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Construction of a immune-related gene signature for overall survival prediction

and immune infiltration in gastric cancer

Running title: IRGs to predict GC survival
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Abstract

Aim In this study we determined the effects of differentially-expressed immune-related genes
(DEIRGs) on the development, prognosis, tumor microenvironment (TME), and treatment
response among gastric cancer (GC) patients with the expectation of providing new biomarkers
for personalized treatment of GC populations.

Materials and Methods Gene expression data and clinical pathologic information were
downloaded from the Cancer Genome Atlas (TCGA), and immune-related genes (IRGs) were
searched from ImmPort. DEIRGs were extracted from the intersection of the
differentially-expressed genes (DEGs) and IRGs lists. The enrichment pathways of key genes
were obtained by analyzing the Kyoto Encyclopedia of Genes and Genomes (KEGGs) and Gene

Ontology (GO) databases. To identify genes associated with prognosis, a tumor risk score model




based on DEIRGs was constructed using LASSO and multivariate Cox regression. The tumor risk
score was divided into high- and low-risk groups. The entire cohort was randomly divided into a
2:1 training cohort and a test cohort for internal validation to assess the feasibility of the risk
model. The infiltration of immune cells was obtained using ‘CIBERSORT,” and the infiltration of
immune subgroups in high- and low-risk groups was analyzed. The GC immune score data were
obtained and the difference in immune scores between the two groups was analyzed.

Results  We collected 412 GC and 36 adjacent tissue samples, and identified 3627 DEGs and
1311 IRGs. A total of 482 DEIRGs were obtained. GO analysis showed that DEIRGs were mainly
distributed in immunoglobulin complexes, receptor ligand activity, and signaling receptor
activators. KEGG pathway analysis showed that the top three DEIRGs enrichment types were
cytokine-cytokine receptors, neuroactive ligand receptor interactions, and viral protein interactions.
We ultimately obtained an immune-related signature based on 10 genes, including 9 risk genes
(LCN1, LEAP2, TMSBI5A mRNA, DEFB126, PI15, IGHD3-16, IGLV3-22, CGBS5, and GLP2R)
and 1 protective gene (LGR6). Kaplan-Meier survival analysis, receiver operating characteristic
(ROC) curve analysis, and risk curves confirmed that the risk model had good predictive ability.
Multivariate COX analysis showed that age, stage, and risk score were independent prognostic
factors for patients with GC. Meanwhile, patients in the low-risk group had higher tumor mutation
burden (TMB) and immunophenotype (IPS), which can be used to predict the immune checkpoint
inhibitor response. Both cytotoxic T lymphocyte antigen 4 (CTLA4)+ and programmed death 1
(PD-1)+ patients with lower risk scores were more sensitive to immunotherapy.

Conclusions In this study a new prognostic model consisting of 10 DEIRGs was constructed
based on the TME. By providing risk factor analysis and prognostic information, our risk model
can provide new directions for immunotherapy in GC patients.
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Introduction

Gastric cancer (GC) a common malignant tumor of the digestive tract and the fourth most
common malignant tumor. In fact, GC is the second most common cause of death among
malignant tumors worldwide [1]. Most GC patients are diagnosed with tumors that have already
reached an advanced stage. Although surgery is the only way to perform radical treatment, patients
with stage II and above GC have a higher postoperative recurrence rate and a lower 5-year
survival rate. Therefore, the combination of surgical and medical treatments has become the
accepted treatment mode for locally advanced GC. In addition, > 80% of GC patients are
diagnosed at an advanced stage, most of whom have extensive invasion and distant metastasis, and

are thus not candidates for radical surgery. Despite the continuous improvement in treatment

options for patients with GC, the overall prognosis is poor, traditional chemotherapy drugs have




entered a difficult period, and the selection of targeted drugs is limited.

Recently, mune checkpoint inhibitors (ICIs), such as programmed death 1 / programmed
cell death ligand 1 (PD-1/PD-L1) or eytotoxic T lymphocyte antigen-4 (CTLA-4) inhibitors, have
become treatment options for various types of cancer. The use of PD-1 inhibitors has also yielded
benefits to patients with advanced GC, gradually becoming the current new standard treatment
option; however, not all patients benefit from PD-1 inhibitor treatment. At present, in addition to
the microsatellite instability-high (MSI-H) status, the predictive value of the PD-L1 combined
positive score (CPS) is still controversial. Other prognostic factors, such as tumor mutation
burden-high (TMB-H), are still uncertain. Therefore, there is an urgent need to identify valuable
biomarkers with which to assign patients with different characteristics into subgroups.
Immune-related genes (IRGs) have been shown to be significantly associated with individual or
partial pathways of immune responses. IRGs participate the activation of immune cells,
migration of immune cells, and release of inflammatory factors, and thus have important roles in
the occurrence and development of cancer [2, 3]. Research has shown that IRGs can serve as
biomarkers for predicting the prognosis of cancer patients [4].

