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Abstract

BACKGROUND

The development of precision medicine is essential for personalized treatment and
improved clinical outcome, whereas biomarkers are critical for the success of precision

therapies.

AIM
We aimed to investigate whether iCEMIGE (integration of CEll-morphometrics,
MiIcrobiome, and GEne biomarker signatures) improves risk stratification of breast

cancer (BC) patients.

METHODS

We used our recently developed machine learning technique (CMS-ML) to identify
cellular morphometric biomarkers (CMBs) from the whole histological slide images in
The Cancer Genome Atlas (TCGA) breast cancer (TCGA-BRCA) cohort. Multivariate Cox
regression was used to assess whether cell-morphometrics prognosis score (CMPS) and
our previously reported 12-gene expression prognosis score (GEPS) and 15-microbe

abundance prognosis score (MAPS) were independent prognostic factors. iCEMIGE was




built upon the sparse representation learning technique. The iCEMIGE scoring model
performance was measured by the area under the ROC curve compared to CMPS, GEPS,
or MAPS alone. Nomogram models were created to predict overall survival (OS) and

progress-free survival (PFS) rates at 5- and 10-year in the TCGA-BRCA cohort.

RESULTS

We identified 39 CMBs that were used to create a CMPS system in BCs. CMPS, GEPS,
and MAPS were found to be significantly independently associated with OS. We then
established an iCEMIGE scoring system for risk stratification of BC patients. The
iGEMIGE score has a significant prognostic value for OS and PFS independent of clinical
factors (age, stage, and estrogen and progesterone receptor status) and PAM50-based
molecular subtype. Importantly, the iCEMIGE score significantly increased the power to
predict OS and PFS compared to CMPS, GEPS, or MAPS alone.

CONCLUSION
Our study demonstrates a novel and generic Al framework for multimodal data
integration toward improving prognosis risk stratification of BC patients, which can be

extended to other types of cancer.

INTRODUCTION

Cancer is a complex and heterogeneous disease that displays many morphological,
genetic, and epigenetic features [1l. Cancer heterogeneity consistently results in a large
variation in clinical outcomes of patients after a certain treatment (2, and therefore the
development of precision medicine is essential for personalized treatment and improved
clinical outcome 361, The discovery of biomarkers for predicting prognosis, a critical step
toward precision medicine, can significantly assist clinical oncologists in making

treatment decisions for cancer patients [7-9].




Microscopic examination of the histology, which encompasses the morphological
features of cancer cells, is the oldest and most basic way of cancer classification. A
complete and accurate pathological cancer classification is still crucial to deciding on the
best treatment plan for patients. Recently, we developed a framework powered by
artificial intelligence (Al) technique for identifying cellulgr morphometric biomarkers
(CMBs) and cellular morphometric subtypes (CMSs) from the whole slide images (WSI)
of Hematoxylin and Eosin (H&E)-stained tissue histology [10.11l. We demonstrated that
CMSs were significantly associated with specific molecular alterations, immune
microenvironment, and prognosis in lower-grade gliomas [10],

With the rapid biotechnological development, such as next-generation sequencing,
different aspects of genomic heterogeneity have been uncovered in cancers ['2, which
dramatically speed the discovery of molecular biomarkers for precision diagnosis and
therapy. For example, several molecular biomarkers have been developed for clinical
practice in breast cancer (BC) [13 14, including PAMS50 (Prosigna, South San Francisco,
USA), OncotypeDx (Exact Sciences Corp., Madison, USA), and MammaPrint (Agendia,
Amsterdam, Netherlands).

In addition to cancer genomic heterogeneity, a significant number of studies have
revealed the diversity of the microbiome in cancer and the roles of the microbiome in
cancer development and response to therapies ['>18, We have recently developed a novel
cancer microbiome signature for predicting the prognosis of BC patients [1%l. Given the
importance of tissue histology, genomics, and microbiome in cancer diagnosis and
treatment, efficient and effective integration of these multimodal data is believed to open
a new era for precision oncology 21,

In this study, we developed a strategy to integrate multimodal data (Fig. 1) and
investigated whether iCEMIGE (integration of cell-morphometrics, microbiome, and
gene biomarker signatures) improves the risk stratification of BC patients. We first used
our recently developed machine learning technique (CMS-ML) to identify the CMBs from
the WSIs in The Cancer Genome Atlas (TCGA) breast cancer (TCGA-BRCA) cohort and

established a cellular-morphometrics prognosis score (CMPS). We then demonstrated




that CMPS, together with our previously reported 12-gene expression prognosis score
(GEPS) [21l and the 15-microbe abundance prognosis score (MAPS) [19 were independent
prognostic factors. Finally, we established the iCEMIGE scoring system and assessed its
clinical value and prognosis predictive power compared to GEPS, MAPS, and CMPS

alone.

