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cancer based on bulk and single-cell RNA sequencing data
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Abstract
BACKGROUND
Pyroptosis impacts the development of malignant tumors, yet its role in colorectal

cancer (CRC) prognosis remains uncertain.

AIM
To assess the prognostic significance of pyroptosis-related genes and their association

with CRC immune infiltration.

METHODS

Gene expression data were obtained from The Cancer Genome Atlas (TCGA) and
single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus
(GEO). Pyroptosis-related gene expression in cell clusters was analyzed, and
enrichment analysis was conducted. A pyroptosis-related risk model was developed
using the LASSO regression algorithm, with prediction accuracy assessed through K-M
and receiver operating characteristic analyses. A nomogram predicting survival was
created, and the correlation between the risk model and immune infiltration was
analyzed using CIBERSORTx calculations. Finally, the differential expression of the 8
prognostic genes between CRC and normal samples was verified by analyzing TCGA-
COADREAD data from the UCSC database.

RESULTS




An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,
SDHB, BST2, UBE2D2, GJA1, AIM2, PDCD6IP, and SEZ6L2 (P < 0.05). Seven of these
genes exhibited differential expression between CRC and normal samples based on
TCGA database analysis (P < 0.05). Patients with higher risk scores demonstrated
increased death risk and reduced overall survival (P < 0.05). Significant differences in
immune infiltration were observed between low- and high-risk groups, correlating with

pyroptosis-related gene expression.

CONCLUSION
We developed a pyroptosis-related prognostic model for CRC, affirming its correlation

with immune infiltration. This model may prove useful for CRC prognostic evaluation.
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Core Tip: We constructed a prognostic model related to colorectal cancer (CRC) focal
death and confirmed the correlation with immune infiltration. This model may be

useful for prognostic assessment of CRC.

INTRODUCTION

Colorectal cancer (CRC) is the prevalent malignancy and consider the second most
common cause of cancer deaths globallyll2l. Genetic, lifestyle, obesity and
environmental factors are considered as main causative agents of CRCPL Besides,
changes in the microenvironment of cells also proved to affect the growth development

of this diseasel*®l. The prognosis for CRC is grim, with nearly 20% of patients
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progressing to stage 4 and an additional 20%-50% of early-stage patients developing
metastatic diseasel?. While immunotherapy introduces a promising avenue for CRC
treatment, its effectiveness hinges on the intricacies of the immune microenvironment/1>-
12]. Although numerous biomarkers identified through traditional methods based on
bulk RNA sequencing, such as methylation(®], IncRNA[4], and IGFBP-2'5], their
accuracy in predicting CRC prognosis and the association with the tumor
microenvironment (TME) is insufficient. Hence, there is an urgent need to develop a
novel prognostic model with advanced technology for effective risk stratification and
prediction of immunotherapy outcomes in CRC.

Pyroptosis, defined as gasdermin-mediated programmed cell death, has been
established to inFEence tumor development['¢°l, By modulating the immune
microenvironment, pyroptosis plays a crucial role in the prognosis of various cancers,
including CRC. Notably, pyroptosis-related genes like IL-18, CASP1, GSDMB, and
GASP5 have been utilized to construct prognostic models for bladder, ovarian, and
gastric cancersl2-22l. However, many of these models relied on bulk RNA sequencing
levels, and adequate pyroptosis-related prognostic models specifically tailored for CRC
are lacking.

To date, single-cell RNA sequencing (scRNA-seq) has emerged as the optimal method
for discovering, identifying, and validating new biomarkers, particularly in TME
research(?l. This technique offers genomic and transcriptomic insights into cancers at
the single-cell RNA level, surpassing the limitations of bulk RNA sequencing/?+27],
Leveraging scRNA-seq, we developed a pyroptosis-related prognostic model for CRC
and explored potential correlations between pyroptosis and immune infiltration. This
study contributes valuable insights for clinical management and immunization research

in CRC.

MATERIALS AND METHODS

Data source
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The scRNA-seq dataset GSE178341, obtained from the Gene Expression Omnibus (GEO,
https:/ /www.ncbi.nlm.nih.gov/geo/) databasel?8], encompasses 61 CRC and 27 non-
malignant colorectal tissues. This dataset, encompassing diverse clinical conditions,
facilitates comprehensive analyses, offering profound insights into the involvement of
pyroptosis-related genes in CRC. Additionally, its widespread use allows for robust
comparisons and validation with other studies, augmenting the reliability of our
research outcomes. The “The Cancer Genome Atlas (TCGA) biolinks” package of R
software (version 2.22.4)["1 was employed to retrieve TCGA-colon adenocarcinoma
(TCGA-COAD) and TCGA-rectum adenocarcinoma (TCGA-READ) raw counts
expression data and clinical data, comprising 578 CRC tumor samples and 106
paracancer samples. Merging these two expression matrices resulted in a baseline fact
sheet with 619 cases containing clinical information (Table 1). Prognostic analyses were

conducted on the samples that contained COAD and READ data.