An increasing number of studies have shown that the tumor microenvironment (TME) is the
main cause of tumor invasion, which affects the tumor response to immunotherapy. The TME
refers to the tissue environment composed of tumor cells, immune cells, mesenchymal cells and
their secreted active mediators [5]. Studies have shown that infiltrating immune cells in TME have
a crucial role in cancer initiation, invasiveness, and therapeutic response [6, 7].

In this study, we established a risk score model for differentially expressed immune-related
genes (DEIRGs) to determine the impact on the development, prognosis, TME, and treatment
response of GC patients and to provide a new biomarker for personalized treatment of GC

opulations.
Materials and Methods
Data set source and preprocessing
Gene expression data and clinical pathologic information were sourced from the Cancer Genome
Atlas (TCGA) utilizing the ImmPort database (https://www.immport.org/shared/genelists) search
2

for IRGs. Based on clinical data, samples with a missing overall survival time or 0 days were

excluded. The pre-treated TCGA-stomach adenocarcinoma (STAD) dataset consisted of 412




tumor and 36 adjacent tissue samples.

Identifying gﬂerenﬁally-expressed genes (DEGs)

According to the | log2 (fold change) | > 1 and false discovery rate (FDR) < 0.05 criteria, the
‘limma’ package of R was used to search for DEGs between the 412 and 36 adjacent tissue
samples in the TCGA-STAD dataset. The ‘pheatmap” package was used to visualize DEGs using
volcano plots.

Acquisition of intersection genes

By reading IRGs and DEGs respectively, intersection genes and DEIRGs were obtained, and a
Venn diagram was made for differences. According to the expression of intersection genes, the
‘geplot2’ software package was used to visualize DEIRGs with heatmap.

Pathway function analysis based on key genes

he Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontogeny (GO) databases
were analyzed using R packages (‘clusterProfiler,” ‘org.Hs.eg.db,” ‘DOSE,” and ‘enrichplot’) to
observe the enrichment of DEIRGs in functional pathways, then bar and bubble charts were drawn.
P values and g-values < 0.05 were considered statistically significant for GO- and KEGG-enriched
pathways, respectively.

Construction and validation of risk scores for IRGs

To obtain immune genes related to prognosis, we constructed a tumor risk score model based on
IRGs. First, univariate Cox regression analysis was performed to determine the DEIRGs which
related to survival (p < 0.05). The results are presented as forest plots. Then, SSO regression
analysis was used to screen variables and eliminate genes with high correlation to reduce the
number of genes in the risk model and prevent over-fitting of the model. Finally, multivariate Cox
regression was used to establish a risk score model, and GC patients were divided into high- and
low-risk groups according to the median risk score. To evaluate the feasibility of the model, e
randomly divided the cohort into a 2:1 training cohort and a test cohort for internal validation. The
calculation formula as follows: risk score = gene A expression x coefficient A + gene B
expression % coefficient B+ ... + gene N expression x coefficient N.

Clinical features and survival analysis

To further verify the feasibility of the risk score, the clinical characteristics of the training and

testing cohorts were analyzed, including age, gender, grade, TNM status, T stage, N stage, M stage,




and other clinical characteristics. P values > 0.05 confirmed no significant difference between the
two cohorts. Overall survival (OS) s compared between the two groups by Kaplan-Meier curve
using log-rank test. E) evaluate the predictive performance of the risk score model, we used the
‘timeROC” package to perform receiver operating characteristic (ROC) curve analysis.

Risk curves

Risk curves and survival status diagrams were plotted separately, and heatmaps were developed
using the ‘pheatmap’ package to show differences in IRG expression profiles between the high-
and low-risk groups.

