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Abstract

BACKGROUND

Liver transplant (LT) patients have become older and sicker. The rate of post-LT major
adverse cardiovascular events (MACE) has increased, and this in turn raises 30-d post-
LT mortality. Noninvasive cardiac stress testing loses accuracy when applied to pre-LT

cirrhotic patients.

AIM
To assess the feasibility and accuracy of a machine learning model used to predict post-

LT MACE in a regional cohort.

METHODS

This retrospective cohort study involved 575 LT patients from a Southern Brazilian
academic center. We developed a predictive model for post-LT MACE (defined as a
composite outcome of stroke, new-onset heart failure, severe arrhythmia, and
myocardial infarction) using the extreme gradient boosting (XGBoost) machine learning
model. We addressed missing data (below 20%) for relevant variables using the k-
nearest neighbor imputation method, calculating the mean from the ten nearest
neighbors for each case. The modeling dataset included 83 features, encompassing
patient and laboratory data, cirrhosis complications, and pre-LT cardiac assessments.
Model performance was assessed using the area under the receiver operating
characteristic curve (AUROC). We also employed Shapley additive explanations
(SHAP) to interpret feature impacts. The dataset was split into training (75%) and
testing (25%) sets. Calibration was evaluated using the Brier score. We followed
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or
Diagnosis guidelines for reporting. Scikit-learn and SHAP in Python 3 were used for all
analyses. The supplementary material includes code for model development and a user-

friendly online MACE prediction calculator.
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RESULTS

Of the 537 included patients, 23 (4.46%) developed in-hospital MACE, with a mean age
at transplantation of 52.9 years. The majority, 66.1%, were male. The XGBoost model
achieved an impressive AUROC of 0.89 during the training stage. This model exhibited
accuracy, precision, recall, and F1-score values of 0.84, 0.85, 0.80, and 0.79, respectively.
Calibration, as assessed by the Brier score, indicated excellent model calibration with a
score of 0.07. Furthermore, SHAP values highlighted the significance of certain
variables in predicting postoperative MACE, with negative noninvasive cardiac stress
testing, use of nonselective beta-blockers, direct bilirubin levels, blood type O, and
dynamic alterations on myocardial perfusion scintigraphy being the most influential
factors at the cohort-wide level. These results highlight the predictive capability of our
XGBoost model in assessing the risk of post-LT MACE, making it a valuable tool for

clinical practice.

CONCLUSION

Our study successfully assessed the feasibility and accuracy of the XGBoost machine
learning model in predicting post-LT MACE, using both cardiovascular and hepatic
variables. The model demonstrated impressive performance, aligning with literature
findings, and exhibited excellent calibration. Notably, our cautious approach to prevent
overfitting and data leakage suggests the stability of results when applied to
prospective data, reinforcing the model’s value as a reliable tool for predicting post-LT

MACE in clinical practice.
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cardiovascular events after orthotopic liver transplantation using a supervised machine

learning model: A cohort study. World | Hepatol 2024; In press

Core Tip: This study presents a robust machine learning model, utilizing the XGBoost
algorithm, to predict major adverse cardiovascular events (MACE) following liver
transplantation. The model demonstrated high accuracy and calibration, with key
factors such as noninvasive cardiac stress test outcomes, use of nonselective beta-
blockers, direct bilirubin levels, blood type O, and dynamic alterations on myocardial
perfusion scintigraphy identified as significant predictors. This tool offers valuable
insights into the risk assessment of post-liver transplant MACE, particularly in an aging

and comorbid patient population.

INTRODUCTION

The population of liver transplant (LT) candidates has become older and sicker,
experiencing higher morbidityl!l. This might be due to the increasing prevalence of
metabolic-associated fatty liver disease (MAFLD) as a cause of cirrhosis and end-stage
liver disease (ESLD)[25]. As a result, there is an expected rise in the incidence of major
adverse cardiovascular events (MACE) following LT, a well-documented complication
of LT that negatively impacts prognosis!®-10,

The occurrence of MACE in the post-LT period is a significant concern, since these
events contribute to increased mortality and jeopardize the success of LT[!l. Previous
literature suggests that the incidence of post-LT MACE can be as high as 41% within the
first 6 months following LT, which translates into a higher mortality ratel®10]. Various
traditional anddlontraditional cardiovascular risk factors may contribute to these
adverse events, including preexisting coronary disease, obesity, reduced cardiovascular
reserve, poor response to cardiovascular stress, cirrhotic cardiomyopathy, increased
predisposition to arrhythmias, and heart failure exacerbations!'>'°l. The prioritization

for transplant of sicker patients with a high burden of critical illness, associated with a
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higher prevalence of cardiovascular disease, further exacerbates the risk['el. However,
the relative contribution of these factors remains incompletely characterized!7.17.18],

