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Abstract

Artificial intelligence (AI) technologies have become a topic of intense investigation in
clinical medicine. In gastrointestinal oncology Al has been employed in multiple areas,
with notable progress seen in computer-aided detection (CADe) and computer-aided
diagnosis (CADx). Most efforts have focused on colorectal cancer, but Al systems have
also been developed for malignancies involving the esophagus, stomach, pancreas and
liver. Although studies in this field have demonstrated excellent diagnostic
characteristics, many have limited external validity. This article will review the current
evidence for Al technologies applied to the detection and diagnosis of gastrointestinal

malignancies.
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Core Tip: Artificial intelligence (Al) technologies have becogme a topic of intense
investigation in clinical medicine. In gastrointestinal oncology Al has been employed in
multiple areas, with notable progress seen in computer-aided detection (CADe) and
computer-aided diagnosis (CADx). Most efforts have focused on colorectal cancer, but
Al systems have also been developed for malignancies involving the esophagus,
stomach, pancreas and liver. Although studies in this field have demonstrated excellent
diagnostic characteristics, many have limited external validity. This article will review
the current evidence for Al technologies applied to the detection and diagnosis of

gastrointestinal malignancies.

INTRODUCTION

The first documented gastrointestinal (GI) endoscopic procedure was performed by Dr.
Adolph Kussmaul in the 19" century using a modified Desormeaux device illuminated
by a gasoline lamp with reflective mirrorsill. Since the 1800s, there have been
remarkable technological advancements in the field of endoscopy allowing for
diagnostic and therapeutic interventions ranging from early detection of cancerous
lesions to the treatment of life-threatening gastrointestinal bleeding. Mastering
endoscopic techniques takes years of training followed by decades of experience. Even
among experts, however, there is still considerable interprovider variability and room
for improvement in the detection rate of gastrointestinal malignancies.

Artificial intelligence (AI) represents an attractive solution to these issues. Over the
past two decades, numerous systems have been developed for computer-aided
detection (CADe) and computer-aided diagnosis (CADx) of gastrointestinal lesions.
Furthermore, some of the first prospective, randomized trials applying Al in clinical
medicine have evaluated CADe for colorectal polypsl2. Additional randomized trials
are underway evaluating a broad spectrum of Al technologies in GI oncology. As

products become commercially available, it will be important for gastroenterologists to

familiarize themselves with technologies and the data supporting them.
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DEFINITIONS

Al refers to technology designed to mimic human intelligence. A subset of Al is

machine learning, a technique in which computers use data to improve their
performance without explicit instruction. The majority of Al systems studied in GI
oncology are based off two major approaches: traditional machine learning and deep
neural networks.

Traditional machine learning is based on a set of algorithms that require a significant
amount of input in order to make a particular decision. Much of the learning for
traditional machine learning is based on pattern recognition relating to features such as
color, texture, intensity, and shape. Many studies utilizing traditional machine learning
implemented support vector machines (SVM) or a modified form of SVM. The crux of
SVM is based on identifying hyperplanes allowing for the separation of data points.
Initially this method was selected because of its high ratio of accuracy to computational
power, allowing for application in real time. As technology pushed forth in the 21st
century, various groups began exploring the use of deep neural networks, in many
cases convolutional neural networks (CNN), for the detection and diagnosis of
concerning lesions. Deep neural networks function by extracting data via a series of
filters that is then processed by a neural network while preserving spatial and temporal
features. This allows for dynamic learning while the algorithm extracts clinically
relevant data.

Most machine learning models have several settings defined by the developer known
as hyperparameters. These parameters are used to optimize the performance of the
model. They are generally classified as model hyperparameters (e.¢., number of layers
in a neural network) and training hyperparameters e.g., learning rate).

When developing a machine learning model, data is divided into training, validation
and test datasets. The training dataset is used to create the model. The validation
dataset is used to optimize hyperparameters and evaluate for overfitting. The test

dataset is used to evaluate the performance of the model.
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Preprocessing refers to the methods applied to images prior to analysis by the
machine learning model. Techniques include histogram equalization to adjust contrast
and gaussian filtering to remove noise. Transformation of the images can be achieved
via resizing and processing through multiple layers, where deeper layers typically
contain an increasing number of dimensions.