MATERIALS AND METHODS

Study design and dataset

The TCGA-BRCA cohort was used in this study. The patient diagnostic tissue
histology slides were downloaded from GDCportal (https://portal.gdc.cancer.gov/).
TCGA-BRCA microbiome, transcriptome, and clinical data, including PAM50-based
molecular subtypes, were downloaded from the cBioPortal

(https:/ /www.cbioportal.org/) 122 2], No additional modifications were made to the

downloaded data during our analyses.

Extraction of cellular morphometric characteristics and stratification of breast cancer
patients

Following our previous work 1%, we deployed an unsupervised feature learning
pipgline, which was based on the stacked predictive sparse decomposition (SPSD) [24 23],
for unsupervised discovery of underlying cellular morphometric characteristics from 15
cellular morphological features that were extracted from the diagnostic slides from the
TCGA-BRCA cohort. 256 cellular morphometric biomarkers (CMB) were defined for
cellular object representation. Specifically, we used a single network-layer with 256
dictionary elements (i.e, CMBs) and a sparsity constraint of 30 at a fixed random
sampling rate of 1000 cellular objects per WSIs from the TCGA-BRCA cohort. The pre-
trained SPSD model reconstructed each cellular region (represented as a vector of 15
morphometric properties) as a sparse combination of pre-defined 256 CMBs and
thereafter represents each patient as an aggregation of all delineated cellular objects

belonging to the same patient.




The prognostic effect of high or low levels of each CMB on overall survival (OS) was

assessed by Kaplan-Meier analysis (survminer package in R, Version 0.4.8) and log-rank
test (survival package in R, Version 3.2-3), where the TCGA-BRCA cohort was divided
into two groups (i.e., CMB-high and CMB-low groups) based on each CMB (survminer
package in R, Version 0.4.8). The set of CMBs as a prognostic signature were selected via
a multivariate CoxPH regression model including these CMBs with a significant effect on
OS.

Finally, we calculated the cellular morphometric prognosis score (CMPS) using the
formula below, where the coefficients of the final CMBs as categorical variables were

obtained from multivariate CoxPH regression analysis:

N
CMPS = Z(coefficient of CMB_Category') = (CMB_Category" )
=1

Where N is the number of final CMBs that were independently and significantly
associated with OS, and CMB_Category' is the category of the i CMB (i.e., CMB-high:
1; CMB-low: 0).

Mining of multi-modal iCEMIGE biomarker signature

We extended the unsupervised feature learning pipeline (SPSD) [24 25| to achieve
efficient and effective mining of multi-modal biomarker signatures from prebuilt cellular-
morphometrics, microbiome, and gene biomarkers. Given X = [X;, ..., Xy] € R™V as a set of
patients (N) with a combination of biomarkers from different modalities (i.e., cellular-
morphometrics, microbiome, and gene biomarkers), the formulation of the iCEMIGE multi-modal
biomarker mining model was defined as follows.

mingzwe BX — BZB: + BZ — Go(WX)B% + 1,078,

s.t. Bb,B2 =1, Vi=1,..,h




where B = [by, ..., by] € R™" was a set of multi-modal biomarkers to be mined. Each multi-
modal biomarker (b) was composed of m individual biomarker (e.g., m=66 in our study); Z =
[Z4, ..., Zy] € RV was the sparse multi-modal biomarker expression matrix, where z; was the
sparse multi-modal biomarker expression profile of the original patient biomarkers (x;), consisting
of relative abundances of all (k) multi-modal biomarkers that contributed to the reconstruction of
X;; W € R?*™ was the auto-encoder for efficient and effective extraction of sparse multi-modal

biomarker expression matrix (Z) from original patient biomarker data (X); G = diag(g,,..,8r) €

R™" was a scaling matrix with diag being an operator aligning vector [g,,..,g5], along the
diagonal; a(-) was an element-wise sigmoid function; 4, was the regularization constant to ensure
the sparsity of Z, such that only a subset of multi-modal biomarkers was utilized during the
reconstruction of original patient biomarker data.