Analysis of mutations in diagnostic genes

utation data containing somatic variations were retrieved from the TCGA, and TMB counts
were measured for each GC sample. The mutation state was studied using R package ‘maftools’
and GC mutation data from the TCGA database. difference in TMB between high- and
low-risk groups was compared, and the results are displayed using oncoprint and boxplot.
Immune cell infiltration andluation of immune scores

The infiltration of 22 immune cells in the sample was obtained using the ‘CIBERSORT’ package,
and the infiltration of immune subgroups in the high- and the low-risk groups was analyzed. The
GC immune score data were obtained, and e difference in immune scores between the high- and
low-risk groups was analyzed. A p < 0.05 was considered statistically significant.

Statistical analysis

Data were processed, analyzed, and presented using R software (version 4.1.2) and the related
software packages. P <0.05 (two-tailed) was considered valuable.

Results

Identification of DEGs and DEIRGs in GC

We first identified 412 GC and 36 adjacent tissue samples using the TCGA-STAD dataset. We set
the screening threshold to |log2 (fold change)| = 1 and FDR < 0.05 in the differential expression
analysis of the R software ‘limma’ package, and identified 3627 DEGs (Figure 1a). A total of 1311
IRGs were obtained in the IRG list from ImmPort. A total of 482 EIRGS were extracted from the
intersection of the DEGs and IRGs lists (Figure 1b).

Functional enrichment analysis

We performed functional enrichment analysis based on identified genes in the GO and KEGG




pathways. The top 10 pathways enriched in 3 functional categories (BP, CC, and MF) in GO
analysis are shown by bubble and bar charts. The DEIRGs were mainly distributed in
immunoglobulin complexes, receptor ligand activity, and signaling receptor activators (Figure
2a-b). KEGG pathway analysis showed that the first three DEIRGs enrichment types were
cytokine-cytokine receptors, neuroactive ligand receptor interactions, and viral protein interactions
(Figure 2c-d).

Establishment and validation of the immune-related signature

We randomly divided the cohort into a 2:1 training cohort and a testing cohort for internal
verification. The expression of 48 DEIRGs in GC patients was statistically significant based on
univariate Cox regression analysis (Figure 3a). We used the LASSO algorithm to identify these
DEIRGs (Figure 3b-c). Multivariate Cox regression analysis was performed for the above
DEIRGs to determine the prognostic characteristics. We obtained an immune-related signature
based on 10 genes in the training cohort, ollows: risk score = LCN1 mRNA expression level x
0.797234455489025 + LEAP2 mRNA expression level x 0.360879313341945 + TMSBI15A
mRNA expression level x 0.169974119204932 + DEFB126 mRNA expression level x
0.371620785532426 + PI15 mRNA expression level x 0.152108920340092 + IGHD3-16 mRNA
expression level = 0.149245094458141 + 1IGLV3-22 mRNA expression level x
0.176805538372338 + CGB5 mRNA expression level x 0.242547750831489 + GLP2R mRNA
expression level x 0.465078727018208 - LGR6 mRNA expression level x 0.140512170786152
(Supplementary file 1). ocording to the median risk score, GC patients were divided into high-
and a low-risk groups.

We then further confirmed the feasibility of this risk score by performing univariate Cox
regression analysis for clinical pathologic factors and comparing high- and low-risk groups.
There were no significant differences in e ("= 65 years’ or ‘> 65 years’), gender (female or
male), grade (G1-2 or G3), and tumor stage (stage [-1I or [II-IV) between the training and test
cohorts. Furthermore, Kaplan-Meier ival analysis showed that the low-risk group had a
significantly longer OS in both the training and test cohorts (p < 0.05; Figure 4a-c). In addition,
the area under the ROC curve (AUC) of the total population, training cohort, and test cohort were

0.693, 0.707, and 0.656, respectively, thus showing high predictive accuracy and reliability

(Figure 4d-f). Therefore, we validated the feasibility of the immune-related signature.




Based on this immune-related signature, there was a correlation between the patient’s risk
score and GC mortality, with a higher score indicating a greater risk (Figure 5a-b). The tter plot
shows the correlation between survival time and risk score in GC patients (Figure 5c-d). As shown
in the heatmap (Figure 5e-f), LCN1, LEAP2, TMSB15A, DEFB126, PI15, IGHD3-16, IGLV3-22,
CGB5, and GLP2R ere highly expressed in the high-risk group, while LGR6 was highly
expressed in the low-risk group.