Quality control of the data by Seurat
The R software (https://www.r-project.org/, rsion 41) and the R package Seurat
(version 4.0.5)[%°! were installed, and the expression matrix of the GSE178341 dataset
was created as a Seurat object. Cells with > 20% mitochondrial genes, potentially
indicating a stressful state, were excluded. Cells with FEATURE < 200 or > 3000 were
also filtered, resulting in 115489 cells.

Subsequently, ﬁe sequencing depth of the dataset was normalized using the
“NormalizeData” function with the default “LogNormalize” standardization method.
The “FindVariableFeatures” function, employingdhe “vst” method, identified 2000
variable features of the dataset. Data scaling, utilizing the “ScaleData” function,
mitigated the impact of sequencing depth. Principal Component Analysis (PCA)
identified significant PCsl3l, and the Elbowplot function visualized the P value
distribution. For the Uniform Manifold Approximation and Projection (UMAP)
analysis, 30 PCs were selected. The Louvain algorithm, through the “FindClusters”

function, optimized class groups, resulting in 38 different clusters with a resolution of
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0.8. Finally, the “RunUMAP” function enabled dimensionality reduction for daEset
visualization and exploration. The “FindAllMarkers” function compared gene

expression of cell clusters with the gene expression of all other cell clusters.

Cell types annotating

The Blueprint Encode Dateset in SingleR (version 1.8.1)%!] was employed to annotate
cell types in the single-cell data. Identified cell types included T cells, NK cells, B cells,
plasma cells, epithelial cells, myeloid cells (DC, Macrophage, Monocyte), stromal cells,
mast cells, and endothelial cells. Differential genes between cell types were identified

using the “Find AllMarkers” function.

Pyroptosis-related differently expressed genes among cell clusters

A total of 427 pyroptosis-related genes were obtained from the Gene Cards database
(https:/ /www.genecards.org/)PZ (Supplementary Table 1). The genes were intersected
with marker genes of cell clusters for obtaining the pyroptosis-related differently
expressed genes (DEGs) among cell clusters, A heat map illustrating the expression of

DEGs in cell clusters was generated using the “DoHeatmap” function.

Correlation analysis of pyroptosis-related DEGs among cell subclusters

Pyroptosis-related DEGs expressing in specific cell types were visualized using the
“FeaturePlot” from Seurat. The Pearson correlation coefficient of pyroptosis-related
DEGs between cells was calculated using the corr R package. The correlation network

was plotted using the “network_plot” function.

CellChat analysis

The CellChat R package (version 1.1.3)/%] was used to quantitatively infer and analyze
the communication network between the identified 11 cell clusters. A circle diagram
depicted the interaction between cell groups, while a bubble diagram counted all

important ligand pairs during intercellular signaling.




GSVA

The “c2.cp.kegg.v7.5.1.symbols.gmt” geneset was downloaded om the Molecular
Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/). The
“gsva” method of the R package GSVA (version 1.42.0) was employed for analyzing
CRC single-cell data. Gene expression data from an expression matrix with individual
genes as features were transformed into an expression matrix with specific genesets as
features. The expression matrix was transformed into an enrichment score (ES) matrix
for the pathway, obtaining a GSVA ES for each cell corresponding to each pathway.
Using the limma R package (version 3.50.0)1], pathways with significant differences (P
< 0.05) were analyzed, and pathway activity scores for each cell group were compared

with all other cell groups. The top 3 pathways in each group, ranked from the largest to

the smallest t-value, were selected for plotting the heat map.

Immune infiltration

The TCGA-COAD and TCGA-READ transcriptome data underwent quantitative
conversion into absolute abundance of immune and stromal cells using t
“CIBERSORTx” methodP¢37l, This method assessed changes in the proportion of
immune cell subsets, including memory B cells, naive B cells, activated dendritic cells,
resting dendritic cells, eosinophils, MO macrophages, M1 macrophages, M2
macrophages, activated mast cells, resting mast cells, monocytes, neutrophils, activated
NK cells, resting NK cells, plasma cells, activated memory CD4+ T cells, resting
memory CD4+ T cells, naive CD4+ T cells, CD8+ T cells, T follicular helper cells, gamma
delta T cells, and regulatory T cells (Tregs). Significant differences between groups wi
high and low risk were assessed using the t-test method, considering P values < 0.05 as

significant.

Weighted co-expression network analysis
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Weighted co-expression network analysis (WGCNA) was employed to construct co-
expression networks and identify modules of highly correlated genesl3$3°. The COAD
and READ datasets from TCGA were selected as the trait data for WGCNA.

Differential expression of pyroptosis-related genes in TCGA data

DESeq2 (version 1.34.0)% from the R software package was used for analyzing the
differential expression of pyroptosis-related genes in TCGA-CRC data. Pyroptosis-
related DEGs were identified with a screening threshold of P value < 0.05 and |logFC|
> 0.5. Clustered heat maps, volcano maps, and Gene Ontology (GO) functional

enrichment maps for the relevant genes were generated.

GO enrichiment analysis
In GO enrichment analyses, each term in biological process (BP), molecular function
(MF), and cellular component was analyzed for enrichment significancel*!l. This method

was applied to characterize the features of pyroptosis-related genes.

