabetic wounds, the expression of IGFs is markedly decreased and is absent in the
basal layer of the epidermis and fibroblasts[305-307],

Connective tissue growth factor

The connective tissue growth factor (CTGF) is a member of the cellular communication
network familyl38], also known as CCN2. It can stimulate the proliferation and
differentiation of fibroblasts in the skinP%l. Further, CTGF is involved in promoting cell
adhesion, inflammatory cell chemotaxis, and cell differentiation(30311]. The specific role
of CTGF in nondiabetic wound healing has yet to be definitively concluded. However,
the application of recombinant human CTGF in diabetic wounds did show better
collagen IV accumulation and macrophage infiltration. Also, it increased a-smooth
muscle actin level and healing rate in diabetic wounds compared with nontreated
diabetic woundsl32l, In rats with diabetes, individuals treated with CTGF exhibited
increased aggregation of type IV collagen, a-smooth muscle actin level, and
macrophage infiltration; the rate of diabetic wound healing was also significantly

accelerated in these individuals/[312],

Colony-stimulating factor

Colony-stimulating factor (CSF) family has many isofgrms, but the CSFs involved in
wound healing are mainly granulocyte-macrophage CSF (GM-CSF) and granulocyte
CSF (G-CSF). GM-CSF primarily stimulates cell proliferation and differentiation in
wound healing and stimulates stem cells to produce granulocytes and monocytesl7L.
However, the effectiveness of GM-CSF in promoting wound healing appears to be only
somewhat recognized at present[33l. G-CSF is mainly involved in the inflammatory
process of wounds and is related to the formation of neutrophils®l, The ability of G-
CSF to promote healing and resist infection has been verified in randomized clinical

trials of diabetic woundsl[315.316],
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Prolonged healing results from GF deficiency in diabetic wounds

GFs are essential for healing diabetic wounds, as outlined earlier, because of their pro-
healing effects. However, it is challenging to observe normal GF-regulated healing
events in nontreated diabetic wounds due to the absence of GFsl157.161192], This prevents
the healing process of hemostasis, inflammation, granulation tissue formation, wound
contraction and re-epithelialization, and remodeling from functioning correctly.
Moreover, it further leads to prolonged inflammation, tissue hypoxia, wound infection,
and chronic healing[#!l. Although this does not imply that the missing GF is the source
of the lack of healing function, supplementing the wound with the required GFs has an
excellent healing-promoting effect.

GF-RELATED THERAPY FOR DIABETIC WOUND HEALING

The application of exogenous GFs is considered a promising approach for treating
diabetic wounds. The reason for using GFs is their ability to stimulate and regulate
complex cellular and molecular events to alleviate the specific adverse effects of
vascular complications, neuropathy, and inflammation in diabetic wounds, which are
essential for good and rapid diabetic wound healingl42317]. So far, a series of GFs,
including PDGF, VEGF, EGF, FGF, TGF-p, KGF, and IGF, has shown the potential to
accelerate diabetic wound healing/?*>?7l, Therefore, introducing appropriate GFs into
diabetic wounds effectively promotes chronic healing (Table 2)[237262.280319349]

The standard methods of introducing GFs can be divided into direct or biomaterial-
based delivery (Figure 3). Direct delivery is achieved wvia topical application or
intradermal injection but with only short-term bioactivity due to proteolysis and
destabilizing support. For example, a large injection of multiple GFs is insufficient to
maintain angiogenesisi®!8l. Biomaterial-based delivery is achieved by incorporating GFs
into ECM-like hydrogels, scaffolds, or particles, which can provide proteolytic
protection and structural support to maintain the bioactivity of GFsl'!l. Furthermore,

the increase in the levels of GFs in diabetic wounds can also be achieved by gene-
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mediated delivery methods, which can be divided into plasmid DNA delivery,
transfection with nonintegrating viral vectors, chemical carrier delivery, and gene-

eluting biomaterial constructs/3!7].