Data augmentation is a process to artificially enlarge a dataset when developing an
Al algorithm. It is typically performed via rotation, flipping, shear, and zoom of the
original data, thus expanding the amount of data in the training dataset.

Trials apaying Al in GI oncology typically report the following metrics: sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy,
precision and area under the receiver operating characteristic curve (AuROC). In order
to measure the performance of a detection method or segmentation task, the
intersection over union ([glJ)) can be calculated by dividing the area of overlap (overlap
of prediction label and ground-truth labels) by the area of union (area of both the
predicted and ground-truth labels). The IoU varies from study to study, and a
predetermined threshold is typically set to determine true positive (TP) and false
positive (FP). Often an IoU = 0.25-0.5 defines a true positive (TP) and an IoU < 0.25-0.5 is
considered a false positive (FP). Many prospective studies use a clinical definition of
true positive as the number of correctly identified lesions by either Al or endoscopists.
Using the discussed parameters, various Al based approaches for the detection of GI

cancers can be compared.

COLONQSCOPY

Globally, colorectal cancer (CRC) is the third most commonly diagnosed cancer and the
fourth leading cause of deathl3l. Colonoscopy has been associated with a decrease in the
incidence and mortality of CRC through the detection and removal of precancerous
polypsl+-°l. Adenoma detection rate (ADR) is often used as a gold standard metric for
colonoscopy quality, and studies have shown that ADR may be inversely proportional

to the rate of interval CRC after colonoscopy!”l. Studies have also shown, however, that
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roughly one fifth of adenomas are missed, even by expert endoscopists!®?l. Evidence
suggests that unrecognized polyps that appear within the endoscopic field of view are
an important contributor to this problem. For instance, Aslanian ef allll demonstrated
that nurse observation during colonoscopy resulted in a trend towards improvement in
the ADR. In addition, Marcondes et all'll demonstrated that the ADR declines at the end
of the day, suggesting endoscopist factors such as fatigue may play a role in polyp
detection. Several CADe systems based on traditional machine learning techniques or
deep learning have been designed as an attempt to combat these problems, serve as a
safety net or “second set of eyes” during colonoscopy, and thus augment ADR.

Once polyps are identified, polyp characterization is the next crucial step. Optical
biopsy refers to the use of endoscopy to predict histology in vivo. The successful
application of optical biopsy to polyps would reduce costs associated with pathologic
assessment and prevent unnecessary polypectomies. Computer-based optical biopsy
also has the potential to level the playing field for advanced endoscopic techniques such
as endocytoscopy (a specialized endoscopic imaging modality that allows for ultra-high
level of magnification during live endoscopgy) and allow providers to use these
techniques with less interprovider variability. The American Society of Gastrointestinal
Endoscopy Preservation and Incorporation of Valuable Endoscopic Innovations (PIVI)
proposed standards for “resect and discard” (= 90% agreement with histopathology for
post-polypectomy surveillance intervals) and “diagnose-and-leave” (= 90% NPV for
adenomatous histology) strategies for diminutive polyps('2. A systematic review and
meta-analysis revealed that optical biopsy using narrow-band imaging (NBI) met the
PIVI-2 threshold for the “diagnose-and-leave” strategy, but only in the sub-group of
expert endoscopists’3l. Not surprisingly, multiple CADx systems for the
characterization of colorectal polyps have been developed to capitalize on the promises

of optical biopsy and overcome the limitations of current technologies.