TCGA tumor sample typing

Consensus Clusterin, a tool for cancer subtype classification, was used for analysis on
the 178 key genes derived from scRNA-seq and TCGA datasets using the
ConsensusClusterPlus (Version 1.58.0) package of R softwarel®2l. T The distance
calculation method was Spearman, and the clustering algorithm was PAM (Partitioning
Around Medoids). Consistent cumulative distribution function maps, Delta Area Plots,

and consistency matrix heat maps were utilized for clustering analysis.

Model construction and evaluation for clinical prognosis

Initially, the pyroptosis-related DEGs underwent univariate Cox analysis to identify
genes with significant prognostic value. Subsequently, CRC samples were randomly
divided into two parts, with a ratio of 7:3 for training and validation of the prognostic

model. The LASSO-COX regression algorithm was applied to establish the prognostic
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model, and the risk score calculation formula was defined as: Where “coef (k)”

represents the multivariate Cox regression coefficient; “x (k)” represents the expression

value of each single gene, and “n” represents the number of genes.

Evaluation of prognostic models

Initially, the 606 CRC samples were divided into two groups based on high and low risk
scores using the median risk score. Subsequently, Kaplan-Meier survival analysis and
time-dependent receiver operating characteristic (ROC) analysis were conducted to
assess the prognostic accuracy for OS. The risk scores were compared under different

clinical feature groups, including age, gender, and TNM stage.

Construction and evaluation of clinical prediction model

To illustrate the predictive ability of risk scores combined with clinicopathologic
characteristics for patient prognosis, both were incorporated into the model. A clinical
predictive nomogram was constructed to predict risk, and its predictive ability was
evaluﬁd using calibration curves by comparing predicted values with actual survival
rates. OS of the predicted scores was analyzed using Kaplan-Meier, and the prognostic

accuracy of the model was tested using time ROC analysis.

Tumor mutational burden

Tumor mutational burden (TMB), reflecting the quantity of cancer mutations(*], was
calculated using the “Maftools” package of R software (version 2.10.0). The somatic
mutation levels in TCGA CRC samples were assessed, and the top 10 high-frequency
mutated genes were counted to generate a waterfall plot. Subsequently, the impact on
survival was explored by grouping according to high or low TMB levels, and

comparisons were made between TMB differences in the two groups.

Differential expression of the prognostic genes
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To validate the expression of the 8 prognostic genes between CRC and normal samples,
we obtained the uniformly normalized pan-cancer dataset of TCGA TARGET GTEx
(PANCAN, n =19131, G = 60499) from the UCSC (https:/ /xenabrowser.net/) database.
Expression data for ENSG00000083937 (CHMP2B), ENSGO00000117118 (SDHB),
ENSG00000130303 (BST2), ENSG00000131508 (UBE2D2), ENSG00000152661 (GJA1),
ENSG00000163568 (%MZ), ENSG00000170248 (PDCD6IP), and ENSG00000174938
(SEZ6L2) in samples from solid tissue normal, primary solid tumor, primary tumor,
normal tissue, primary blood derived cancer-bone marrow, and primary blood derived
cancer-peripheral blood were downloaded. A log2 (x + 0.001) transforrjation was
applied to each expression value, and the analysis was restricted to CRC. Expression
differences between normal and tumor samples were calculated for each tumor using R
software. The significance of differences was assessed using unpaired Wilcoxon Rank
Sum and Signed Rank Tests. The expression data of the 8 genes in CRC were provided
in Table 2.

Statistical analysis
All calculations and analyses were performed using the R programming language. The

risk model was constructed using LASSO and COX regression analyses.

RESULTS

ScRNA-seq data revealed cellular heterogeneity in CRC

The scRNA-seq data from 88 CRC samples underwent analysis, resulting in the
identification of 115489 cells after adherence to quality control standards.
Standardization and normalization of the data facilitated the extraction of the top 2000
high-variant genes. Subsequently, the selected high-variant genes underwent
downscaled by PCA algorithm, followed by clustering analysis using the SNN
algorithm. Visualization of the PCA-based downscaling results was achieved through
UMAP for single-cell clustering. The successful classification of 115489 cells into 38

independent clusters is depicted in Figure 1A, and differential marker genes for each
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cluster are outlined in Table 3. Using Single R, 11 distinct cell subsets (epithelial cell,
myeloid cells, macrophage, monocyte, mast cells, endothelial cells, stromal cell, plasma,
B cells, NK cells, and T cells) were identified (Figure 1B). Subsequently, expression
patterns of selected datasets corresponding to markers in published articles were
visually represented through bubble plots (Figure 1C). Violin plots illustrated
differentially marked genes for each cell subset (Figure 1D), and heat maps displayed
the top 2 differentially marked genes for each cell type (Figure 1E). The distribution of
cells in CRC tissues (T) and non-CRC tissues (N) across each cell type is illustrated in
Figure 1F. Notably, T cells are more predominant in CRC tissues, while plasma/B cells
are more prevalent in non-CRC tissues. A comparative UMAP plot in tumor and

normal samples is presented in Supplementary Figure 1.