The first constraint: BX — BZAZ, penalized the reconstruction error of original patient
biomarker data (X) with multi-modal biomarker (B) and the corresponding sparse multi-modal
biomarker expression matrix (Z), which helped minimize the loss of individual biomarker
information; the second constraint: BZ — Go(WX)@Z, penalized the approximation error of sparse
multi-modal biomarker expression matrix (Z) with the auto-encoder, which helped improve the
accuracy of multi-modal biomarker extraction for new patients; the third constraint: AZA,,
penalized the sparsity of the multi-modal biomarker expression matrix, which helped ensure the

utilization/activation of dominant multi-modal biomarkers during the learning process.

Construction of the iCEMIGE score

After multi-modal biomarker mining (i.e., 256 multi-modal biomarkers mined in this
study), a multivariate Cox regression was performed on 256 multi-modal biomarker
signatures, defined as 256 covariates using the TCGA-BRCA dataset. The iCEMIGE score

of each patient was calculated by the following formula:




256

iICEMIGE score = Z( covariate i coef ficient) = ( covariate i expression level)

i=1

Nora;gram, ROC and C-index

A nomogram model (rms package in R, Vegsion 6.0-1) was constructed to predict 5-
and 10-year OS probability of BC patients. The time-dependent receiver operating
characteristic (ROC) curve (survivalROC package in R, Version 1.0.3) and concordance
index (C-index) were used to evaluate the performance of the nomogram model, where
the C-index was repeated with 1000 bootstrapping iterations and an 80% sampling rate
per iteration. Mann-Whitney non-parametric test was used for the comparison across

models.

Statistical analysis
The cohort of patients were divided into three groups (Poor: top third; Intermediate:
middle third; and Good: bottom third) based on CMPS or iCEMIGE score. The
independent prognostic impact of different scores (CMPS and iCEMIGE) was assessed
by multivariate CoxPH regression including the clinical factors (age, stage, ER, and PR
status) and PAM50-based molecular subtype. All statistical analyses were performed
through either SPSS 24.0 (IBM, NY, USA) or R (version 4.0.2, https://www.r-
project.org/). Graphic visualizations were generated by R (ggpubr package, Version
0.4.0; ggplot2 package, Version 3.3.3) or SPSS. The statistical significance was defined as
p<0.05 (two-tails).

RESULTS
Identifying Cellular Morphometric Biomarkers for prognosis of BC atients

Over 300 million cellular objects from 1085 diagnostic slides of 1017 TCGA-BRCA
patients were recognized and delineated by an unsupervised feature learning pipeline
based on SPSD [24. Each cellular object was represented with 15 morphometric properties

as described in our previous work [10].




Next, we optimized and trained our SPSD model based on pre-quantified cellular
objects randomly selected from the TCGA-BRCA cohort to discover the underlying
cellular morphometric biomarkers (CMBs). After training, the prebuilt SPSD model
reconstructed each cellular object as a sparse combination of the pre-identified 256
cellular morphometric biomarkers, which led to the novel representation of every single
cellular object as 256 sparse code (reconstruction coefficient); and thereafter, the
corresponding 256-dimensional cellular morphometric cgltext representation of each
patient as an aggregation of all delineated cellular objects belonging to the same patient
(Supplementary Table Sl1). The final patient-level cellular morphometric context
representation consisted of 256 CMBs.

We next evaluated the association of 256 CMBs with OS in the TCGA-BRCA cohort.
Survival analysis revealed that 148 of 256 CMBs had a significant prognostic impact (p <
0.05, Supplementary Table S2). Among these 148 CMBs, 39 CMBs demonstrated
independent and significant association with OS by multivariate CoxPH regression
analysis (Fig. 2A; Supplementary Figure Sl; Supplementary Table S3), which were
defined as a 39-CMB signature.

Assessing Prognostic Value of the 39-CMB Signature

To further evaluate the prognostic value of the 39-CMB signature, we constructed the
cellular morphometric prognosis score (CMPS) (see Methods) and divided TCGA-BRCA
cohort into three groups (Poor: top third; Intermediate: middle third; and Good: bottom
third) based on CMPS (Supplementary Table S4). Patients with good scores had
significantly longer OS than those with poor scores. The OS of patients with intermediate
scores was between these two groups (P = 1.61E-23, Fig. 2B). Moreover, CMPS provided
additional prognostic value to clinical factors (age, ER, PR, and stage) and PAM50-based
molecular subtypes (Fig. 2C).