CADe




Perhaps the most well-studied application of Al in gastroenterology is polyp detection
(Figure 1). Researchers in this field initially developed methods that_recognized
manually extracted polyp features such as shape, color and texturel'l. These early
efforts were based on the analysis of static endoscopic images or video frames!!413l. The
most recent technologies employ deep-learning algorithms that are capable of detecting
polyps in real-timel'®'7l. There are now commercially available Al-based polyp
detectiorﬁechnologies available in the United States, Europe and Asiall5-201,

Seven prospective, randomized trials have been performed that have examined the
efficacy of applying CADe to colonoscopy using deep learning methods (Table 1)[221-26].
At least three meta-analyses have been published to evaluate the cumulative impact of
these trials??l. Mohan et all®®! performed the largest of these three meta-analyses,
including 6 of these trials with a pooled patient population of 4962 patients. Tﬁ' found
that ADR was significantly higher when using CADe assisted colonoscopy compared
with standard colonoscopy [relative risk = 1.5, 95% confidence interval (CI): 1.3-1.72; P
< 0.0001]. Colonoscopy ‘ﬁhdrawal time was slighter greater in the CADe assisted
group (mean difference = 0.38 minutes, 95%CI: 0.05-0.72; P = 0.02).

Although these findings are promising, these trials have several limitations. First, the
augmented ADR seen in these trials was largely driven by improved detection of
diminutive adenomas (size < 5 mm), the clinical benefit of which remains an area of
active debatel3l. Secondly, only one trial was double-blinded(?’]. In the single-blind
trials, being observed may have facilitated a “competitive spirit” or Hawthorne effect in
provider participants, leading to improved inspection techniques!l. Third, all but one
of these trials were performed at a single center?!l. Thus, the results of these studies
may not be broadly generalizable. Given these promises and limitations, the European
Society of Gastrointestinal Endoscopy published guidelines in 2019 suggesting “the
possible incorporation of computer aided diagnosis... into colonoscopy, if acceptable
and reproducible accuracy for colorectal neoplasia is demonstrated in high quality

I.!J'

multicenter in vivo clinical studiesll.” Guidance and guidelines have been produced to
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aide gastroenterologists in conducting, reviewing and interpreting CADe studies with

the goal of accelerating the entrance of this technology into routine clinical practicel3233I.

CADx

CADx systems for the characterization of colorectal polyps have been developed using
a variety of imaging modalities including white light endoscopy, magnifying NBI (M-
NBI), autofluorescence endoscopy, endocytoscopy, and magnifying chromoendoscopy
(Figure 2). The majority of studies examining these technologies are retrospective in
nature. Only six prospective trials have been performed, and none of them were
randomized controlled trials/3-39]. Aihara et al?7l published the first prospective CADx
trial for colorectal lesions in 2013. Investigators used autofluorescence endoscopy to
distinguish between neoplastic and non-neoplastic les'ﬁns. They evaluated 32 patients
with 102 colorectal lesions. The CADx system had a sensitivity, specificity, PPV, and
NPV of 94.2%, 88.9%, 95.6%, and 85.2% respectively®l. Kuiper et alP® performed
another trial using autofluorescence endoscopy and CADx that included 87 patients
with 207 colorectal lesions. This study achieved a NPV 73.5%. In a subsequent study
using the next generation model of the same device on 27 patients with 137 diminutive
colorectal polyps, Rath et all*! reported an improved NPV of 96.1% meeting the PIVI-2
criteria for the “diagnose-and-leave” strategy. The most recent study utilizing
autofluorescence endoscopy was published by Horiuchi et all*] in 2019. The authors
evaluated 95 patients with 429 diminutive colorectal polyps and found a NPV for
rectosigmoid polyps of 93.4%. When evaluating rectosigmoid and non-rectosigmoid
polyps together, however, the NPV decreased to 80.8%. Kominami et all3l utilized M-
NBI in a study of 41 patients with 118 colorectal lesions. That trial achieved a NPV of
93.3% and the recommendations for follow-up colonoscopy based on the CADx system
and pathology were identical for 92.7% of patients. Thus, their system surpassed the
PIVI criteria for both the “diagnose-and-leave” and the “resect-and-discard” strategies.
Mori et all3] performed the largest prospective CADx trial to date, which included 325

patients with 466 diminutive polyps. The CADx algorithm in this trial analyzed
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endocytoscopy images after application of NBI or methylene blue dye. The authors
found that for the 250 rectosigmoid polyps in their study, using the most conservative
estimate, the NPV was 93.7%, meeting the PIVI-2 threshold to support a “diagnose-and-

leave” strategy.