In addition to population aging, there has been a significant change in the most
prevalent etiology leading to LT, with an increase in MAFLD observed both in the West
and in the Eastl219. Currently, MAFLD is the fastest-growing indication for LT in
Western countries, having become the leading indication for LT waitlisting in the
United Statesl5], as predicted by previous studies!?l. Moreover, MAFLD is strongly
associated with a higher prevalence of diabetes mellitus, morbid obesity, and coronary
artery disease (CAD)M458l. This specific population thus requires a detailed pre-LT
cardiac evaluation, with particular attention to the increased risk of CAD, as they have a
higher risk of cardiac events compared to those without MAFLDI821,

The first stage of cardiac evaluation usually involves assessing risk factors and
subsequently performing noninvasive stratification. However, this approach is still
controversial. In 2014, the American Association for the Study of Liver Diseases
updated its guideline, maintaining the recommendation that patients undergoing pre-
LT evaluation should complete a noninvasive myocardial stress test/?2l. Conversely, the
2012 guideline developed by the American Heart Association in conjunction with the
American College of Cardiology®! suggests performing a noninvasive myocardial
stress test only for patients with three or more risk factors for CAD. However,
systematic reviews have demonstrated that current noninvasive strategies, such as
myocardial perfusion scintigraphy (MPS) and dobutamine stress echocardiography
(DSE), are unreliable and inadequate for predicting MACE, mortality, and significant
CAD after LTI?#2l, Therefore, there is an unmet need for an alternative approach to
accurately predict post-LT MACE in this vulnerable patient population['$27],

Few models are available to assist clinicians in accurately stratifying the
cardiovascular risk of LT candidates, especially those with ESLDI!8l- Existing models
often rely on traditional logistic regression statistics, making assumptions of
independent linear relationships between dependent and independent variables/5l.

These models are further constrained by small sample sizes and the limited number of

5/24




variables for which they can account, primarily due to concerns of overfitting and
multicollinearity. They are also unable to accurately consider the small effects of minor
variables and their complex correlationsl'828. Two scores have been developed using
such models, the CAD-LTI??, and the CAR-orthotopic liver transplantation (OLT)[301.
The CAD-LT has demonstrated ability to stratify the risk of CAD into low, intermediate,
and high categories, while the CAR-OLT point-based prediction model has shown
superior performance compared to other existing risk models in predicting post-LT
MACE.

In addition, patients with liver cirrhosis exhibit significant peripheral vasodilation,
which can alter cardiac function and mask the presence of CAD, leading to what is now
termed cirrhotic cardiomyopathy, a distinct pathologic entity for which diagnostic
criteria were published in 20200311, In the 1990s, a high mortality rate (around 50%) was
reported in patients with significant CAD in the peri-LT period®2. However, in the last
decade, with improved pre-LT cardiac therapy, it is believed that the presence of CAD
does not significantly alter the post-LT survivahof these patientsl33.

To overcome these limitations, we propose the use of machine learning, a subarea of
computer science that focuses on predicting outcomes using computational models that
iteratively learn from datal®?°. Machine learning models have demonstrated robust
performance in various fields in gastroenterologyl®l, such as the diagnosis of
hepatocellular carcinomal?l, prognostication of variceal hemorrhagel839, prediction of
acute kidney injury after LT4], short- and long-term post-LT mortalityl*!], and adverse
cardiovascular events in various medical conditionsl42l. Unlike conventional statistical
models, machine learning models can detect complex patterns and relationships within
datasets without relying on fixed assumptions about data behavior or pre-selection of
variables, using correlations within variables to determine outcomel*3l.

The aim of this study is to conduct a comprehensive assessment of the feasibility and
accuracy of employing a machine learning model for prediction of MACE following LT.
The study focuses on a specific regional cohort to examine the potential of machine

learning techniques in effectively forecasting post-LT MACE. By leveraging advanced
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computational models, this research aims to enhance the predictive capabilities in
identifying individuals at higher risk of experiencing MACE after LT, thereby enabling

early intervention strategies and optimizing patient care.

MATERIALS AND METHODS

This retrospective cohort study was approved by the Research Ethics Committee of
Universidade Federal de Ciéncias da Saade de Porto Alegre under protocol no.
07793412.2.3001.5345 on May 22, 2013, and conducted in accordance with the ethical
guidelines of the 1975 Declaration of Helsinki. The study utilized medical records from

Irmandade Santa Casa de Misericordia de Porto Alegre (Rio Grande do Sul, Brazil).

Inclusion and exclusion criteria

Patients above 18 years of age who underwent their first LT at Irmandade Santa Casa de
Misericordia de Porto Alegre, Guido Cantisani LT Team, Brazil, for cirrhosis, between
January 1, 2001, and December 31, 2011, were eligible. Patients without cirrhosis, those
with incomplete medical records, those who did not undergo cardiac evaluation prior
to LT, retransplantation cases, and living-donor LT recipients were excluded. Patients

with 20% or more missing data were excluded.