Pyroptosis-related genes differentially expressed between cell subsets

We intersected the differential genes between cell types and pyroptosis-related genes,
resulting in 125 pyroptosis-related DEGs (Supplementary Table 2). Subsequently, we
utilized a heat map to depict the expression of these DEGs in each of the 11 cell subsets
(Figure 2A). Notably, among the DEGs, GZMA was specifically expressed in the cluster
where NK cells and T cells are located (Figure 2B), while IL-1B was found to be
specifically expressed in Monocytes (Figure 2C). The correlation among intersecting
pyroptosis-related genes was visualized in Figure 2D. Notably, genes such as APOE,
VIM, and STATS3 exhibited a high degree of correlation.

CellChat and GSVA

We utilized CellChat to construct a graph displaying the total number of interactions
among 11 cell subsets and their overall interaction intensity (Figure 3A). The statistical
plot depicting cellular interactions identified by CellChat is presented in
Supplementary Figure 2. For a clearer examination of interactions among cell subsets,
we conducted subset analysis (Figure 3B), resulting in the division of subsets into 27

subclusters (Supplementary Table 3) [B cells: B01, 2138, 1.85%; B02, 1101, 0.95%; B03,
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10239, 8.87%; B04, 42, 0.04%. Plasma 1, 8620, Plasma 2, 1491, 1.29%; Plasmablasts, 168,
0.15%. Dendritic cells (DC): DC1, 568, 0.49%; DC2, 891, 0.77%; pDC, 334, 0.29%.
Endothelial cells (Endo): Endo, 2636, 2.28%. Epithelial cells: Epithelial Normal (EpiN),
10480, 9.07%. Epithelial tumor (EpiT): 21614, 18.72%. Fibroblasts: FB1, 1329, 1.15%; FB2,
855, 0.74%. Macrophages: M01, 4020, 3.48%; M02, 1593, 1.38%. Mast, 1286, 1.11%;
Monocytes, 4804, 4.16%; Mural, 1162, 1.01%; NK, 6448, 5.58%; Schwann, 159, 0.14%; T
cells: T01, 12099, 10.48%; T02, 5772, 5.00%; T03, 7925, 6.86%; T04, 6071, 5.26%; T05, 1644,
1.42%). Based on the 27 cell subclusters, a CellChat heatmap analysis was performed
(Figure 3C), identifying 5 key cell subclusters (M01 Macrophage, T05 T cell, FB2
Fibroblast, Plasmablasts, Schwann) for subsequent analysis. The SPP1 signaling
pathway influences the effectiveness of immunotherapy in CRCH4. We individually
aligned for CellChat visualization (Figure 3D). It is evident that the MO01 subcluster of
macrophages was highly active in the SPP1 signaling pathway. Interestingly, the M02
subcluster of macrophages exhibited minimal activity. Additionally, Schwann cells
demonstrated significant activity in the SPP1 signaling pathway. Furthermore, y& T
cells (T05) were correlated with the initiation and progression of immune responses. We
analyzed the interaction of T05 Ligands and receptors with other cells (Figure 3E and F).
Subsequently, CellChat analysis of the 5 key cell clusters mentioned above was
performed with tumor cell clusters (Figure 3G). The close interlinking of the key
subclusters was observed. We also noted the enrichment of different metabolic
pathways among the cell clusters. Gamma-delta T-cells (T05) were enriched in the cell
cycle, DNA replication, and base excision repair pathways, aligning with their function
in initiating immune responses. Notably, SPP1-macrophage (M01) was enriched in the
toll-like receptor signaling pathway and cytokine-cytokine receptor interaction, while
MO02 was enriched in the pathways of retinol metabolism and linoleic acid metabolism

(Figure 3H).

Immune infiltration analysis
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We derived the abundance values of immune cells by utilizing the CIBERSORT online
tool to analyze TCGA-COAD and TCGA-READ data. The boxplot visually presents the
percentage differences in predicted results among various cell subsets (Figure 4A).
Notably, immune cells such as M0 Macrophages, M2 Macrophages, and naive B cells
exhibited significant percentage differences. Subsequently, we eliminated immune cells
with 0 abundance in more than half of the samples and constructed a Pearson
correlation heatmap depicting relationships among 14 immune cell types (Figure 4B).
The correlation analysis revealed strong associations between T cell subtypes,
monocytes, and macrophage subtypes. For instance, negative correlations were
observed between CD8+ T cells and M0 macrophages (R = -0.4), CD8+ T cells and
resting meEory CD4+ T cells (R = -0.38), Monocytes and M0 macrophages (R = -0.37),
as well as resting memory CD4+ T cells and M0 macrophages (R = -0.28). Conversely,
positive correlations were identified between CD8+ T cells and M1 macrophages (r =

0.21) and resting memory CD4+ T cells and Monocytes (r = 0.23).

WGCNA

The soft threshold value p was determined to be 16 (Figure 5A and B). Subsequently,
we identified 16 modules for further analysis. Hierarchical cluster plots and module
correlation heatmaps were generated to visualize the modules (Figure 5C and D).
Notably, a significant correlation was observed between the MEcyan module and the
M1 Macrophages feature, the MEpurple module and Monocytes and M2 Macrophages
features, the MEred module and activated Mast cells, and the Megreen module with MO
Macrophages (Figure 6). From each module, we selected the top 30 genes, resulting in

the identification of 120 genes forming the co-expressed gene list (Supplementary Table

4).