ESOPHAGOGASTRODUODENOSCOPY

Many upper GI malignant processes, including esophageal and gastric pre-cancerous
and cancerous lesions are easy to miss and can be easily confused with benign processes
such as esophagitis or gastritis. In addition, if a patient has numerous lesions, it
becomes difficult to determine which lesions require biopsy. Even with a significant
amount of training, 20%-25% of early gastric cancer is missed when utilizing high-
definition white light endoscopyl4?l. Consequently, much work has focused on using Al

to improve the detection and diagnosis of these increasingly prevalent lesions.

Detection of early gastric cancer

In 2015, Miyaki ef all¥l utilized SVM to delineate early gastric cancer using
esophagogastroduodenoscopy (EGD) with M-NBI on 95 patients from a single hospital
in Japan. This was the first study to delineate gastric cancerous lesions relative to
noncancerous reddened lesions or surrounding tissue using an SVM based traditional
machine learning algorithm#1l. This idea was expanded on by Kanesaka et all2l who
utilized SVM in real time with M-NBI to detect lesions concerning for early gastric
cancers. In this retrospective study the CADe system achieved an accuracy, sensitivity,
and specificity of 96.3%, 96.7%, and 95%, respectively[42l. Kanesaka et all*2l demonstrated
the power of SVM relating to detection of gastric cancer but their study was limited by
its sample size (81 test images), lesion type (focused only on depressed-type lesions),
and selection bias. In 2018, Hirasawa ef all¥l developed a CNN-based system for
detecting early and advanced gastric cancer. This system was trained on 13584 images
and tested on 2296 from 69 patients demonstrating a sensitivity of 92.2% and a PPV of

30.6%[43]. Most false positives were related to gastritisl*3l. Overall, this study provided
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sufficient evidence that a deep neural network-based approach was feasible for the
detection of early gastric cancer, but several limitations were also noted. Li et alll
applied a CNN based system to M-NBI for the detection of early gastric cancer. This
system was trained on 2088 images and tested on 341 images achieving an accuracy,
sensitivity, and specificity of 9091%, 91.18%, and 90.64%, respectively, with a
significant improvement in sensitivity relative to “expert” endoscopistsi*l. The
accuracy, sensitivity, and specificity of the Li et all¥l study were lower than results
published by Kanesaka et all2l with SVM. These differences, however, are difficult to
compare directly given varied nomenclature and histologic interpretation by groups
from different countries.

Zhu et al® developed another CNN-based system in 2019 with the ability to
determine the invasion depth of gastric cancer. 790 images were used for training and
203 images were used to test the system!%]. They were able to achieve a sensitivity and
specificity of 76.47% and 95.56%, respectively, with a PPV and NPV of 89.66% and
88.97%, respectively on the test datasetl%’l. They also demonstrated that the CNN-based
system had a significantly higher accuracy for the determination of invasion depth
compared to a small group of 17 endoscopistsl45]. This study was the first to use CNN to
evaluate the depth of gastric cancer and has significant potential clinical utility. Major
limitations include a small sample size, lack of validation and testing on video or live
endoscopy, and the fact that the data was collected from a single center using a single
type of endoscope.

Wu et all#¢l described the use of CNN to help eliminate blind spots and detect early
gastric cancer. In regards to classifying gastric locations, their CNN-based approach had
an accuracy of 90% and 65.9% when dividing the stomach into 10 and 26 parts
respectiﬁely l4el, For the detection of early gastric cancer, this study achieved promising
results with an accuracy of 92.5%, sensitivity of 94.0%, specificity of 91.0%, PPV of
913%, and NPV of 93.8%!%l. In 2021, Wu et all#647] published the first multi-center
randomized control trial investigating the detection of blind spots and early gastric

cancer using an updated version of their CNN based Al discussed above. In this study,
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1050 patients from 5 hospitals were randomized to receive Al-assisted endoscopy or
standard-of-care endoscopy. The Al-assisted group had significantly fewer blind spots.
The accuracy, sensitivity, and specificity of the system were 84.69%, 100%, and 84.29%
respectively for the detection of gastric cancer!¥]. The trial yielded a lower accuracy and
specificity relative to previous publications and the single center study by Li et all*]
However, this was the first study of its kind to evaluate a CNN-based system

prospectively in a randomized clinical trial.

