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Abstract
BACKGROUND
The prognostic value of preoperative 18F-FDG PET scan (PET) for determining overall

survival (OS) in breast cancer (BC) patients is controversial.

AIM

To evaluate the OS predictive value of preoperative PET positivity after 15 years.

METHODS

We performed a retrospective search of the Universitair Ziekenhuis Brussel patient
database for nonmetastatic patients who underwent preoperative PET between 2002-
2008. PET positivity was determined by anatomical region of interest (AROI) findings
for breast and axillary, sternal, and distant sites. The prognostic role of PET was
examined as a qualitative binary factor (positive vs negative status) and as a continuous
variable ¥ maximum standard uptake value (SUVmax) -% in multivariate survival
analyses using Cox proportional hazards models. Among the 104 identified patients
who received PET, 36 were further analyzed for the SUVmax in the AROL

RESULTS

Poor OS within the 15-year study period was predicted by PET-positive status for
axillary (P = 0.033), sternal (P = 0.033), and combined PET-axillary |sternal (P = 0.008)
nodes. Poor disease-free survival was associated with PET-positive axillary status (P =
0.040) and combined axillary | sternal status (P = 0.023). Cox models confirmed the long-
term prognostic value of combined PET-axillary | sternal status (hazard ratio [HR]: 3.08,
95% confidence interval: 1.42-6.69). SUVmax of ipsilateral breast and axilla as
continuous covariates were significant predictors of long-term OS with HRs of 1.25 (P =
0.048) and 1.54 (P = 0.029), corresponding to relative increase in the risk of death of 25%

and 54% per SUVmax unit, respectively. In addition, the ratio of the ipsilateral axillary




SUVmax over the contralateral axillary SUVmax was the most significant OS predictor

(P =0.027), with 1.94 HR, indicating a two-fold relative increase of mortality risk.

CONCLUSION
Preoperative PET is valuable for prediction of long-term survival. Ipsilateral axillary
SUVmax ratio over the uninvolved side represents a new prognostic finding that

warrants further investigation.
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Core Tip: In our study population of nonmetastatic breast cancer patients, preoperative
fluorine-18-fluorodeoxyglucose positron-emission tomography (8F-FDG PET) scan
provided valuable overall survival prognostic information. This retrospective study
included the longest (15-year) follow-up observation period to date in a series of these
patients. Data from anatomical regions of interest and statistical analyses determined
that the ipsilateral axillary maximum standard uptake value (SUVmax) with reference
to the contralateral uninvolved axilla was the strongest predictor of survival.

INTRODUCTION

Breast cancer (BC) is the most commonly diagnosed cancer in the female population
worldwide, as well as the most common cause of cancer deaths among womenl!l. For
staging and disease assessment, current guidelines acknowledge the use of fluorine-18-
fluorodeoxyglucose (National Library of Medicine Medical Subject Headings [MeSH]

entry term: '8F-FDG) positron-emission tomography (MeSH entry term: PET scan)




before surgery for patients with a IIB or higher stage of BC, and reservedly for patients
in stage ITA[2 3l The potential staging advantage of PET combined with computed
tomography (PET/CT) over CT scan alone or even bone scintigraphy is that PET/CT
can more efficiently detect lymph node invasion and distant metastases!4l.
Unfortunately, the published evidence to support the use of PET/CT to predict disease
prognosis has been contradictory or of insufficient quality. Some studies have indicated
that the specific survival rate is significantly shorter when metastases have been
detected on PETL. One study determined PET-positive status for axillary nodes to be
the foremost preoperative prognostic factor for disease-free survival (DFS) at 5 yearslol.
Additionally, a few studies have suggested that the maximum standard uptake value
(SUVmax) of the primary tumor could be predictive of survival; however, the threshold
values have differed among studiesl” 8l.