Independent prognostic analysis and correlation analysis of clinical features based on risk
score

First, we performed an independent prognostic analysis to better predict the prognosis in this
population of GC patients. Univariate Cox regression analysis indicated that age, gender, grade,
tumor stage, and risk score were independent prognostic factors (Supplementary file 2).
Multivariate analysis identified age, tumor stage, and risk score as independent risk factors
influencing prognosis (Supplementary file 2). We then performed a correlation analysis to assess
the relationship between risk score and clinical pathologic features [age (< 65 vs > 65), gender
(female vs male), rade (G1-2 or G3), tumor stage (stage [-II or [II-IV), T stage (T1-2 or T3), N
stage (NO or N1-3) and M stage (MO or M1)]. The risk score showed significant statistical
differences in tumor grade, tumor stage, N stage, and M stage (Figure 6¢-d,f-g). G3, stage II1-IV,
NI1-3, or M1 patients had significantly higher risk scores than G1-2, stage I-1I, NO, or MO0 patients.
There was no statistical difference in risk score as a function of age, gender or T stage. (Figure
6a,b,e). In addition, we further constructed a nomogram prediction model to improve the
application value of this risk score (Figure 7). Both calibration and ROC curves confirmed the
consistency of this nomogram prediction model and the data in this study (Supplementary Figure
1).

Diagnostic mutation gene analysis

The TMB count of each GC patient was determined by the mutated gene data retrieved from the
TCGA, and mutation analysis of diagnostic genes was performed. The results showed that the
most common mutation types in both the low- and high-risk groups were Missense Mutation,
Multi Hit and Frame Shift Del (Figure 8a-b). The top five mutant genes with mutation frequency
in the two groups were TTN, TP53, MUCI6, LRPIB, and ARIDIA (Figure 7a-b). We

1
subsequently evaluated the correlation between risk score and TMB. The results showed a




significant correlation between risk score and TMB (p = 1.9¢—10), and the level of TMB was
higher in the low-risk group (Figure 8c).

Assessment of immune cell infiltration and immunophenotype score sed on risk score

We used ‘CIBERSORT" to determine the proportion of 22 immune cells in different sk groups to
assess immune infiltration in each TCGA sample. We found that the levels of B cell memory, CD8
T cell, activated CD4 memory T cells, follicular helper T cells, and neutrophils were significantly
correlated with the risk score. The percentages of @8 T cells, activated CD4 memory T cells,
follicular helper T cells, and neutrophils in the low-risk group were higher than those in the
high-risk group (Figure 9a). The proportion of memory B cells and eosinophils in the high-risk
group was higher than those in the low-risk group (Figure 9a).

To evaluate the immune response among GC patients, we calculated the immunophenoscore
(IPS) to predict the patient's ability to respond (Figure 9b-e). The higher IPS score in low-risk
group suggests that low-risk patients may be more sensitive to immunotherapy. Above findings
suggest that risk score may be a viable biomarker for predicting ICI treatment response.
Discussion
Gastric cancer is one of the cancers with the highest incidence rate in the world. The clinical
characteristics of GC include strong invasion, high malignancy, high recurrence and metastasis
rates, and short survival periods [8]. The early detection and diagnosis of a GC are crucial for
comprehensive treatment and can prolong patient survival [9]. We found that the differential
expression of multiple genes was associated with the occurrence, development, and prognosis of
GC [10]. Although the relationship between IRGs in the microenvironment of GC and disease
progression and patient prognosis have not been fully established, current high-throughput gene
sequencing technology provides sufficient objective data for further systematic analysis of
immune-related factors in clinical samples.

We established a risk prognostic model for GC based on 10 DEIRGs, including 9 risk genes
(LCN1, LEAP2, TMSBI5A mRNA, DEFB126, PI15, IGHD3-16, IGLV3-22, CGBS, and GLP2R)
and 1 protective gene (LGRG6). Patients re divided into high- and low-risk groups using a
median risk score. The population of GC patients was divided into training and test cohorts for

internal verification. Kaplan Meier survival, ROC, and risk curve analyses indicated that our risk

model has good predictive ability. The identified DEIRGs have also been partially confirmed to be




associated with the occurrence and development of tumors. TMSB15 belongs to a
highly-conserved 5-kDa protein f thymosin family, and is the least studied member of the family.
Increasing evidence suggests that TMSB15 has an important role in tumor progression. TMSB15
has been shown to be upregulated in various cancer cell lines and is associated with the migration
and proliferation of cancer cells. The level of TMSBI15A mRNA has been confirmed to be a
reliable predictive indicator in triple-negative breast cancer [11]. GLP2R has been reported to be
associated with gastrointestinal tumors [12]. Studies have shown that GLP2R knockdown
significantly inhibits the proliferation and migration of GC cells [13]. LGR6 has been confirmed
to be at high levels in GC cell lines and gastric adenocarcinoma tissues. Silencing LGR6 inhibits
the proliferation and migration of MN45 and BGC-823 cells, and simultaneously inhibits the
expression of MMP-9, B-catenin, CCNA2, CDK-2, and ERK1/2 [14].