Barrett’s esophagus

In the United States, esophageal adenocarcinoma accounts for approximately two thirds
of newly diagnosed esophageal cancers and is associated with a poor prognosis if
identified in the late stagesl*sl. When identified, esophageal premalignant lesions can be
treated via ablation or endoscopic resection, drastically improving outcomesl 950l
Traditionally, “random” biopsies were obtained with a relatively low diagnostic yield
as lesions concerning for neoplasia in patients with Barrett's esophagus (BE) are often
challenging to identify. Recently, several groups have studied the implementation of Al
during EGD for screening and surveillance of BE. In 2016, Sommen et all>!l published
the first study using machine learning for the detection of early neoplastic lesions in BE.
The algorithm achieved a sensitivity of 86% and specificity of 87%/5! but the initial
algorithm did not outperform an expert endoscopist during the length of their study.
Swager et all®Z expanded on this concept and developed a machine learning algorithm
for volumetric laser endomicroscopy (VLE). The resultant system achieved a sensitivity
and specificity of 90% and 93%, respectivelyl52. It also outperformed a clinical VLE
prediction scorel®l, In 2019, the ARGOS consortium developed a CADe system to detect
Berrett’s lesions using white light endoscopy (WLE), which achieved an accuracy,
sensitivity, and specificity of 92%, 95%, and 85%, respectivelyl53. Although their
approach yielded highly accurate results, it was tested on high quality images and
limited by human perceptual bias as the algorithm was trained to detect abnormalities

based on variations in color and texture. The ARGOS consortium sought to improve on
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their initial approach by developing a deep learning-based CADe system built on a
hybrid ResNet-UNet CNNI34. This method achieved 89% accuracy, 90% sensitivity, and
88% specificity for the detection of neoplasms and nondysplastic BEP4. Their deep-
learning based CADe system also out performed 53 international endoscopic assessors
ranging in experience from research fellows with no endoscopic expertise to board-
certified endoscopists with greater than 5 years of experiencel®l. The authors also
implemented their algorithm during live endoscopic procedures on 10 patients with
BESL The system achieved an accuracy, sensitivity, and specificity of 90%, 91%, and
89%, respectively during clinical usel55l. Hashimoto et al also demonstrated the power of
a CNN-based algorithm for the dete&ion and classification of early esophageal
neoplasial®l. On 458 test images they achieved a sensitivity of 96.4%, specificity of
942%, and accuracy of 95.4% at a speed allowing for implementation during live
endoscopy!®l. Though we are starting to s& the implementation of CNN-based systems
prospectively in the clinical trial setting, in the near future we will likely see the first
publication of multi-center, randomized clinical trials utilizing AI for the detection of

neoplasia in patient with BE.

Detection of esophageal squamous cell carcinoma

In 2019, Horie et all>’! published the first study applying CNN-based systems to EGD for
the detection of esophageal cancer. This was a single center trial that used 8428 images
from 384 patients for training and 1118 images from 97 patients for testing(>l. The
system achieved a sensitivity of 98% and specificity of 79% with a PPV of 40% and NPV
of 95% for the diagnosis of esophageal cancer(57l. Shadows were the most common
cause of false positives and background mucosal inflammation was the most common
cause of a false negativel*’l. Cai et all®] utilized CNN for the detection of esophageal
squamous cell carcinoma (SCC) by initially training it with 2428 images from 746
patients and testing it on 187 images form 52 patients. They achieved an accuracy,
sensitivity, specificity, PPV, and NPV of 914%, 97.8%, 85.4%, 86.4%, and 97.6%