Outcomes

Data were systematically collected on structured forms encompassing extensive clinical
and laboratory variables from the pre-LT, perioperative, and post-LT periods. The
primary outcome of interest was any in-hospital MACE, a composite outcome including
stroke, new-onset heart failure, severe arrhythmia, and myocardial infarction. Statistics,
including frequency, means, SD, and tests such as Pearson’s y? test and linear model
analysis of variance (ANOVA), were conducted in R software (version 4.3.2) using the
‘readx]” and ‘dplyr’ packages, with the analysis involving data manipulation and

exploration.
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Machine learning approach and model definition

We employed the extreme gradient boosting (XGBoost) model, available through the
XGBoost package, to construct a classification model aimed at predicting post-LT
MACE. XGBoost is particularly effective in handling imbalanced datasets and offers
native support for missing data and categorical variables, making it particularly useful
for real-world applications. The columns considered to compose the outcome variable

were not included in the model to avoid bias and collinearity.

Data pre-processing and feature engineering

The dataset was divided into training (75%) and test (25%) sets, preserving the outcome
proportions in both subsetsl#l. The training set is used to teach the model, and the test
set is used to evaluate how well the model has learned. To mitigate the risk of
introducing bias by excluding patients with missing values, we employed a two-step
imputation process using the Scikit-Learn package. First, we removed variables that
had missing values for more than 20% of the patient population. Following this, we
used the k-nearest neighbor (kNN) imputation algorithm to fill in the missing values for
the remaining continuous variables, imputing the calculated mean value among the 10
closest neighbors. Of 83 features screened, the model incorporated 50 according to the
measure of the impact of each feature on the model’s prediction for an instance. This
included patient demographics, laboratory data, medical history, and pre-LT cardiac
evaluations, selected after an initial screening. Categorical and numerical variables were
imputed using mode and kNN imputation, respectively. To avoid data leakage,
transformations were first trained on the training dataset, and only then applied to test
data. To simulate real-world settings in which missing data are often present, we
trained an additional model without the imputation and one-hot step and describe its

results following the main model report.

Model training and hyperparameter optimization
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Overfitting is a problem that occurs when a machine learning model learns the training
data too well and is unable to generalize to new data. This can happen when the model
is too complex or when the training dataset is too small or noisy. As a result, the model
outputs extremely accurate results in the training set but performs poorly on unseen
test-set data. To avoid overfitting, we applied regularization and early-stop techniques
during the training of the model, as described in the code. Regularization is a technique
that penalizes the model for being too complex; early stopping is a technique that stops
training the model when it starts to overfit the training data.

Hyperparameters are external configurations for the model that are not learned from
the data and are used to optimize the model’s performance. The training set was used
for model training, while the test set was reserved for performance evaluation. The
Optuna package was used for hyperparameter optimization. Additional information
about the model hyperparameter results and training are provided as supplemental

material.

Perforinance assessment

The area under the receiver operating characteristic curve (AUROC) was used as an
evaluation metric and reported with a 95% confidence interval (CI). To calculate the
AUROG, the true positive rates are compared against the false positive rates at various
threshold settings. The AUROC represents the degree or measure of separability,
indicating how well the model distinguishes between the classes.

The model’s performance in predicting positive cases was also assessed using the
area under the precision-recall curve (AUC-PR). The AUC-PR is a graphical
representation of a model’s precision and recall at different thresholds, which are the
points where the model decides which class an instance belongs to. It is particularly
useful when the classes are imbalanced. The x-axis represents recall (the proportion of
actual positive cases that were correctly classified) and the y-axis represents precision
(the proportion of cases classified as positive that are indeed positive). A higher AUC-

PR indicates better performance in distinguishing between the classes.
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In evaluating the model’s ability to predict positive cases, additional metrics were
employed, such as recall, precision, sensitivity, specificity, accuracy, and Fl-score.
Recall measures the model’s effectiveness in correctly identifying actual positive cases
among all positive instances. It is calculated by dividing the number of true positives by
the sum of true positives and false negatives. Precision assesses the accuracy of the
model’s positive predictions by calculating the proportion of true positives among all
instances predicted as positive, determined by dividing the number of true positives by
the sum of true positives and false positives. Sensitivity evaluates the model’s capability
to identify positive cases accurately, similar to recall. Specificity measures the model’s
ability to correctly identify negative cases by calculating the proportion of true
negatives among actual negatives. Accuracy reflects the overall correctness of the
model’s predictions, considering both true positives and true negatives relative to the
total number of predictions. F1-score represents the harmonic mean of precision and
recall, providing a balanced assessment of the model’s performance. The statistical

methods of this study were reviewed by co-author Corso LL.