Establishing the iCEMIGE prognostic model




Omics analyses of cancers have further revealed their genomic heterogeneity. FDA
has approved many genomic biomarkers for clinical use, such as PAM50. Based on the
omics data, we have previously identified 12-gene 12!l and 15-microbe signatures [l for
the prognosis of BC patients (Supplementary Table S3). We conducted a multivariate Cox
regression analysis to address whether GMPS, MAPS, and GEPS are independent
prognostic factors. Indeed, CMPS, MAPS, and GEPS were significantly and
independently associated with OS (Fig. 2D). We then integrated 39 CMBs, 15 microbes,
and 12 genes in an unsupervised representation framework (“iCEMIGE") and mined 256
multi-modal biomarkers (Supplementary Table S3) with experimentally optimized
parameters for C-index for OS (Supplementary Figure S3). The optimal iCEMIGE score
was then constructed to assess a patient’s risk for death and disease progression

(Supplementary Table S4, details see Materials and Methods).

Evaluating the prognostic value of the iCEMIGE score

A total of 919 BC patients in the TCGA-BRCA cohort with full signature
(iICEMIGE) data were included in this evaluation (Supplementary Table S5). 919 BC
patients were stratified into different prognostic groups (Poor: top third; Intermediate:
middle third; and Good: bottom third) according to the iCEMIGE score. Patients within
the poor prognosis group had significantly shorter OS compared to those within the
intermediate and good prognosis groups (P = 4.02E-58, Fig. 3A). Importantly, we showed
that the iCEMIGE score was more effective in predicting OS of BC patients than CMPS,
MAPS, and GEPS alone (Fig. 3B and C; Supplementary Figure S2A and B). Moreover, we
found that the iCEMIGE score was also significantly associated with PFS (P = 2.40E-19,
Fig. 3D) and had more effective in predicting PFS (Fig. 3E and F; Supplementary Figure
S2C and D).

We then evaluated whether the prognostic value of the iCEMIGE score was
independent of ER status, stage, and molecular subtypes. As shown in Fig. 4A, patients
with poor iCEMIGE scores had significantly shorter OS and PFS compared to those with
good iCEMIGE scores in both ER+ and ER- groups. Moreover, the iCEMIGE score was




significantly associated with OS and PFS in all different stages (Fig. 4B) and subtypes
(Fig.5).

Finally, using ultivariate Cox regression analyses (including pathological stage,
age, PR status, ER status, molecular subtype, iCEMIGE), we demonstrated that iCEMIGE
was an independent prognostic factor for both OS (Fig. 6A) and PFS (Supplementary
Figure S4A). These findings indicate that the iCEMIGE score has an independent
prognostic value in BCs.

To further assess the clinical value of the iCEMIGE score, we established a
nomogram model, a valuable clinical tool for prognosis prediction, where we integrated
iCEMIGE with clinical factors (age, stage, ER, and PR), PAM50-based molecular subtypes

predict the 5- and 10-year OS probability of BC patient (Fig. 6B). The iCEMIGE score

significantly improved the predictive power of prognosis (Fig. 6C). Similar results were

found for PFS (Supplementary Figure S4B and S4C).

DISCUSSION

High BC heterogeneity brings up a significant challenge for predicting a patient’s
response to treatment or prognosis. In this study, we established a new strategy for
tackling this challenge by integrating multimodal signatures and demonstrated that such
approach significantly improved the power for prognostic prediction compared to the
single modal biomarker. In addition, we showed that iCEMIGE is significantly superior
in predicting OS and PFS compared to the PAM50-based molecular subtype in the TCGA-
BRCA cohort, although additional validation is required, as stated later in the limitations
of this study.

The majority of biomarker developments are limited to a single modal data (2. In
the past, we followed the same path to define the 12-gene expression prognosis score
(GEPS) 21l and the 15-microbe abundance prognosis score (MAPS) [19] in BC. Here, we
developed the 39-CMB prognosis score (CMPS) using an Al-driven CMB detection
technique (1. We found that CMPS, MAPS, and GEPS had an independent prognostic

value. This suggests that different modal data provide unique clinical value for prognosis




prediction and raises the possibility that integrating multimodal biomarkers can advance
precision oncology by more accurately predicting the risk of treatment failure, relapse etfc.