GF-loaded delivery therapy

This treatment method requires suitable biological materials that maintain the structure
and biological activity of GFs, high encapsulation efficiency, and bioavailability,
ensuring the complete release of GFs. Moreover, it is necessary to consider the
biocompatjbility, degradation, and absorption characteristics of the delivery system.
Typically, synthetic polymers of the polyester family, such as polyglycolic acid, poly
(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), or polymers of natural origins,
such as collagen, gelatin, fibrin, hyaluronic acid, dextran, alginate, and chitosan, are
common delivery materialsll4ll (Table 3)[319,343347349352:372] - Attempts to improve the
feasibility of clinical treatment through innovative delivery systems have attracted
much attention (Table 4)[240.241,373-3580],

Biodegradable polymer _particles are site-specific controlled-release therapeutic
systems. Chu et all3¥] used a double-emulsion method to develop recombinant human
EGF (rhEGF)-loaded PLGA nanoparticles and applied them to diabetic wound
management. The results showed that the group treated with rhEGF PLGA

oparticles had the best sustained GF release and the fastest wound healing
compared with the group treated with thEGF or PLGA alonel®0l. Another study that
used the intradermal route to deliver VEGF-loaded PLGA nanoparticles found that
PLGA nanoparticles could sustain VEGF release for 30 d and showed a promoted
healing responsel®!l. Further, another study pointed out that using PLGA-alginate
microspheres as the GF carriers could significantly reduce the frequency of
administration while maintaining the therapeutic effect(371.

Therapeutic polymer nanofiber mats are new carriers for GF-loaded dressings. This
material has the characteristics of high porosity and large surface area to facilitate the

penetration of GFs and the circulation of body fluids. rhPDGF-mixed PLGA nanofiber
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could release rhPDGF for 21 d and significantly induce the complete closure of diabetic
wounds in rats with diabetes[3#]. The PCL or PCL-polyethylene glycol (PEG) nanofibers
implanted with rhEGF also exhibited effective promotion of wound re-epithelialization
via increasing keratinocyte proliferation and phenotypic expression in diabetic
woundsl32¢l, Hence, the production of carrier materials and loading of various GFs can
be adjusted to achieve better wound healing abilityl®]. Moreover, a research grou&
experimented with a polymeric fiber mat different from electrospinning, namely a
hydrolytically degradable four-layer structure consisting of polyacrylic acid, poly-f-
amino acid ester, VEGF or PDGF, and heparan sulfate. In this structure, GFs could be
stacked between each layer of materials to promote the complementary effects on
wound healing>#.

The three-dimensional biomaterial is a typical structure used to make dressings with
GFs. Both sponges and foams are used as standard wound dressings due to their high
absorbency and permeability to moisture and oxygen[3%l. Collagen is a new material
that can be used to develop biomimetic scaffolds. The collagen base can act as a scaffold
and bind other natural polymers, such as gelatin, hyaluronic acid, and chitosan, or other
synthetic materials?23327.333335351] Collagen combined with other polymers to generate
composite scaffolds can provide resistance to collagenase digestion and sustained slow
release of GFsl®?7l, Further, a study showed that hydrophilic polyurethane (PU) formed
by the copolymerization of polyethylene glycol can serve as a dressing material with
good moisture conditions in the wound bed [water vapor transmission rate of
approximately 3000 g/(m?2 x day)]. The PU dressing loaded with rhEGF sustained the
release of rhEGF for 7 d and eventually promoted re-epithelialization and complete

recovery of diabetic wounds in rats(3+1,

GF gene-targeted therapeutic delivery
Gene-mediated therapeutic delivery at diabetic wounds is primarily the local

transfection of therapeutic transgenes or complementary DNA into cells to increase the
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transcription of GF messenger RNAs and maintain high concentrations of local GFsl*!l
(Table 5).