Calibration assessment

Calibration is the process of refining the model to ensure that the predicted probabilities
of an event occurring align well with the actual probabilities. We tested various
methods of calibration for the validation model, including sigmoid, isotonic, and
Gaussian calibration. We used calibration curves to present the comparison graphically.
We used the Brier score to choose the model with the best calibration for deployment

and explanation of feature importance.

Model explanation and interpretation

The Shapley additive explanations (SHAP) framework was used to interpret the output
of machine learning models, providing a measure of the impact of each feature on the
model’s prediction for an instance. SHAP are based on game theory and assign an

importance value to each feature in a model. Features with positive SHAP values

10 / 24




positively impact the prediction, while those with negative values have a negative
impact. The magnitude of the SHAP value is a measure of how strong the effect is. To
calculate SHAP values, we consider all possible combinations of features (coalitions)
and how they affect the model’s prediction. We then average the marginal contribution
of each feature across all possible coalitions. This gives us a measure of how much each
feature contributes to the model’s prediction, taking into account the interactions

between features.

Checklist adherence

In accordance with the Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) statement, we have followed a
comprehensive reporting framework for this study. The TRIPOD statement guided the
design, implementation, and reporting of our prediction model for post-LT MACE and
the respective checklist for present study is presented as a Supplementary material. The
checklist comprised the 22 items outlined in the TRIPOD statement, ensuring

transparency and rigor in our methodology and reporting.

Code availability and web deployment

The code employed for data preprocessing, feature engineering, and model
development and evaluation is in an accessible public repository (link provided in the
supplemental materials). Furthermore, we have deployed our model as a user-friendly
MACE prediction  calculator, which is now available  online at
https:/ /huggingface.co/spaces/mmrech/mace-calc. The frontend application was
coded with the Streamlit library. The model was originally saved and then loaded as a
joblib file, and the backend application was deployed with Hugging Face Spaces. All

phases from data preprocessing to model deployment were implemented in Python 3.

RESULTS
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A comprehensive search of hospital databases identified a total of 662 patients who had
undergone LT during the study period. From this initial cohort, 82 patients were
excluded based on specific criteria. The reasons for exclusion were as follows: 19
patients transplanted due to fulminant liver failure, 32 patients who had undergone
retransplantation, 7 patients transplanted due to familial amyloid polyneuropathy, 1
patient excluded due to amyloidosis without cirrhosis, 1 patient due to congenital
hepatic fibrosis, 27 patients due to insufficient cardiological data, 2 patients who
received living-donor grafts, 2 patients with primary hyperoxaluria, 2 patients with
polycystic liver disease, and 1 patient with metastasis of a neuroendocrine tumor.
Another 38 patients were excluded due to the high rate of missing data among selected
variables. The dataset utilized by the final model consisted of 537 samples, with 23
events and 514 non-events. As noted above, the original dataset was split such that 75%
was used for training the model and 25% was reserved as unseen data for internal
validation. The proportion of outcomes (4.46%) was maintained in both the training and

the validation sets.

General cohort

Of the 537 included patients, 23 developed in-hospital MACE, with a mean age at
transplantation of 52.9 years. The majority, 66.1%, were male. The overall incidence of
the composite variable MACE was 4.46%. The components of this outcome - stroke,
new-onset heart failure, severe arrhythmia, and myocardial infarction - had observed
rates of 0.19%, 1.3%, 1.3% and 1.67%, respectively. Detailed data on the general
population included, the 50 variables used in model construction, and the composite
outcomes are available in Table 1, specifying values for the total cohort, for the strata of

present and absent MACE, and also their respective missing rates.
Model performance

The XGBoost model demonstrated substantial predictive capability, with an AUROC of

0.89. The classification results showed a precision of 0.89, recall of 0.80, and F1-score of
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0.84 for the negative class. The AUROC and AUC-PR, along with their respective
95%Cls, are provided in Figure 2A and B. The hyperparameters utilized for the best-
performing model after optimization are provided in the supplementary materials, as is

an overview regarding the role of these components in the model functionality.

Calibration

The model achieved optimal calibration with the isotonic method, as evidenced by the
lowest Brier score of 0.100. This calibration demonstrated a high level of precision,
recall, Fl-score, and accuracy for both negative and positive classes, with closer
proximity to the diagonal line on the calibration curve (Supplementary Figure 1).

Calibration curve is provided as a supplemental material.

Model explanations

Figure 3 presents feature importance analysis as per mean SHAP values. It reveals that,
at the cohort-wide level, the most significant variables for prediction of postoperative
MACE were negative noninvasive cardiac stress testing, use of a nonselective beta-
blocker, direct bilirubin levels, blood type O, and dynamic alterations on MPS. SHAP
values are averaged, and the impact of each feature on individual predictions may vary.
For instance, the feature ‘blood type O" may have varying impacts depending on the

specific conditions and characteristics of the patient.