respectivelyP8l. They also demonstrated that the use of CNN significantly increased
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both accuracy and sensitivity of esophageal SCC detection by junior, mid-level, and
senior endoscopists while reviewing still images[58l. Guo et all>% trained a CNN-based
tem on 6473 narrow-band images that was validated using 6671 images and which
achieved a sensitivity of 98.04% and a specificity of 95.03% for the detection
precancerous lesions or early esophageal SCC. Authors also tested the system on 27
non-magnifying videos and achieved aé)er-frame sensitivity of 60.8% and per-lesion
sensitivity of 100%[*l. When applied to 20 magnifying videos, the per-frame sensitivity
increased to 96.1%, and the per-lesion sensitivity remained at 100%[*°). Another group
using CNN with endoscopy to detect SCC demonstrated no significant difference in
accuracy, sensitivity, and specificity between Al diagnosis or endoscopist diagnosis
using narrow-band ima%g or white light imaging!®l. Liu et all®!l constructed a 2 stream
CNN system achieving an accuracy of 85.83%, sensitivity of 94.23%, and specificity of
94.67% outperforming SVM based methods with the same data set. Fukuda et all®?,
developed a CNN based algorithm to detect SCC with NBI/BLI to detect and
characterize suspicious lesions. For lesion detection, the system achieved a sensitivity,
specificity, and accuracy of 91%, 51%, and 63% respectivelyl®2. The algorithm
outperformed experts with regards to sensitivity but underperformed when it came to
specificity and accuracyl®l. However, when it came to characterization of lesions, the
CNN based algorithm outperformed expert endoscopists by achieving a specificity,
sensitivity, and accuracy of 86%, 89%, and 88% respectivelyl®2l. As can be seen for many
other CADe and CADx systems, over a relatively short time period, we have seen
significant advances in the early detection of pre-malignant lesions and a shift from

traditional machine learning to deep neural networks.

CAPSULE ENDOSCOPY

Traditional endoscopic techniques allow for the visualization of the esophagus,
stomach, duodenum, terminal ileum, and colon. With the advent of push enteroscopy,
we have the ability to reach the proximal jejunum, but are still unable to explore most of

the small intestine. Capsule endoscopy (CE) uses a 26 mm x 11 mm pill sized video
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camera that is swallowed and allows for the wireless transmission of video from the
whole GI tract. CE allows for visualization of portions of the jejunum and ileum
previously unreachable. Unlike traditional endoscopy, CE is unable to be controlled by
an operator so important pathology can be missed, and there is no way to intervene
immediately if an abnormality is identified. CE is also limited by an eight-hour battery
life and the risk of obstruction in patients with strictures. Even with its limitations, CE
has become an important tool for the diagnosis of GI pathology.

Decades after its initial conception, the first CE was approved for use in 2001 by the
Food and Drug Administration (FDA), ushering in a new era of discoveryl®3l. As the
practice of CE became more mainstream, physicians were tasked with interpreting
many hours of video averaging between 30-120 min with a staggering 50000-60000
frames per studyl®6L It is an incredibly arduous task for an endoscopist to maintain
their attention and consistently identify evidence of pathology in as little as 1 frame
while combing through hours upon hours of video. The miss rate in this setting has
been reported to be at least 50% in a small blinded study from 2012(%l. Recently we have
seen the parallel development of Al algorithms to help interpret the swaths of data
generated by CE studies. Initially the development approach was based on traditional
machine learning with many studies utilizing SVM, but the field has made a substantial
shift towards deep learning primary through CNN, which, in general have afforded
favorable performance characteristics.

A major application of CE is the ability to noninvasively identify polyps and lesions
concerning for malignancy throughout the GI tract. Early efforts consisted of traditional
machine learning algorithms such as SVC that were designed to identify the presence or
absence of a polyp instance. One early paper using a binary classifier based on
geometrical analysis demonstrated 47% sensitivity per frame and over 81% sensitiyity
per polyp with a specificity of 90%[¢l. Using a boosting-based approach, Silva et al
achieved a sensitivity of 91.0% and a specificity of 95.2% for polyp detection with CEI®8].
This was expanded on by Lakovidis et all®¥], whose color feature-based pattern

recognition was utilized to subclassify lesions. Liu et all’%l implemented multiscale
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textural features and an SVM based feature selection method to enhance the process of
polyp classification that was 97.3% accurate, 97.8% sensitive, and 96.7% specific.
Various groups sought to improve traditional machine learning approaches by using a
genetic fuzzy based improved kernel SVMI71l and by using ensemble learning[72l.