Naked plasmids are the most basic vector form that can accommodate large amounts
of genomic DNA. Early research on diabetic wound therapy focused on forcing pDNA
into cells by intradermal injection, with higher pDNA infusions achievable with the aid
of electroporation!©2382-3%1 Furthermore, Yoon et al used an ultrasonic microbubble
agent (SonoVue) to assist in the ultrasonic puncture delivery of VEGF165-encoded
microplastics in diabetic wounds of mice. Their results showed significantly increased
cutaneous blood perfusion, accelerated wound closure, and complete recovery of
normal wound tissue in mice undergoing ultrasonic portion[(386.37],

Viral vector transfection has excellent freedom of improvement and can efficiently
integrate GF genes into wound cells for expression, thus having significant advantages
in delivering Erapeutic genes. The most commonly used viral vectors during diabetic
wound care include lentivirus (LV), adenovirus (AV), and adeno-associated virus
(AAV). The transfection of the VEGF'%> gene with replication-defective AV has been
reported to induce and accelerate early wound healing responses, including
angiogenesis and granulation tissue formation, in mice with diabetes!38389].
Furthermore, Galeano ef all®® found that viral transfection could release VEGF in
diabetic wounds for 4 mo (even after wound healing). Furthermore, de Felipe proposed
that a single viral vector capable of transfecting multiple genes could be used for
treatment to address the issue that the transfection of a single GF or GF isoform gene
only activated a single corresponding signaling pathway ratherdhan promoting
multiple stages of wound healingP?ll. Jazwa et al de trated the simultaneous
delivery of VEGF-A and FGF4 genes via bicistronic AAV, and the results showed that
the therapeutic effect of multiple gene delivery was better than that of single GF3921.

bstances such as cationic polymers and lipids are emerging chemical carriers due
to their ability to form electrostatic complexes with anionic biomglecules such as
pDNAB%I. The advantage of this type of chemical carrier is that it can avoid the use of

potentially immunogenic viruses, improve the biostability of pDNA, and facilitate
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cellular uptakel®4l. For example, a single subcutaneous injection of thPDGF-B loaded
with complexing integrin receptor ligand-conjugated lipopeptide or a complex
consisting of arginine-grafted dendrimers loaded with minicyclic VEGF can accelerate
the induction of complete wound closure in mice with diabetes!3?53%],

Gene-eluting biomaterial scaffolds are similar to GF-loaded scaffolds and focus on
improving the stability of the vector. Lee ef all??] developed a thermosensitive hydrogel
synthesized from PEG, PLGA, and PEG that enabled the controlled release of
encapsulated plasmids (containing the TGF-f1 gene) and the acquisitiﬁ'l of accelerated
re-epithelialization. The customizable properties of hydrogels bridge the gap between
conventional gel-based systems and solid scaffolds, and the porosity of hydrogels
provides a large area for released polymers to come into contact with infiltrating cells.
However, the contribution of angiogenesis in transfected cells to wound closure is
insignificant as the release of polymers is thought to be extremely slow[34l,
Nevertheless, this charﬁteristic based on the electrostatic interaction of positively
charged polymers in an anionic hyaluronic acid hydrogel matrix provides the basis for
developing more controllable polymer delivery systems. For instance, Yang et all3¥l
showed in 2012 that the molecular weight aﬁd content of PEG in the copolymer matrix
could be <changed to regulate the release of polymers (plasmid
bFGF/polyethyleneimine) from the core of core-sheath emulsion electrospun fibers.
However, such an approach appears to be flawed in diabetic wounds. The problem of
low cell availability at the wound edge and reduced cell migration may increase the

difficulty of regulating transfection efficiency in vivo with this system[397-399].

CONCLUSION

Diabetic wounds are encompassed by various factors (e.g., vascular system
abnormalities, neuropathy, and inflammatory process stagnation) induced by the
underlying disease and various concomitant diseases that impede normal wound
healing. Furthermore, GFs that govern numerous healing processes are rarely detected

in diabetic wounds compared with normal healing. The effects of GFs are particularly

20/72




specific and have been shown to be beneficial in addressing the discussed diabetic
wound features. As a result, GFs can be regarded as a direct and effective agent in
managing and treating diabetic wounds. Nonetheless, it is disheartening that only a
handful of products have entered clinical trials thus farl'4ll. We discussed the peculiarity
of diabetic wounds and provided a theoretical basis and potential of GFs in treating
diabetic wounds and optimizing therapeutic techniques. Combining GF with other
therapies such as stem cell transplant, cytokine therapy, and anti-inflammatory drugs
can be a promising treatment for diabetic wounds, albeit extensive studies are

warranted to further examine the efficacy of this combination treatment strategy.
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