DISCUSSI%HI\_I

The aim of the present study was to assess the risk of in-hospital post-LT MACE and
identify clinically relevant predictors of such events. In pursuit of this objective, we
constructed a machine learning-based risk stratification model which could be made
available online to assist clinicians in identifying LT recipients at heightened cardiac
risk immediately after LT. These models hold significance due to cardiovascular causes
being a leading contributor to post-LT mortality, and the absence of risk prediction

models tailored to patients with ESLD.
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In this study, various recipient-related factors known prior to LT were thoroughly
examined. An optimized clinical model demonstrated predictive capabilities for in-
hospital MACE following LT, exhibiting a strong discriminative performance with an
area under the curve (AUC) of 0.89. This surpasses the performance reported in a
previously published study attempting to predict similar outcomes, which achieved an
AUC of 0.711%31,

The present study employed a comprehensive set of candidate variables gathered
during the pre-LT evaluation, which encompassed a wide array of cardiovascular risk
factors. Notably, the machine learning model consistently demonstrated superior
performance across all endpoints, highlighting significant improvements when
compared to widely utilized traditional models.

On performance analysis, the XGBoost model demonstrated remarkable predictive
capability, achieving an impressive AUROC of 0.89. This performance highlights its
effectiveness in predicting postoperative MACE in our cohort of 575 LT patients.
Furthermore, our classification results revealed excellent precision (0.89), recall (0.80),
and an Fl-score of 0.84 for the negative class, underscoring the model’s precision in
identifying patients at low risk of MACE. The exceptional performance of the model is
further substantiated by the calibration results, where the isotonic-calibrated model
achieved optimal calibration, as indicated by the lowest Brier score of 0.100. This
calibration ensures a high level of precision, recall, Fl-score, and accuracy for both
negative and positive classes, aligning the model’s predictions closely with observed
outcomes. The calibration curve (available as supplemental material) visually depicts
the model's excellent calibration performance.

To gain insights into the factors influencing postoperative MACE in our cohort, we
conducted feature importance analysis, as depicted in Figure 3. Our analysis revealed
that several variables - namely, outcomes of noninvasive cardiac stress testing,
administration of nonselective beta-blockers, direct bilirubin levels, blood type O, and
dynamic alterations on MPS - contributed significantly to prediction of postoperative

MACE at the cohort-wide level. These findings emphasize the importance of

14 / 24




considering both cardiac and liver-related factors in assessing the risk of post-transplant
MACE. It bears stressing that, while these variables hold substantial predictive power at
the cohort level, their impact may vary for individual patients, depending on their
unique clinical characteristics and conditions.

We also evaluated the performance of our models ﬂ'l comparison to existing
cardiovascular disease risk prediction models, such as the Cardiovascular Risk in
Orthotopic Liver Transplantation (CVROLT) score, which was derived from a cohort of
1024 first-time LT recipients®l. The CVROLT score included a multitude of donor- and
recipient-related factors and identified pre-transplant heart failure, atrial fibrillation,
diabetes, and the presence of respiratory failure at the time of transplantation as the
most signjﬂcwt predictors of post-LT adverse cardiovascular events. Notably, our
study used similar source variables but employed advanced machine learning
techniques, which, uniquely, allowed our models to be internally validated in a series of
“blinded” test cohorts, enhancing the generalizability of the results. While the CVROLT
score achieved a C statistic of 0.78, our models demonstrated substantial predictive
capability, particularly the XGBoost model (AUC = 0.89). As noted above, this
exceptional performance underscores the superiority of our models in predicting
pcﬁoperati\re MACE in the context of LT.

The Revised Cardiac Risk Index (RCRI), another model traditionally used for
predicting postoperative cardiovascular risk in individuals undergoing noncardiac
surgery, has limited applicability in LT candidates/%l. The RCRI derivation cohort
excluded patients with ESLD and primarily aimed to detect underlying ischemic heart
disease, resulting in a suboptimal tool for risk-stratifying LT candidates for the
occurrence of long-term MACE.

Both Josefsson et all47l and Umphrey et all*8] reported on smaller cohorts of LT patients
(n = 202 and n = 157, respectively). In their study, Josefsson et all*’] identified renal
impairment, prolonged QTc, and age > 52 years as predictors of 1-year cardiovascular
mortality. Similarly, Umphrey ef all4] investigated the role of DSE and reported that

maximum heart rate achieved during the procedure, together with the model for end-
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stage liver disease (MELD) score, may predict adverse cardiovascular events up to 4

months post-orthotopic LT. Both of these previous models were limited by relatively
small sample sizes, which may have impacted their external validity.