A study from 2020 investigated the application of a CNN based system to CE for the
detection of protruding lesions including polyps, nodules, epithelial tumors,
submucosal tumors and venous structures!?l. In this particular study the sensitivity and
specificity for detecting any protruding lesion [on test images] were 90.7% and 79.8%
respectively73l. Subgroup analysis of the data yielded a sensitivity of 86.5% for polyp
detection/73l. When applied to patients the sensitivity for protruding lesions increased to
98.6%171. Currently, the well-established SVM-based detection methods for polyps
appear to be superior for the detection/classification of polyps but perhaps further
training and studies are required for CNN to outperform SVMs, and all of these studies

are pre-clinical.

ENDOSCOPIC ULTRASOUND

Al applications for endoscopic ultrasound (EUS) are still in nascent stages. The majority
of work utilizing Al for EUS has focused on diagnosing pancreatic cancer. A variety of
conventional machine learning techniques including PCA, SVM and artificial neural
networks have been utilized[74-7¢l. Recently, Kuwahara et all77] performed the first deep
learning based study using a CNN to predict malignancy in intraductal papillary
Eucinous neoplasms. They trained their algorithm on 3970 still images and achieved a
sensitivity, specificity, PPV, NPV, and accuracy of 95.7%, 92.6%, 91.7%, 96.2%, and
94.0%, respectively. Of note, the human accuracy for predicting IPMN malignancy in
this study was only 56.0%. In 2020, Marya et all”8 performed a retrospective study using
a CNN-system to differentiate autoimmune pancreatitis from pancreatic ductal
adenocarcinoma (PDAC). The system was 90% sensitive and 93% specific for

differentiating autoimmune pancreatitis from PDAC.
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Outside of the field of pancreatic cancer, Minoda et all”®l published a retrospective
study evaluating the ability of a CNN-system to diagnose gastrointestinal stromal
tumors among subepithelial lesioi (SEL) using EUS images. Among 30 SELs > 20 mm
the system achieved an accuracy, sensitivity, and specificity or 90.0%, 91.7%, and 83.3%
respectively. Finally, Marya ef all8 utilized a CNN to identify focal liver lesions (FLL)
and classify them as malignant or benign. The authors included a total of 210685 EUS
images in their study. Their algorithm correctly identified 92% of FLLs. When
evaluating video data, they achieved a sensitivity of 100% and specificity of 80% for the

classification of malignant FLLs.

CONCLUSION

Al technology applied to gastrointestinal oncology has an exciting and potent future
and the potential to decrease morbidity, mortality and costs. Research groups have
demonstrated how Al can augment the detection and diagnosis of numerous GI
malignancies. This field is growing rapidly, but it is still in its infancy. Although we
have recently seen the first prospective, randomized trials emerging in several spaces,
most studies in this field are still retrospective. Furthermore, the majority of datasets
used to train the algorithms used in these studies were collected from single-center
databases in heterogenous patient populations. Consequently, these studies are at high
risk of selection bias and with models at risk for overfitting. In order to create robust
tools ready for general clinical practice, multicenter, randomized controlled clinical
trials conducted by endoscopists of various skill levels on diverse patient populations
and utilizing robustly trained and validated models are needed. Additionally, it will be
important to monitor the efficacy of these tools in the real-world setting. Finally,
clinicians will need to collaborate with lawmakers and other stakeholders to determine
how best to regulate these technologies and establish clear policies on accountability. In
clinical practice today, Al serves as a “safety net” for physicians. It is there to serve as a
second set of eyes to support a diagnosis only. We believe it will be many years before

Al is used to make definitive diagnosis or drive management decisions.




Gastroenterologists should work to familiarize themselves with the strength and
limitations of these technologies so they can take an active role in a future Al-assisted

healthcare system.
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