Integrating multimodal data to yield improved performance compared with each
modality alone remains challenging. In this study, we presented a multi-step approach
to integrate cellular morphometric, molecular, and microbiome landscapes into a
multimodal prognostic system for BC. Firstly, we identified the biomarker signature and
systematically assessed its prognostic value in each type of modal data. Secondly, we
investigated whether these modal-specific biomarker signatures are independent
prognostic factors. Thirdly, we established the final predictive model incorporating all
modal biomarker signatures with significantly improved prognostic risk stratification
compared with each modality alone. Finally, we systematically evaluated the clinical
value of the final predictive model. Such a strategy can extend to other types of cancers.

Modern clinical instruments are generating massive amounts of multimodal data,
including radiology, histology, and molecular data, where each of them provides unique
value for cancer diagnosis and treatment. Therefore, the efficient and effective integration
of multimodal data becomes critical and, however, remains challenging in terms of
robustness, interpretability, and translational impact, even with the current advancesin
artificial intelligence techniques 1?2, Two major trends in multimodal integration in
cancer research are modal-specific raw data integration (MDI) 12 3] and modal-specific
representation integration (MRI) B 32, The MDI strategy handles each modality (e.g.,
histology and genomics) using different neural network structures and then combines
the corresponding output of each neural network branch in subsequent network layers
to predict the health outcome. Trained in an end-to-end fashion (i.e., black-box fashion),
this strategy delivers a convenient and powerful utilization of information and
interaction across modalities; however, in general, it lacks biomedical interpretability. In
addition, such a strategy does not guarantee the learning of clinically significant and
independent information per each modality, and thus the alternative deployment of an

individual modality or a subset of modalities is nearly impossible.




In contrast, the MRI provides a stepwise strategy, where the first step consists of
outcome-driven representation mining per modality, and the second step integrates
modal-specific representation towards the outcome. Obviously, MRI is more likely
(without guarantee) to mine model-specific representation with independent clinical
value via a stepwise mechanism and consequently provides more flexibility in
individual/subset modality deployment. This flexibility is important in clinical practice,
especially when all modalities are not available. Extended from the MRI strategy, our
work realizes the modal-specific knowledge integration (MKI) by enforcing the mining
and utilization of biomedically interpretable, clinically significant and independent, and
double-blindly validated knowledge (ie., cellular morphometric biomarkers,
microbiome biomarkers, and genomic biomarkers) through an Al-powered systems
biology workflow for maximized clinical implications and translation impact.

Our study established a new promising strategy for integrating multimodal data
to enhance prognostic prediction. A significant limitation yas that we did not have
independent cohorts to validate our findings. In addition, due to the limited clinical
information in the TCGA-BRCA cohort, we were unable to comprehensively explore the
potential confounding clinical factors, including tumor size, different cancer treatments,
etc. The clinical utility of iCEMIGE needs to be further validated in retrospective and
prospective cohort studies to determine whether the iCEMIGE score can provide
sufficient predictive information to stratify patients by risk and guide treatment. If so, the
iCEMIGE score could assist clinicians in decision-making about cancer treatment and

enable more personalized cancer therapy.

CONCLUSION

Our study demonstrates a novel and generic Al framework for multimodal data
integration toward improving prognosis risk stratification of BC patients, which can be

extended to other types of cancer.
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Research objectives
To develop a strategy to integrate multimodal data and to investigate whether iCEMIGE
(integration of cell-morphometrics, microbiome, and gene biomarker signatures)

improves the risk stratification of breast cancer patients.

Research motivation

Modern clinical instruments are generating massive amounts of multimodal data,
including radiology, histology, and molecular data, where each of them provides unique
value for cancer diagnosis and treatment. Efficient and effective integration of these

multimodal data is believed to open a new era for precision oncology.

Research background
Cancer heterogeneity consistently results in a large variation in clinical outcomes of
patients after treatment. The discovery of biomarkers for tailoring cancer treatments is a

critical step toward personalized medicine.

Research perspectives
The iCEMIGE score could assist clinicians in decision-making about cancer treatment and

enable more personalized cancer therapy.

Research conclusions
Our study indicates that multimodal integration (iCEMIGE) can more accurately predict

the prognostic risk of breast cancer patients.

Research results

iCEMIGE is significantly superior in predicting overall and progression-free survival of
breast cancer patients compared to single modal biomarker and the PAMb50-based
molecular subtype, which is one of FDA approved biomarkers and is currently used in

clinical practice.




Research methods

The artificial intelligence pipeline powered is used to identify cellular morphometric
biomarkers. Single modal biomarker signatures are integrated using the sparse
representation learning technique to establish iCEMIGE. Clinical value of iCEMIGE is

evaluated using different statistical methods.
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