Historically, the assessment of cardiovascular risk in LT candidates has often
prioritized the evaluation of CAD using methods such as DSE or coronary artery
calcium scoring. This focus was largely driven by the high prevalence of traditional
cardiovascular risk factors in LT recipients. However, the landscape is evolving as
transplantation is increasingly performed on a medically complex population with
higher median age at transplantation and higher MELD scores. Notably, advanced age
alone correlates with cardiovascular comorbidijties and independently predicts adverse
cardiovascular eventsl'l. Additionally, ESLD is characterized by a high-output state
with compromised ventricular reserve, known as cirrhotic cardiomyopathy, which may
be exacerbated by the hemodynamic stress of liver reperfusion.

Recent systematic reviews and meta-analyses have shed light on the value of DSE in
patients listed for LT. These studies reported that DSE had variable sensitivity (ranging
from 20% to 32%) and specificity (ranging from 78% to 99%) for detecting CADI2526:49,50]
mixed predictive capabilities for MACE post-LT, with sensitivity ranging from 20% to
28% and specificity as low as 78% 25264849 Tt is evident that, while DSE exhibits a high
negative predictive value, it may not be a reliable test for detecting risk of
cardiovascular events, mortality, or presence of CAD in LT candidates. Therefore, its
use should be reserved for selected intermediate-risk patients!>-%1,

Furthermore, Oprea-Lager et al54l demonstrated that the presence of a reversible
perfusion defect suggestive of myocardial ischemia on MPS appears to increase all-
cause mortality post-LT, with a hazard ratio of 3.17. Regarding MPS, several systematic
reviews and meta-analyses have been conducted to evaluate its value in LT candidates.
One such analysis, including five studies, found that MPS had a sensitivity of 62% and a
specificity of 83% for detecting CADI50L Another diagnostic meta-analysis, involving 10
studies, reported a sensitivity of 82% and a specificity of 74% for MPS in CAD

detection/?®], Finally, a prognostic meta-analysis revealed that positive MPS was
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associated with a relative risk of 2.6 (95%CI: 1.09-6.1) for major cardiac events and a
relative risk of 2.7 (95%CI: 1.25-5.9) for mortality post-LTI26].

In patients listed for LT, the presence of coronary calcium has been significantly
associated with various factors, including age, systolic blood pressure, alcohol-related
cirrhosis, fasting blood glucose levels, the number of metabolic syndrome criteria, and
the number of affected vessels. Importantly, coronary artery calcium score (CACS)
values offer valuable insights into cardiac risk stratification. A CACS below 100 predicts
a very low risk of post-LT cardiac events, while a CACS above 250 suggests the need for
coronary angiography®! and a CACS exceeding 400 identifies patients at risk of MACE
for up to 5 years post-LT. A recent study from 2021, comparing the diagnostic accuracy
of DSE and CACS in detecting CAD, demonstrated the superiority of CACS over
DSEL56],

Currently, it is proposed that coronary computed tomography angiography (CCTA)
serves as the initial testing strategy for LT candidates with moderate to high CAD risk,
while low-risk patients may not require additional cardiovascular assessmentl5il.
However, it is essential to acknowledge that CCTA may have limitations in detecting
functional microvascular disease, which can contribute to type 2 myocardial infarction
post-LTI>1,

A recent systematic review has highlighted the promising role of machine learning
models in improving prognostication for LT. The authors have found that machine
learning models consistently outperformed traditional scoring systems, demonstrating
excellent predictive capabilities for various post-transplant complications, including
mortality, sepsis, and acute kidney injury. They suggest that machine learning could
enhance decision-making related to organ allocation and LT, representing a substantial
advancement in prognostication methodsl!%!.

In the future, generalist medical artificial intelligence (GMAI) may bring a paradigm
shift in medical Al use. Emphasizing flexibility and reusability, GMAI models can
perform diverse tasks with minimal labeled data, developed through self-supervision

on extensive datasets(®”l. This might cause a shift in this paradigm, driven by hardware
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advances and the demand for personalized care, emphasizing Al's role in decision-
making and improving diagnostic and prognostic performancel®0l.

In the context of utilizing machine learning to predict major MACE following LT,
addressing the ethical implications and challenges that arise when implementing these
models in clinical practice is crucial. The integration of machine learning introduces
concerns surrounding data privacy, as patient information must be handled securely to
protect confidentiality. Additionally, ensuring model transparency is essential, as
clinicians need to understand the decision-making process of the machine learning
model to trust its predictions. Furthermore, the potential biases embedded in the
training data used for these models must be carefully examined and mitigated to avoid
disproportionate effects on certain patient populations. By discussing these ethical
considerations, the application of machine learning in predicting post-LT MACE can be
approached with a well-rounded perspective that prioritizes patient privacy, model
transparency, and fairness in healthcare outcomes.