Differential expression, correlation analysis and enrichment analysis of pyroptosis-

related genes
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The non-CRC samples from TCGA served as the control group, while the CRC samples
were designated as the experimental group for differential analysis (Supplementary
Table 5). Among the 125 DEGs, 71 core pyroptosis-related DEGs exhibited significant
differential expression in the TCGA dataset (|log2 FC| > 0.5, P < 0.05) (Table 4). The
top 14 genes were selected for heatmap display (Figure 7A), and the differential
analysis volcano plot provided a visual representation of pyroptosis-related DEGs
(Figure 7B), including genes such as CDKN2B-AS1, CTSG, MPEG1, GZMB, and DPEP1,
etc., between normal and tumor samples. The Pyroptosis-Related Genes PPI network
diagram is presented (Figure 7C, Supplementary Figure 3), with the gene CXCLS8 also
identified in the differential analysis. Additionally, GO enrichment analysis revealed
that the 71 core pyroptosis-related genes were significantly enriched in functions such
as the regulation of inflammatory response, mitotic cytokinesis, efc. (Figure 7D) (Table

5).

Consistent clustering and single-sample gene set enrichment analysis

Tumor samples TCGA were subjected to typing through the consensus clustering
method. After a thorough evaluation considering the consistency matrix heatmap,
cumulative distribution curve, and delta area curve, we determined the cluster number
to be 2 (Figure 8A-C). Subsequently, the tSNE algorithm was employed for cluster
visualization (Figure 8D). Finally, we conducted single-sample gene set enrichment
analysis (ssGSEA) with a focus on immune cells (Figure 8E) and immune function

(Figure 8F).

Construction and validation of a pyroptosis-related prognostic model

We conducted survival analysis utilizing both single-cell data and TCGA-CRC data,
which comprises survival information for 606 samples. In addition to the 71 core genes,
we incorporated differential genes specific to single-cell and bulk transcriptomes,
resulting in a final set of 178 genes present in the TCGA expression matrix

(Supplementary Table 6). Univariate Cox analysis assessed the correlation between
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these 178 genes and the prognosis of CRC patients, revealing 10 genes significantly
correlated with prognosis (P value < 0.05) (Supplementary Table 7). Subsequently, we
randomly divided the diseased samples into training and validation sets at a ratio of
7:3. The training set was employed for constructing a prognostic model using LASSO-
Cox regression (Figure 9A and B), yielding a risk model composed of 8 genes (CHMP2B,
ﬁHB, BST2, BE2D2, GJA1, AIM2, PDCD6IP, and SEZ6L2) (Table 6). Based on the
median value of the risk score, patients were classified into low-risk and high-risk
groups. Risk maps and survival states for the training and test sets illustrated an
increase in the risk score corresponding to an elevated risk of death and decreased
survival time (Figure 9C and D).

To assess prediction accuracy, we performed a ROC analysis. The results indicated a
favorable predictive ability of the risk score for OS in CRC patients, with area under
curve (AUC) values of 63.8% and 63.6% for the training and validﬁ'on sets, respectively
(Figure 9E and F). Kaplan-Meier curves demonstrated worse OS in patients with high-
risk scores compared to those with low-risk scores (P < 0.05, Figure 9G and H). The 1-,
3-, and 5-year AUCs of risk scores based on the prognostic models were all above 0.6

(Figure 91 and J).

Construction of a prediction nomogram

The forest plot (Figure 10A) highlighted strong correlations with clinicopathological
features, particularly tumor stage. Additionally, by leveraging clinical data within the
dataset, we observed a correlation between pyroptosis-related genes and the age of
tumors, with no significant association with gender. Subsequently, by integrating
clinicopathological characteristics, a nomogram (Figure 10B) was developed to predict

survival probability. The calibration curve indicated accurate results (Figure 10C).

Immune infiltration and the prognostic model
Given the significantly lower survival rate in the high-risk group based on the previous

results, we explored potential differences in immune infiltration between the two risk
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groups. The CIBERSORTx algorithm was employed to calculate immune infiltration in
CRC samples from TCGA. The scatterplot depicted correlations between the expression
of prognostic genes and immune infiltration in CRC. AIM2 expression showed a
positive correlation with the cellular abundance of activated memory CD4+ T cells,
while UBE2D?2 expression exhibited a negative correlation with the cellular abundance
of Tregs (Figure 11A and B). The risk score demonstrated a negative correlation with
the cellular abundance of resting memory CD4+& cells (Figure 11C). Additionally, a
significant difference in the abundance of Tregs was observed between the high and

low-risk groups (P < 0.05) (Figure 11D).

TMB

TMB serves as a predictor of immunotherapy response, and we calculated TMB using
“maf” files, investigating the relationship between the model groupings and TMB.
Waterfall charts were generated for the top 10 frequently mutated genes, revealing
common somatic mutation genes such as APC and TP53 in CRC (Figure 12A). TMB was
calculated and visualized, with a median TMB of 1.78/Mb (Figure 12B). Subsequently,
we explored the impact of TMB on survival (Figure 17&), revealing that TMB had
minimal effect on survival in this dataset. Furthermore, no significant difference was
observed in TMB between the high- and low-risk groups in the prognostic model
(Figure 12D), suggesting that incorporating TMB into the prognostic model for this
dataset may not be necessary. Additional studies on the effect of TMB on prognosis may

be warranted.