The lack of consensus on the prognostic value of PET may be due to short follow-up
times in the previous studies. Additionally, in a study that compared PET with various
prognostic markers, the value of PET was overshadowed by assessment of lymph nodes
obtained via axillary lymph node dissection (authors' reference cited in Data Sharing
Statement). However, sentinel node biopsy has taken precedence over axillary
dissection, and analyzing the data without axillary dissection would be more relevant
to current practice. Furthermore, the potential role for SUVmax in prognosis has not yet
been fully considered, and no consideration has been given to the restricted mean
survival time (RMST), although it enjoys a growing acceptance rate among clinical
practitioners as a preferred survival measurementl®.. Based on all these factors, renewed
analyses into the prognostic role of preoperative PET positivity on the long-term

outcome of BC needs to be addressed.

MATERIALS AND METHODS

Study design, patients and data
Patients with primary BC who underwent a PET scan prior to their originally

recommended surgery as part of the multidisciplinary team management at the




Universitair Ziekenhuis Brussel (UZ Brussel; https://www.uzbrussel.be/) between
2002-2008 were identified retrospectively. Patients who met any one or more of the
following criteria were excluded: noncarcinoma histology; palliative surgery; or
clinically-detected metastatic disease. Follow-up data was collected for each included
patient, with the last update having occurred on January 31, 2020.

This study was approved by the institution’s ethics committee. All diagnostic and
therapeutic procedures had been performed in accordance with the local national
guidelines and the Declaration of Helsinki 1964. All patients had received appropriate
information and provided informed consent to undergo the procedures. All clinical
data were described previouslyl®], and the steps used in data acquisition are detailed at
https:/ /dx.doi.org/10.17504/ protocols.io.bf7jjrkn. The study’s collective data are
available at https://doi.org/10.17632/sfvtmrd8z9.2.

8F-FDG PET scan image acquisition

Patients had fasted for + 6 h, and the PET scan had been rescheduled if hyperglycemia
was detected. For all, the tracer activity was in the range of 370-536 MBq (mean: 464 +
56 MBq). Sixty minutes after tracer perfusion, each patient had been placed in a supine
position with arms extended above the head. Whole-body images had then been
acquired using attenuation correction and an interleaved protocol with an LSO PET
camera (ECAT Accel; Siemens, Hoffman Estates, IL, United States). The parameters of
emission data, 2-dimensional mode, and reconstruction-segmentation used were
identical to the procedure described elsewherel®l. Synchronous computed tomography

had not been available at the time.

Image analyses
We abstracted the PET image data according to the anatomical regions of interest
(AROIs) and according to the source of the available image media storage.

The AROI selected for this study conformed to anatomical regions considered in the

radiotherapy of the breast(l0], including the whole ipsilateral breast, whole contralateral




breast, ipsilateral axillary-supraclavicular lymph node region (shortened to "axillary" in
the remainder of the present report), contralateral axillary-supraclavicular lymph node
region, sternal-mediastinal area (internal mammary chain), and the remaining body
volume (i.e. distant, outside the breasts, axillary and sternal areas).

The image media storage comprised two forms: a medical FDG-PET diagnostic
report with a screen image printout (for all patients) and image files archived on the
PET server (for some patients). First, using the medical diagnostic report, the image in
each AROI was assigned a binary score of positive or negative according to visibly
increased activity or lack thereof in the AROI. Next, using the PET server workstation
and accompanying free-hand volumetric drawing tool, the 3-dimensional AROIs were
delineated on all available patient PET scan datasets. Ultimately, the SUVmax was
abstracted for each patient from their AROIs (Figure 1).

Repeated PET scans were excluded. For bilaterally involved breasts, only the scan
from the first side involved was retained, or from the side with more extensive axillary

surgery if there was doubt about the diagnostic precedence.

Statistical analysis

Missing data were imputed using multivariate imputation by chained equations(!l for
first histopathology finding (1 missing), HER2-neu score (1 missing), estrogen receptor
(ER) and progesterone receptor (PR) status (1 missing), grade (4 missing), tumor size (1
missing), and number of examined and positive nodes (5 missing). Lymphovascular
invasion was dichotomized as present vs no invasion or unknown (20 missing). HER2
fluorescence in situ hybridization (FISH) status was considered as nonimputable and
was therefore excluded from the analysis (51 missing).