This study is subject to several limitations. The retrospective design introduces
inherent biases and data limitations. Significantly, a notable portion of the excluded
patients, marked by a substantial volume of missing data, underwent LT with increased
celerity attributed to higher MELD scores, and this resulted in an incomplete pre-LT
clinical or cardiological evaluation. Second, the single-center setting may limit the
generalizability of the findings to broader patient populations. Third, it is important to
note that, while the machine learning model provides valuable predictive insights, it
should serve as an aid to clinical judgment rather than a replacement, as it is better
suited to predict a general rather than an individual risk of MACE. Additionally, the
exclusion of certain patient groups based on specific criteria may impact the model’s
applicability in real-world scenarios. Finally, while the SHAP framework offers insights
into feature importance, further investigation is needed to establish clinical relevance.
While the study presents a robust predictive model, these limitations should be taken
into consideration when interpreting and applying its results; future research with a

view to external validation and improvement of clinical utility will be welcome.
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The uncertainty surrounding the positive or negative outcomes of noninvasive tests
and the prevalence of blood type O as risk factors for MACE highlights a critical aspect
of machine learning model interpretability - it is advisable to avoid overestimating the
significance and generalization of such information. The limitation of many models,
including XGBoost, is the absence of clarity on why negative noninvasive cardiac stress
testing correlates with a reduced risk of MACE. While these models excel at identifying
statistical patterns, they often fall short in providing explicit explanations for
correlations, lacking inherent insights into the biological or clinical reasons behind
observed associations. Complementary research to unravel the biological significance of
these correlations is required, emphasizing the distinction between mathematical
patterns and causal relationships.

In this context, we can only speculate about these variables. Blood type O has shown
a negative association with myocardial infarctionl®-*l, adding an intriguing dimension
to the findings of the machine learning model. In patients with ESLD, distinguishing
whether chronotropic incompetence results from cirrhosis-related autonomic
dysfunction or is solely due to a beta-blocker effect is challenging. This ambiguity leads
to numerous false negatives in stress testing, potentially influencing the negative
association observed between stress testing and MACEI®]. One particularly intriguing
discovery was the correlation between liver function markers and MACE - arguably the
most noteworthy among these variables. Often, liver function is underestimated, and its
impact on MACE may be overlooked, with attention primarily directed at the heart.
Emphasizing the evaluation of both cardiac and hepatic aspects is crucial in pre-LT
cardiac assessments(®].

The meticulous evaluation of pre-LT factors, incorporation of advanced machine
learning techniques, and the demonstrated superior performance of the XGBoost model
in predicting MACE distinguish this study. The model developed outperforms existing
risk prediction tools, such as the CVROLT and CAR-OLT scores, and adds significant

value to the relevant and current discussion on this topic. Additionally, the insights
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from this research not only contribute to the current knowledge but also pave the way

for more accurate and tailored risk predictions in the context of LT.

CONCLUSION

In conclusion, the outcomes produced by our developed machine learning model are
consistent with findings reported in prior literature. The calibration analysis indicates
that our efforts to prevent overfitting and data leakage have indeed been successful,
suggesting that results are likely to remain stable when the model is applied to
prospective data. Moreover, we have integrated the model into a user-friendly MACE
prediction calculator which is now available online. This implementation will enable us
to conduct a more comprehensive assessment of its prospective impact on prognosis.
With the increasing volume of LT procedures, the machine learning model presented
herein can serve as a valuable resource for patient counseling, shared clinical decision-
making with patient consent, quality improvement, and development of risk-reduction
strategies. Further validation and application of this machine learning model in other
registries and patient populations are essential to better understand its external validity
in patients undergoing LT across multiple major transplantation-capable tertiary

referral centers.

ARTICLE HIGHLIGHTS

Research background

The landscape of liver transplant (LT) candidates has evolved, with an aging and
increasingly morbid population, often linked to metabolic-associated fatty liver disease
(MAFLD). MAFLD's rise as a cause of cirrhosis raises concerns about a subsequent
increase in major adverse cardiovascular events (MACE) post-LT, a critical complication
negatively impacting prognosis. This study is prompted by the growing incidence of
post-LT MACE, particularly within the first 6 months, and the complex interplay of
traditional and nontraditional cardiovascular risk factors in this vulnerable population.

The prevalence shift toward MAFLD as a leading indication for LT necessitates a
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thorough pre-LT cardiac assessment, demanding a reconsideration of existing
noninvasive strategies’ reliability. The pressing need for an alternative approach to
predict post-LT MACE accurately propels the exploration of machine learning as a

transformative tool to navigate the challenges posed by conventional models.