Differential expression of prognostic-related genes in CRC samples

We determined the expression of 8 prognostic genes in CRC samples using TCGA-
COADREAD data in the UCSC database. Among them, 7 genes were shown
differentially expressed in CRC samples and normal samples. The result showed that
CHMP2B, SDHB, UBE2D2, AIM2, PDCDé6IP, and SEZ6L2 were significantly up-

regulated in CRC samples while GJA1 was significantly down-regulated. No significant




expression difference was found between normal and tumor samples for BST2 (Figure

13).

DISCUSSION

Several studies have shown that pyroptosis plays a crucial role in tumor growthl17-1945].
It affects prognosis by changing the immune microenvironment and is linked to the
effectiveness of immunotherapyl4l, Consequently, it has been utilized in building
prognostic models for various cancersl2l4748]. However, most of these studies utilized
bulk RNA sequencing, whereas scRNA-seq is more advantageous for investigating
cancer prognostic models and the immune microenvironment at a single-cell resolution
level #9511, Recognizing the pivotal role of pyroptosis in cancers and the unfavorable
prognosis of CRC, we developed a pyroptosis-related prognostic model for CRC using
the scRNA-seq method. Notably, this is the initial study applying scRNA-seq
technology to identify pyroptosis-related genes for constructing CRC prognostic
prediction models and exploring the relationship between pyroptosis-related genes and
immune infiltration.

By integrating single-cell transcriptome and bulk transcriptome data, we identified
178 pyroptosis-related DEGs from CRC samples. Subsequently, utilizing univariate
COX analysis and the LASSO-Cox regression algorithm, we established a risk model
comprising 8 pyroptosis-related genes: CHMP2B, SDI—% BST2, UBE2D2, GJAl1l, AIM2,
PDCD6IP, and SEZ6L2. The model was then validated. Based on the median risk scores,
patients from the TCGA cohort were stratified into high- and low-risk groups, revealing
an elevated risk of death and reduced OS among high-risk group patients. The model
exhibited high predictive accuracy for CRC survival, as confirmed by ROC analysis and
a nomogram, while also demonstrating a strong correlation with clinicopathological
characteristics, especially tumor stage.

Among the 8 genes, SDHB serves as the catalytic core component of succinate
dehydrogenase (SDH), a mitochondrial metabolic enzymel52. Mutations in SDHB result

in enzyme dysfunction associated with cancer development/®>>l, Wang et all>? observed
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that SDHB influences CRC invasion and metastasis through the TGF-p3 pathway. BST2
(bone marrow stromal antigen 2) is a protein-coding gene overexpressed in several
cancersl®l. Chiang et all®! identified BST2 as a biomarker and prognosticator for CRCI5l.
UBE2D2 (ubiquitin-conjugating enzymes E2), associated with hypoxia, prevents the
degradation of HIF1a and 2a by proteasome systems. Lee et all>’l reported that UBE2D?2
could predict the OS of CRC. GJA1 (gap junction alpha-1), a member of the GJ family, is
the predominant one expressed in epithelial tissues. Hu et all®] demonstrated that GJA1
serves as a prognostic biomarker for CRC. AIM2, an inflammasome sensor, provides
cytokine-independent protection, influencing CRCI®l. SEZ6L2 (seizure-related 6
homolog/mouse-like 2) of the SEZ6 family is identified as a potential prognosis
biomarker and therapy target for CRCI®l. The six pyroptosis-related genes above have
demonstrated potential impacts on CRC prognosis, aligning with our findings. Notably,
the existing prognostic models for these genes relied on bulk RNA sequencing and
focused solely on whole tumor cells. In our study, risk models were validated at both
bulk RNA and single-cell levels. Regarding CHMP2B and PDCDG6IP, their roles in
pyroptosis have not been fully explored. We are the first to identify these two genes as
potential prognostic biomarkers for CRC.

Immune cells within the TME play a pivotal role in influencing the tumor process/®ll.
Pyroptosis has been demonstrated to actively participate in regulating the immune
microenvironment in various tumorsl6263]. This study specifically investigated the
regulatory function of pyroptosis-related genes on immune infiltration. CD4+ T cells are
key participants in anti-tumor immune responses and significantly impact CRC
prognosisl®+%7l. Previous studies have highlighted that activated memory CD4+ T cells
exhibit infiltrative and antitumor effects during the early stages of CRC progression!®],
while infiltration of memory resting CD4+ T cells is associated with a favorable
prognosisl®’l. The metabolic features and function of intra-tumoral Tregs in CRC remain
unclear. To addresg, this, we employed the CIBERSORTx algorithm to analyze immune
infiltration results in the high- and low-risk groups. The findings revealed differences in

immune infiltration between these groups, correlating with prognostic genes. AIM?2
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expression positively correlated with activated memory CD4+ T cell abundance, while
UBE2D2 expression negatively correlated with Tregs cell abundance. This suggests that
pyroptosis-related genes may impact prognosis by influencing immune infiltration in
CRC. This study is potentially the first to establish a connection between pyroptosis-
related genes and immune infiltration in CRC, offering insights that may contribute to
advancements in immunotherapy.