Survival analyses used times from the date of first pathological diagnosis to the date
of last known status. The outcome event for overall survival (OS) was death from any
cause. The outcome events for DFS were any local-regional or distant recurrence,
secondary tumor, or death from any cause. Survival rates were computed using the

Kaplan-Meier method['2. The expectation of remaining years of life, or the RMST, up to




a time horizon of 15 years was used to summarize the patients’ survivall. This value
was calculated as the area below the survival curve. The area between survival curves
measures the difference between RMSTs (A), but the precision and statistical
significance are affected by the amount of censoring. As in other tests comparing
survival curves, the difference and the area between the two curves can appear large
and still might be nonsignificant when there are few events. A is expressed in years, in
the same unit of time as the survival time, and indicates the impact of prognostic factors
in terms of difference in life expectancy according to the prognostic levels.

The prognostic role of PET was examined as a qualitative binary factor (positive vs
negative status) and as a continuous variable (SUVmax) in multivariate survival
analyses using Cox proportional hazards models!'®. The models excluded pathological
lymph node involvement, which is a strong predictor of survival that would otherwise
confound and mask the significance of other factors (authors' reference cited in Data
Sharing Statement). Long-term follow-up with OS and DFS at 15 years was used to
validate models previously reported elsewhereltl. The Nagelkerke index of explained
variation (R2N) and the Royston-Sauerbrei index of prognostic separation (R2D) were
computed to evaluate the Cox models(!4l.

All computations was carried out with the R statistical software, version 3.6.3[1],
with the mice package for missing data imputation, and the survRM2 package for the

RMSTs.

RESULTS

A total of 157 consecutive records were identified, out of which 53 cases were excluded
for postsurgical PET performance (n = 17), breast surgery not specified in the original
multidisciplinary team’s recommended management of the case (n = 12), history of
previous cancer (n = 8), nonunique records (n = 5), no diagnosis of cancer (n = 2),
axillary surgery not performed (n = 2), no histology data (n = 2), noncarcinoma (n = 2
sarcoma, n = 1 noninvasive tumor), and no information on the primary therapy (n = 2).

Among the remaining 104 patients representing the study population, surgery had been




performed at a median of 6 d after the PET imaging for the 85 (81.7%) patients who did
not receive neoadjuvant therapy and at a median of 83 d after the PET imaging (range:
5-201 d, n = 1 date unknown) for the 19 (18.3%) patients who received neoadjuvant
therapy. The type of breast surgery performed was lumpectomy in 26 (25.0%) patients,
mastectomy in 77 (74.0%), and exclusive radiotherapy assimilated to mastectomy in 1
(1.0%). All lymph node surgeries were limited to the axilla, without exploration of the
internal mammary chain. Table 1 summarizes the main characteristics of the study’s
patient population.

The patterns of PET observed among the total 104 patients were abstracted as
binary score, and the SUV measurements of 36 patients for whom imaging could be
retrieved are listed in Table 2 and Table 3, respectively. PET status of axillary, combined
PET axillary | sternal, and combined PET all-sites were significantly related to tumor
size (Table 2). SUVs were measured on the AROIs regardless of visual enhancement,
making them available in all breast, axillary, and sternal sites. Ipsilateral local-regional
uptake also correlated with tumor size (Table 3). For distant sites, the SUV
measurements were carried out on visually hypermetabolic areas only, and therefore,
the information was limited to 8 non-analyzable cases.