Research motivation

Motivating this research is the imperative to address the limitations of current
cardiovascular risk stratification models for LT candidates, especially those with end-
stage liver disease. Traditional models exhibit constraints related to assumptions of
linear relationships and limited variables, leading to unreliable predictions. The
inadequacy of existing noninvasive strategies and the absence of effective models for
accurate cardiovascular risk stratification in LT candidates underscore the urgency for a
paradigm shift. The study is driven by the aspiration to introduce machine learning as
an innovative and more effective approach, leveraging its capacity to discern intricate
patterns and relationships within datasets. The ultimate goal is to revolutionize risk
prediction, enabling clinicians to identify high-risk individuals with precision, thus

optimizing patient care strategies.

Research objectives
The primary objective of this study is to assess the feasibility and accuracy of
implementing a machine learning model to predict MACE post-LT. Focusing on a
specific regional cohort, the study aims to revolutionize risk assessment by moving
beyond the limitations of conventional statistical models. Realizing this objective
involves scrutinizing the potential of machine learning techniques to forecast post-LT
MACE with enhanced precision. By leveraging advanced computational models, the
research seeks to provide a comprehensive evaluation of the predictive capabilities,
enabling the early identification of individuals at elevated risk. The ultimate

significance lies in facilitating early intervention strategies and refining patient care in

the context of the evolving landscape of LT candidates.
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Research methods

This retrospective cohort study, approved by the Research Ethics Committee, delves
into the cardiovascular risks following LT. Employing a comprehensive approach,
medical records from Irmandade Santa Casa de Misericordia de Porto Alegre were
scrutinized for patients undergoing their first LT between 2001 and 2011 due to
cirrhosis. Rigorous inclusion and exclusion criteria were applied, focusing on patients
above 18 years of age with complete records, cardiac evaluation pre-LT, and no
retransplantation. Data encompassed pre-LT, perioperative, and post-LT periods, with
the primary outcome being in-hospital MACE. Statistical analyses, including frequency,
means, standard deviation, Pearson’s y? test, and linear model analysis of variance,
were executed using R software. The study introduces a machine learning paradigm,
leveraging the XGBoost model, known for handling imbalanced datasets. Feature
engineering involved a two-step imputation process, incorporating patient
demographics, medical history, and cardiac evaluations. Model training incorporated
regularization and early-stop techniques, aiming to prevent arerﬁtting.
Hyperparameter optimization using the Optuna package and performance evaluation
metrics, including area under the receiver operating characteristic curve (AUROC) and
area under the precision-recall curve, ensured robustness. Calibration, odel
explanation through Shapley additive explanations values, and adherence to the
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or
Diagnosis statement further enriched the methodological rigor, ultimately culminating

in web deployment and code availability for transparency and accessibility.

Research results

The study involved 662 LT patients, with 82 exclusions based on specific criteria. The
final dataset included 537 samples, with 23 in-hospital MACE cases. The XGBoost
model demonstrated substantial predictive capability, achieving an AUROC of 0.89.

Precision, recall, and Fl-score for the negative class were 0.89, 0.80, and 0.84,
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respectively. The overall incidence of MACE was 4.46%, with observed rates for stroke,
new-onset heart failure, severe arrhythmia, and myocardial infarction. The model
achieved optimal calibration using the isotonic method with a Brier score of 0.100.

ature importance analysis revealed key predictors, including negative noninvasive
cardiac stress testing, use of a nonselective beta-blocker, direct bilirubin levels, blood
type O, and dynamic alterations on myocardial perfusion scintigraphy. The findings
contribute a valuable machine learning model for predicting post-LT MACE, offering
insights into specific risk factors and enhancing precision in identifying at-risk
individuals. Remaining challenges involve addressing potential variability in feature

impact across patients and further validation in diverse cohorts.

Research conclusions

This study pioneers a novel approach in assessing in-hospital post-LT MACE. The
research introduces a machine learning-based risk stratification model, surpassing the
predictive performance of existing models, particularly demonstrating an impressive
area under the curve of 0.89 using the XGBoost model. The optimized clinical model
considers recipient-related factors and provides valuable insights into predicting
MACE, crucial for addressing the leading cause of post-LT mortality. The use of
machine learning techniques, specifically XGBoost, brings substantial improvements
over traditional models, enhancing risk stratification accuracy. This study highlights the
importance of comprehensive pre-LT evaluation, considering a wide array of

cardiovascular risk factors.

Research perspectives

Future research should focus on refining and expanding the machine learning model’s
application, considering external validation in diverse patient populations and
healthcare settings. Addressing ethical implications and ensuring transparency in
model application are imperative for integrating machine learning predictions into

clinical practice. The study suggests the need for continued exploration into the
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biological significance of identified predictors, such as the intriguing correlation
between blood type O and reduced MACE risk. The model’s implementation in a user-
friendly MACE prediction calculator opens avenues for prospective impact assessment,
counseling, shared decision-making, and risk reduction strategies in the growing
landscape of LT procedures. External validation and application in various
transplantation-capable centers will enhance understanding of the model’s broader

utility.
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