We explored the relationship between the expression of pyroptosis-related genes and
clinical data in CRC using the TCGA dataset. Our findings revealed an association
between the expression of these genes and patient age and tumor stage, while no
correlation was observed with gender.

Furthermore, we delved into the functional roles of pyroptosis in CRC. Functional
analyses indicated significant enrichment of pyroptosis-related genes in the regulation
of inflammatory responses. Notably, key intermediate factors such as GSDMD, IL-1p,
and IL-18, known for their involvement in the pyroptosis process, were identified as
contributors to the regulation of inflammatory responses/”0l. This underscores our
study's demonstration of the regulatory role of pyroptosis in inflammatory responses,
thereby impacting tumor progression.

Finally, we validated the differential expression of the eight prognostic genes in CRC
and normal samples using TCGA-COADREAD data from the UCSC database. Out of
these, seven genes-CHMP2B, SDHB, UBE2D2, GJA1, AIM2, PDCD6IP, and SEZ6L2-
showed significant differential expression, with six genes up-regulated and one gene
down-regulated. This outcome suggests that these seven pyroptosis-related genes could
be potential targets for clinical treatment in CRC. However, further data and validation
from clinical trials are required. To advance research in this area, additional
experiments involving patients, as well as in vitro and in vive studies, are currently

underway in our laboratory.

CONCLUSION
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Leveraging scRNA-seq analysis, we formulated a pyroptosis-related prognostic model
for CRC. This model demonstrates efficacy in predicting prognosis, survival OS, and
effectively stratifying risk. The eight pyroptosis-related genes comprising the risk score
play crucial roles in regulating inflammatory responses, modulating immune
infiltration, and influencing the onset and progression of CRC. The insights derived
from this study hold promise for enhancing clinical management and immune therapy

strategies for CRC patients.
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with immune infiltration.
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Figure 1 Identifies 11 cell clusters with different annotations based on single-cell
RNA sequencing-seq data, revealing a high degree of cellular heterogeneity in
colorectal cancer cells. A: Selection of 88 samples from the GSE178341 dataset, followed
by quality control, resulted in the inclusion of 115489 cells in the analysis, which were
classified into 38 independent clusters. Different colors denote distinct clusters; B:
Uniform Manifold Approximation and Projection distribution highlighting different cell
types; C: Dot plot depicting cell type marker genes. Circle size corresponds to the
proportion of gene expression in the cell cluster, with darker colors indicating higher
average expression; D: Violin plot illustrating differential genes for each cell type; E:
Heatmap showcasing the top 2 differential genes for each cell type; F: Proportion of
each cell population in different samples, including epithelial cells (Epi, 27.79%),
myeloid cells (DC, 1.55%; Macrophage, Macro, 4.86%; Monocyte, Mono, 4.16%), mast
cells (Mast, 1.11%), endothelial cells (Endo, 2.28%), Stromal cells (Stroma, 3.03%),
plasma (Plasma, 8.75%), B cells (B, 11.85%), NK cells (NK, 5.58%), and T cells (T,
29.02%).




Figure 2 Heat map of 125 pyroptosis-related genes in cell types. The heat map depicts
the expression of 125 pyroptosis-related genes across 11 cell types: T cells, NK cells, B
cells, Plasma, Epithelial cells, Myeloid cells (DC, Macrophage, Monocyte), Stromal cells,
Mast cells, and Endothelial cells. A: The color gradient from blue to red represents the
gradual increase in gene expression; B: Specific expression of GZMA in the cluster
where NK cells and T cells are located; C: Specific expression of IL-1B in Monocytes; D:
Correlation analysis between pyroptosis-related genes in intersecting cells. Blue

represents a negative correlation, while red represents a positive correlation.
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Figure 3 CellChat and GSVA. A: Graph illustrating the quantity and strength of
interactions among primary cell clusters; B: Uniform Manifold Approximation and
Projection plots displaying 27 subsets. The accompanying legend identifies the
subgroups; C: Analysis of cell communication within the 27 subsets; D: Examination of
the SPP1 signaling pathway interaction within each cluster; E: Interactions originating
from a subset of gamma-delta T cells (T05). The X-axis represents the cell pair, and the
Y-axis represents the receptor-ligand pair; F: Interactions of other cell subsets with
gamma-delta T cells (T05) subsets; G: Interactions involving key cell subsets (M01, T05,
FB2, Plasmablasts, Schwann, and EpiT); H: Presentation of significantly distinct
signaling pathways in each cell subset, with the cell subset on the X-axis and the
pathway name on the Y-axis. Colors ranging from blue to red indicate higher

enrichment of the cell subset.
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Figure 4 Immune cell prediction from The Cancer Genome Atlas Dataset. A:
Disparities in different immune cell types between tumor and normal samples in the
The Cancer Genome Atlas (TCGA) dataset. Normal samples are denoted in green, and

tumor samples are denoted in red. Significance levels are indicated as follows: *

Ip =
0.05; **: p < 0.01; ** p < 0.001; ***: p < 0.0001; B: Heatmap illustrating the correlation
among highly expressing immune cells in the TCGA dataset. The color scale of blue,
white, and red denotes the strength of correlation, with darker colors signifying

stronger correlations. Red indicates a positive correlation, while blue indicates a

negative correlation.