Surviving patients (no OS event) had a median follow-up of 15.1 years. The OS was
significantly worse for those who had a PET-positive axillary nodal status (A = 2.2 years,
P = 0.033); thus, at a time horizon of 15 years, patients with a PET-positive axillary
status had a life expectancy that was 2.2 years shorter than patients with a PET-negative
axillary status. Patients with a PET-positive sternal nodal status also had a shorter life
expectancy, with A of 5.1 years (P = 0.033) (Figure 2). When patients were considered as
a group defined by PET-positive axillary status and/or sternal status but without
distant positivity (i.e. regional positivity without distant positivity, regardless of breast
local status), life expectancy was decreased, with A of 2.6 years (P = 0.008). When
patients were considered as a group defined by any PET-positive status for axillary,
sternal or distant (i.e. any regional or distant positivity, regardless of breast local status),

life expectancy was also decreased, with A of 2.1 years (P = 0.025). Survival differences




were not evident when comparing the PET-positive groups for breast or distant
separately (Figure 2). Survival differences were also not evident on subgroup analyses
for PET-positive axillary status for tumors < 20 mm (TNM T1 classification!'®l). For
tumors > 20 mm, survival differences were evident when axillary and/or sternal status
were PET-positive (i.e. regional positivity), with A of 3.0 years (P = 0.015).

DFS was also worse for patients with a PET-positive axillary nodal status (A = 2.5
years, P = 0.040) and with a PET-positive status in any of the axillary and sternal regions
(A = 2.6 years, P = 0.023) (Figure 3). DFS was not statistically different for patients with
tumors £ 20 mm; however, in patients with tumors > 20 mm, DFS was significantly
worse for those with PET-positive axillary status (A = 3.4 years, P = 0.017), sternal status
(A = 5.9 years, P = 0.048), and combined axillary and sternal status (A = 3.9 years, P =
0.005). The pattern of the DFS survival curves according to tumor size < 20 mm or > 20
mm (data not shown) were comparable to the global DFS’s shown in Figure 3.

Multivariate OS and DFS analyses used PET axillary|sternal status, age at
diagnosis, and adjuvant hormone therapy covariates, which were the same parameters
used previously in our short-term follow-up studyl®l. In the earlier study, OS was
inconclusive and was not reported, and DFS at 5 years of follow-up indicated
significance for PET-positive axillary status onlyl¢l. Table 4 shows a comparison of the
previous short-term follow-up DFS hazard ratios (HRs) with the current OS and DFS
HRs for the longer follow-up period. The DFS HRs for age and adjuvant hormone
therapy at 15 years of follow-up were 1.03 and 0.51, respectively, comparable to the
previous DFS HRs of 1.05 and 0.43, respectively, at 5 years of follow-up. That is, despite
patients becoming older % from diagnosis at 58.9-years-old (Table 1) to near 75-years-
old in the present study % age and adjuvant hormone therapy retained their prognostic
value. Of note, however, the DFS HR for PET was 1.74 at 15 years of follow-up, as
compared with 2.81 at 5 years of follow-up, suggesting some loss of prognostic value
regarding DFS. In contrast, regarding the OS, the R2N of 0.077 and R2D of 0.159 for PET
positivity at 15 years of follow-up (Table 4) indicate that the PET covariate provided




prognostic information almost half that of the R2N of 0.189 and R2D of 0.396 from a full
model that was computed by taking into account all three covariates together.

The impact of SUVmax on OS is shown in Table 5. The regions of interest were the
tumor and ipsilateral breast, the ipsilateral axillary lymph node region, and the internal
mammary chain (sternal). In addition to the absolute SUVmax, the ratios of ipsilateral
breast SUVmax relative to the contralateral breast and ipsilateral axillary relative to the
contralateral axillary SUVmax were computed.

The absolute SUVmax of the uninvolved contralateral breast and contralateral axilla
did not correlate with OS (P = 0.528). Likewise, SUVmax of the contralateral axillary site
also did not correlate with OS (P. = 0.969). In contrast, the SUVmax of the involved
breast and the ipsilateral axillary were significantly associated with OS (P = 0.048 and P
= 0.029, respectively). The SUVmax on all combined local-regional sites was also
significant (P = 0.032). However, the ratio of SUVmax ipsilateral axilla over SUVmax
contralateral was the most significant of all factors examined (P = 0.027), with HR of
1.94, indicating a two-fold relative increased risk of death (Table 5).