We further compared several clinical variables to evaluate the predictive ability ofur risk
model. Age, stage, and risk score were identified as three independent prognostic factors. Previous
studies have confirmed that age and stage are the main prognostic factors for various tumors,
including GC. Further analysis indicated that the predictive ability of this model also serves as an
independent risk factor, showing high predictive ability. At the same time, re was a significant
correlation between the risk score and the clinical pathologic characteristics of GC. On this basis,
we further constructed a nomogram prediction model to improve the application value of this risk
score.

Immune cell infiltration is an important feature of TME and has an important role in the
development of tumors. In various types of cancer, the tumor-induced inflammatory response has
been shown to be an effective prognostic biomarker. Zheng et al. [15] reported that an imbalance
in the immune microenvironment promotes the malignant development of tumors. Pernot et al. [16]
showed that the infiltration of various immune cells in the GC microenvironment is closely related
to the clinical prognosis of patients. Therefore, we calculated the une cell infiltration rate
between the high- and low-risk groups in the GC sample. We found that multiple levels of immune
cell infiltration increased, indicating that the risk model may determine which patients have a
better response to ICI. Compared to the high-risk group, the proportionCD8+ T cells, activated

CD4 memory T cells, follicular helper T cells, and neutrophils were significantly increased in the

low-risk group. In addition, the number of memory B cell and eosinophils in the high-risk group




were significantly increased. This finding was consistent with previous research results. Zeng et al.
[17] found a significant positive correlation between CD8+T cell infiltration levels in TME of GC
patients and prognosis. Inducing tumor cell death is the main function of CD8&+ T cells [18]. IL-12
mobilizes the proliferation of CD4+ memory T cells and kills tumor cells in the TME [19]. Niegret
et al. [20] reported that follicular helper T cells exert anti-tumor immune effects in a CD8+ T
cell-dependent manner by promoting the production of 1L-21; however, the role of B cells in the
occurrence and development of tumors is controversial. Under certain conditions, gce]]s can
resist tumors, mainly by producing tumor-specific antibodies and presenting tumor antigens, but
some B cell subgroups and specific antibodies also inhibit anti-tumor immunity and promote
tumor growth. Our findings with respect to neutrophils and eosinophils contradict previous studies.
Using Vioplot, we also showed that the fraction of these two types of cells was very low, which
may be account for the inconsistent results.

Immunotherapy has shown good results in the treatment of GC, and a variety of PD-1
inhibitors have been recommended for standard treatment; however, only 11%-25% of GC
patients benefit from PD-1 inhibitor therapy [21-23]. It is currently thought that tumors with a
greater number of utated genes tend to produce more mutant RNA and proteins. It is more likely
to activate the immune system and respond well to immunotherapy. Therefore, we also analyzed
the differences in TMB between the two risk groups. The TMB rhe low-risk group was
significantly higher than the high-risk group. Among the high- and low-risk groups, the most
frequently mutated genes included TTN, TP53, MUC16, LRP1B, and ARID1A. At the same time,
we found that the low-risk group achieved higher IPS scores, which can be used to predict the
response to ICls. Both CTLA4+ and PD-1+ patients with low-risk scores were more sensitive to
immunotherapy. Therefore, through our established risk model, we found that immunotherapy
may be an option for GC patients with low-risk scores.

The current study had certain limitations. First, the data in this study is sourced from public
databases, and inherent selection bias may affect the final results. Second, we successfully
validated our prognostic model using internal datasets as a test cohort, but further validation of
this risk model in the diagnosis and treatment of gastric cancer still requires multiple large
external datasets and prospective clinical studies. Finally, we did not explore the function and

mechanism of the 10 DEIRGs in this prognostic model, and the mechanism of action needs to be




further elucidated.

Conclusions

In this study a new prognostic model consisting of 10 DEIRGs was constructed based on the
tumor immune microenvironment. While providing risk factor analysis and prognostic

information, our risk model can provide new directions for immunotherapy in GC patients.
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