Figure 5 Weighted co-expression network analysis co-expression identifies cell type-
dependent modules. A: Analysis of the Scale-free Fit Index for soft threshold power (p)
in the range of 1-34; B: Assessment of the Average Connectivity across soft-threshold
powers (P) ranging from 1 to 34; C: Hierarchical clustering tree depicting genes based
on their topological overlap; D: Correlation plot illustrating relationships between

modules.

Figure 6 Weighted co-expression network analysis Co-expression Modules and Cell
Types. The X-axis represents cell types provided by CIBERSORTx, while the Y-axis

represents the Weighted co-expression network analysis co-expression modules.
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Figure 7 Differential analysis, correlation, and enrichment analysis of pyroptosis-
related genes. A: Heatmap illustrating the expression profiles of the top 14 differential
pyroptosis-related genes. Colors range from blue to red, indicating a gradual increase in
expression levels. The color bar above distinguishes (non-colorectal cancer) non-CRC
tissues (N) in blue and CRC tissues (T) in red; B: Volcano plot depicting the results of
CRC vs non-CRC differential analysis; C: Correlation network diagram highlighting
highly connected pyroptotic genes; D: Results of Gene Ontology enrichment analysis for
125 pyroptosis-related genes. The bubble plot displays the top 10 most significant
enriched functions. The X-axis represents Gene Ratio, and the color of the bubbles
ranges from blue to red, with red indicating more significant enrichment. The Y-axis

denotes the name of the pathway.

Figure 8 Exploring typing by consensus clustering and single-sample gene set
enrichment analysis. A: Heatmap depicting the concordance clustering matrix, with
values ranging from 0 (impossible to cluster together) to 1 (always clustered together).
Shades of white to dark blue represent the scale of concordance; B and C: Consistent
CDF plot and Delta Area Plot; D: Cluster analysis using tSNE algorithm; E: Single-
sample gene set enrichment analysis (ssGSEA) of immune cells. Legend includes tumor
stage, gender, and age; F: ssGSEA of immune function. Legend includes tumor stage,

gender, and age.

Figure 9 Prognostic model based on pyroptosis-related genes. A: Construction of a
fitting model using LASSO regression, illustrating changes in the lambda value of 10
pyroptosis-related genes significantly associated with prognosis. The X-axis represents

the Log A value, and the Y-axis represents the coefficient; B: Cross-validation analysis




determining the optimal lambda value for the fitted model. The X-axis represents the
logized lambda value, the Y-axis represents the error of the model, and the dashed line
on the left signifies the lambda value minimizing the error and the number of screened
features; C: Risk map of the training set, where red dots represent high-risk patients,
and light blue represents low-risk patients; D: Risk map of the test set; E: Survival curve
of the training set (P = 0.002), where a smaller P value indicates higher accuracy; F:
Survival curve of the test set (P = 0.009); G: Receiver operating characteristic (ROC)
curve of the training set [area under the curve (AUC) = 63.8%], where a higher AUC
signifies greater accuracy; H: ROC curve for the test set (AUC = 63.6%); I: ROC curve for
1-, 3-, and 5-year calculated from the risk score in the training set; J: ROC curve for 1-, 3-

, and 5-year calculated from the risk score in the test set.




Figure 10 Construction of the Nomogram. A: Forest plot illustrating the influence of
clinicopathological features; B: Nomogram integrating multi-omics data with
clinicopathological features; C: Calibration curve of the overall survival nomogram,
where the diagonal dashed line represents the ideal nomogram. *: p < 0.05; **: p < 0.01;

*** p <0.001; **** p < 0.0001.




Figure 11 Immunoassays of prognostic models. A: Positive correlation between AIM2
gene expression and the abundance of activated memory CD4+ T cells; B: Inverse
correlation between UBE2D2 gene expression and the cellular abundance of regulatory
T cells (Tregs); C: Correlation of immune cell infiltration with high and low-risk groups;
D: Significant differences observed in the abundance of Tregs between the high and

low-risk groups.
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Figure 12 Tumor mutation burden analysis. A: Waterfall plot illustrating the top 10
frequently mutated genes; B: Dot plot presenting the results of tumor mutation burden
analysis, with the median tumor mutational burden at 1.78 /Mb; C: Survival analysis of
high and low tumor mutation burden groups; D: Comparison of tumor mutation

burden between high and low prognostic risk groups.
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Figure 13 Expression of 8 prognosis-related genes in normal and tumor samples from

The Cancer Genome Atlas-COADREAD: * p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****:

p <= 0.0001. CHMP2B, SDHB, UBE2D2, GJA1, AIM2, PDCD6IP, and SEZ6L2 exhibited

significant differential expression between colorectal cancer and normal samples. No

significant expression difference was found for BST2.
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