DISCUSSION

PET-positive axillary nodal and sternal status were found to be the predominant
preoperative prognostic factor for OS, providing a stronger prognostic perspective than
previously found!¢l. Although the present study is limited by its retrospective design, it
represents the longest observation period published for the prognostic role of PET scan
status in OS of BC patientsl”l.

To place the present study in context, it started 20 years ago with the first patient
diagnosed and receiving preoperative PET in 2002, while the principal investigator was
working at his alma mater the UZ Brussel, a university hospital in Belgium. The first
case series was presented at the San Antonio Breast Cancer Symposium in 2004 (Poster
2010, Breast Cancer Res Treat 2004; 88: S90, reference omitted). Among the patients who
had received adjuvant radiotherapy, 32 had previously undergone a PET scan and we

found an association between the PET nodal positivity and more extensive nodal




involvement. We hypothesized that the larger number of nodes retrieved in PET-
positive cases suggested lymphangiogenesis factors associated with an increased tumor
metabolic activity. Obviously, preoperative PET would have served as an important
tool to tailor radiation treatment fields in BC, as reported by Bral et al, who showed how
ignorance of PET imaging could lead to failed targeting of radiation for hypermetabolic
lymph nodes (Strahlenther Onkol 2008; 184(2): 100-4, reference omitted). It was, however,
impossible to implement preoperative PET scan in our daily practice at the time of
treatment of our study’s cases because of a Belgium healthcare restriction on PET scan.
Only 13 facilities nationwide were allowed to implement PET and our cases fell beyond
the defined population restrictions; moreover, BC was not a recognized indication for
PET scanl'7l,

Despite these precluding logistical healthcare restrictions, the need for PET did not
abate and we continued to observe a trickle of patients who had received PET. The 2004
study reported only on nodal pathology but had no follow-up. By simple logic, if PET
correlates with lymph node involvement, then it would also correlate with survival. The
study was reconducted in 2010 without funding, by investigators devoting volunteer
time, accruing the present cohort of 104 patients. That study confirmed the nodal
correlation and, indeed, provided evidence for the expected impact on early DFS. The
analysis was published 2 years later, in 2012¢l, Meanwhile, guidelines did not change
and still considered PET inappropriate for the early assessment of BC. To address that
issue, we established a quasi-prospective protocol in 2015, with the intent to increase
the number of observations with a second cohort of patients. The protocol is available at
https:/ /www.isrctn.com /ISRCTN17962845 through the linked file
https:/ /www.isrctn.com /editorial / retrieveFile /b3691bca-5277-4025-bd3e-
ebea2701d143/38272.

As detailed in the protocol, the number of patients needed was 162. We expected 210
cases to be retrieved in 2015 to allow for comparison of patterns of practice between the
cohorts from 2002-2008 (PET without CT) and 2009-2015 (PET with CT). The analysis

was intended to be completed in 2020, with the intent to give precedence to explore the




innovative concept of SUV ratios (protocol, link in ISRCTN17962845). As planned and
reported herein, we updated the follow-up of the present cohort on January 31, 2020.
Unexpectedly, however, when we returned to the PET server workstation, the 3-
dimensional irregular free-hand volumetric measurement tool (Figure 1) had been
wiped out by an upgrade to the system. As such, we could not verify the consistency of
our earlier AROI delineations and SUVmax measurements. Repeated delineation
measurement and extending the present study to a larger cohort have had to be
deferred.

The focus of this study was on prognosis, rather than diagnostic accuracy.
Nevertheless, a note on the latter is warranted. Out of the 63 patients who had PET-
negative axillary status (Table 2, axillary ipsilateral), 29 (imputed) had
histopathologically identified involved lymph nodes, and out of the 41 PET-positive
axillaﬁ patients, 5 had no histopathologically identified node involvement. These data
yield a sensitivity of 55% (95% confidence interval [CI]: 43%-68%) and a specificity of
87% (95%CI: 73%-96%) which indicate that PET, like other imaging modalities, cannot
replace pathology to determine microscopic involvement. This is concordant with
findings from a United States’ multicentric prospective study for the detection of
axillary nodal metastasis; the sensitivity and the specificity of PET were 61% (95%CI:
54%-67%) and 80% (95%CIL: 79%-81%) respectively[l8. A meta-analysis of 19 studies
including 1729 patients evaluated the performances of PET (with or without CT) for
axillary detection and found that the sensitivity was 66% (95%CI: 50%-79%) and the
specificity was 96% (95%CI: 90%-99%)[191. Several tumor characteristics are known to
correlate with higher rates of false negatives, such as low tumor grade or proliferation
index, lobular histology, estrogen receptor- or progesterone receptor-positive statusl?
21, in contrast to higher FDG uptake being less likely to cause false negativity in tumors
exhibiting high proliferation rate and enhanced microvasculaturel?2l.

In a previous study that focused on metastatic disease, the OS for 47 out of 189
patients with stage I1IB and higher classified M1 by PET in a 3-year follow-up was

significatively shorter (57% ovs 88%, P < 0.0001)/2]. Other authors also noted that at stage




IIB and higher, survival of patients was shorter when a distant metastasis was detected
on PET-CT regardless of tumor phenotypels. However, several studies found that
positive PET status is predictive of recurrence and survival, irrespective of metastatic
status, most likely because of the correlation with poor clinicopathologic factorsi24. Our
study was not designed to correlate between distant metastasis and survival. Metastatic
patients were excluded from the selection, hence, there were few remaining cases
detected afterwards with additional distant localizations (8 in this series).

PET-positive status was found to not be significantly predictive of OS and DFS for
patients with tumors < 20 mm, which can be explained by the small number of patients
and the lower mortality in this subgroup. This could also be explained by the spatial
resolution of PET for small tumors and small axillary node, especially data obtained in
2002 during which PET performance was lower than that of sentinel lymph node
biopsy!®> 2L In the subgroup of tumors < 20 mm, corresponding to stage I, a
multicentric study concluded that out of the 325 women with a BC, only 13 had a PET-
positive status, and of those, only 3 were confirmed and 10 were deemed false
positives®l. Considering the whole series, PET status in the breast was not prognostic.
The contribution of primary breast tumor size, which affects PET detection, is a long-
standing debatel?! (see also Claire Verschraegen, on the effect of tumor size in breast
cancer, Ann Surg 2005; 241: 309-318, reference omitted). The issue, however, is beyond
the scope of this report. We can only remark that most patients in our study (74%)
received mastectomy.

Compared to the previous study involving 5 years of follow-up, PET-positive
axillary and combined axillary and sternal status remained significant predictors of DFS
at the extended follow-up of 15 years, although to a lesser extent (Figure 3 and Table 4).
A diagnostic check of the DFS model revealed a violation of the proportional hazards
assumption of the Cox model. The assumption requires that the HRs between two
treatment groups be independent of timel?’l. The assumption fails if the survival curves
cross over or overlap for a long time, or when the treatment has an early effect but the

initial separation gets smaller over timel?’l. This latter pattern of violation is evidenced




in Figure 3, where the differences between the pairs of DFS curves show a tendency to
narrow with longer follow-up, in contrast to Figure 2 where the OS curves remain
proportionally distinct. OS is the gold standard; several studies have shown that DFS is
not always predictive of OS[28l. Also, OS has the advantage of being unambiguously
defined, in contrast to DFS, which has multiple definitions depending on the type of
study and cancer involved. DFS is frequently used because it requires less observation
time and fewer patients. However, with longer survival, patients advance in age. They
present with increasing comorbidities or with physical function deterioration and they
are no longer willing or are unable to attend oncology consultations (typically when we
call to enquire, patients would report a neurological, cardiac, respiratory, or joint and
mobility problem) or in case they remain fit, the follow-up consultation is often
discontinued after 10 years. Severe comorbidities can mask recurrence, and over time
cancer surveillance loses priority for attending physicians. Consequently, less
information on recurrence is available over time, whereas information on living or dead
status can be obtained through national registries and is more reliable than disease
status. These reasons likely explain why prognostication is better with DFS outcome in
the short-term and better with OS outcome in the long-term.

Limitations of the study include bias inherent to its retrospective design. Beyond
that, the investigators were not blinded to patients’ outcomes, which could have
affected the scoring of the PET images; moreover, the scoring itself depended upon the
visual appreciation of screen printouts and pre-defined rules to abstract images were
not established. There was also no assessment of inter-observer agreement on the
scores. The patients had been treated 15 years prior, which represented both a strength
and a weakness, with the latter being related to medical management and treatment
changes over that time. Most of the patients had presented with advanced tumors, for
which a high prevalence of lymph node involvement and increased likelihood of PET
positivity could be expected. Few patients presented with T1 tumors (Table 2); no

conclusion could be drawn for these smaller tumors.




Molecular subtypes are known to affect PET positivity, as already mentioned!20-22,
However, the small study size (with only 28 events for OS; Table 1) precluded extensive
analyses. By the one-in-ten rule of thumb (i.e. one variable for ten events(?’]), it was
decided to retain only the three-variables parsimonious model of Table 4 in the
multivariate analysis, as built onto the precursor studyl®l. Interestingly, despite the
small study size, these three variables illustrate distinct facets relevant to BC
management, specifically: PET as an indicator of disease aggressivity; age as a potential
surrogate of increased risk of co-morbidity; and adjuvant hormone therapy as a
surrogate of tumor subtype reflecting that hormone therapy is normally given only
when the breast tumor expresses hormone receptors.

The present study innovates measurement of SUVmax based on a full-anatomical
region of interest. The AROI's were defined regardless of SUV pattern, avoiding the
potential arbitrary selection of small presumably pathological areas; although, without
dual acquisition of CT, delineation of the anatomical boundaries was uncertain.

Surprisingly, few studies have implemented PET image analysis using AROIs. Yoo
et al delineated the nipple-areolar complex on the ipsilateral index breast and the
contralateral normal breast. The ratio of the ipsilateral over contralateral SUVmax in the
delayed image phase PET was then found to be an independent predictor of nipple-
areolar involvement. Other than study of PET for nononcological cognitive symptoms
and dementia, where the interest was in the whole brain and subregions!l, we are not
aware of any other BC study implementing full-AROI-based PET measurements.
Reflecting on PET studies in the peer-reviewed literature, the European Association of
Nuclear Medicine Guidelines define volumes of interest only as relative to tumor areas,
without allowance to full organs or anatomic regions/®2l.

The prognostic value of FDG-PET in particular has been demonstrated in numerous
disease conditionsl®*-3l. The present study shows that the prognostic role in BC is no
different than that with other cancers, serving as an indicator of increased metabolism
and therefore adverse survival outcome. The SUVmax in different anatomical regions

was related to the overall risk of death. There is a growing recognition that quantitative




continuous SUVmax and other SUV metrics have an important prognostic rolel®l. Our
study adds to the evidence that SUVmax as a continuous variable improves the power
of the analysis to optimize research yield, which can be particularly important when the
resources and number of patients are restricted. The study also contributes a new
intuitive finding, in that using the uninvolved side as a reference for SUV
measurements can improve PET prognostication; the observation, however, deserves

further study.

CONCLUSION

This study confirms that PET-positive axillary status in preoperative BC is a significant
predictor of OS after 15 years of follow-up, and more so with breast tumors > 20 mm. In
view of the long-term survival impact, the finding argues that preoperative PET should
be considered as a standard in all BC cases whenever the primary tumor size exceeds 20
mm. The role of preoperative PET in tumors < 20 mm is less clear and warrants further

investigation.
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