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Abstract

BACKGROUND

Background: Liver transplantation is a life-saving intervention for patients with end-
stage liver disease. However, the equitable allocation of scarce donor organs remains a
formidable challenge. Prognostic tools are pivotal in identifying the most suitable
transplant candidates. Traditionally, scoring systems like the Model for End-Stage Liver
Disease (MELD) have been instrumental in this process. Nevertheless, the landscape of
prognostication is undergoing a transformation with the integration of machine

learning (ML) and artificial intelligence (AI) models.

AIM
Aim: This systematic review aims to assess the utility of ML models in prognostication
for liver transplantation, comparing their performance and reliability to established

traditional scoring systems.

METHODS
Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA) guidelines, we conducted a thorough and standardized literature




search using the PubMed/MEDLINE database. Our search imposed no restrictions on
publication year, age, or gender. Exclusion criteria encompassed non-English studies,
review articles, case reports, conference papers, studies with missing data, or those

exhibiting evident methodological flaws.

RESULTS

Results: Our search yielded a total of 64 articles, with 23 meeting the inclusion criteria.
Among the selected studies, 60.8% originated from the United States and China
combined. Only one pediatric study met the criteria. Notably, 91% of the studies were
published within the past five years. ML models consistently demonstrated satisfactory
to excellent AUROC values (ranging from 0.6 to 1) across all studies, surpassing the
performance of traditional scoring systems. Random Forest (RF) exhibited superior
predictive capabilities for 90-day mortality following liver transplantation, sepsis, and
acute kidney injury (AKI). In contrast, gradient boosting excelled in predicting the risk

of graft-versus-host disease (GVHD), pneumonia, and AKL

CONCLUSION
Conclusion: This study underscores the potential of ML models in guiding decisions
related to allograft allocation and liver transplantation, marking a significant evolution

in the field of prognostication.
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Core Tip: Core Tip: This systematic review highlights the promising role of machine

learning (ML) models in improving prognostication for liver transplantation. ML




models consistently outperformed traditional scoring systems, demonstrating excellent
predictive capabilities for various post-transplant complications, including mortality,
sepsis, and acute kidney injury. The findings underscore the potential of ML in
enhancing decision-making related to organ allocation and liver transplantation,

representing a substantial advancement in prognostication methods.

INTRODUCTION
INTRODUCTION

Liver transplantation (LT) has long been a transformative intervention for individuals
afflicted with acute and chronic-end-stage liver ailments. In addition to restoring
patients' health, liver transplantation can enhance their overall well-being and
potentially extend their lifespan by up to 15 years [1l. This treatment approach is firmly
established as a last resort when alternative methods and therapies have proven
ineffective. According to the Scientific Registry of Transplant Recipients in the United
States, the survival rates for patients after deceased donor liver transplantation are
commendable, standing at approximately 90% at one year and 77% at five years post-LT
[2l. Nevertheless, the field of liver transplantation confronts a range of challenges,
encompassing candidate selection, organ allocation, and a scarcity of donor organs.

The persistent scarcity of donor organs has emerged as a critical and ongoing concern.
While living donation has bolstered liveﬁansplant numbers in some regions, in others,
the field has stagnated. Consequently, there has been a concerted effort over the past
decade to augment the pool of deceased donors. This endeavor has led to increased
utilization of liver allografts obtained after cardiac death (DCD), as well as those from
marginal and extended donor criteria Bl. Despite these improvements, a notable number
of DCD livers remain unused due to suboptimal allograft function and unacceptable
donor parameters. This predicament has given rise to the concept of mechanical

perfusion for solid organ transplantation, aiming to expand the available organ pool,




particularly for liver allografts, further underscoring the significant scarcity of this vital
resource for transplantation [41.

A recent study emphasized the multifaceted challenges inherent to liver
transplantation. In 2017, the United States recorded a waiting list of 14,360 candidates
eagerly awaiting liver transplantation .. Furthermore, the study reported an average
hospital expenditure exceeding $490,000 per patient associated with liver
transplantation in 2011 5. Evidently, there is an escalating demand for a more efficient
system of liver organ allocation to optimize outcomes within a society grappling with
diminishing liver organ donations and escalating expenditures linked to the care of
end-stage liver disease patients.

The allocation of liver allografts to patients in need has relied on various scoring tools.
Initially, the Child-Pugh-Turcotte (CTP) score served this purpose, but the Model for
End-stage Liver Disease (MELD) has now become the preferred score for organ
allocation. Additionally, several other scoring systems, such as Survival Outcomes
Following Liver Transplantation (SOFT), Balance of Risk (BAR), Donor Risk Index
(DRI), ABIC, CLIF-C OFs, CLIF-C ACLFs, and CLIF-SOFA, have been employed in this
context.

The CTP score, initially validated for predicting postoperative mortality in ciﬁotic
patients, incorporates clinical and biochemical data, including serum albumin, serum
bilirubin, international normalized ratio (INR) or prothrombin time (PT), ascites, and
encephalopathy, to assess the prognosis of end-stage liver disease. The total CP score is
calculated by assigning points to each variable, with a maximum score of 15 points. CP
class A corresponds to a score of 5-6 points, with a 10% mortality rate. CP class B
corresponds to a score of 7-9 points, with a 30% mortality rate, while CP class C
represents a score of 10-15 points, associated with a poorer prognosis, including a 50%
mortality rate at one-to-five years and sometimes as high as 70-80% (6] 18],

However, the use of CTP for liver transplant allocation had significant limitations. It
relied on subjective assessments of ascites and encephalopathy, lacked an evaluation of

renal function, and had a limited scoring range, making it challenging to differentiate




patients based on disease severity. This limitation was evident when patients with
different INR and bilirubin levels were assigned the same CTP score, potentially
leading to misleading prioritization Pl. Other drawbacks of the CTP score include the
empirical selection of variables and the interdependence of some variables, such as
coagulation and albumin, which could result in an imbalance in their influence within
the score.

The CTP score's arbitrary cutoffs for quantitative variables lack evidence of optimality
in defining hepatic changes and mortality risk, hindering its reliability in predicting
prognosis in liver cirrhosis and post-liver transplantation [1. Conversely, MELD score,
originally designed for predicting survival after trans-jugular intrahepatic Porto-
systemic shunt (TIPS) procedures, has been extended to assess prognosis in liver
cirrhosis and serves as a tool for liver organ allocation [1'l. MELD score's has a good
reliability in predicting 1-year and 5-year survival across diverse liver diseases,
including alcoholic cirrhosis and hepatitis [12I. Additionally, MELD score has prognostic
value in conditions like spontaneous bacterial peritonitis, variceal bleeding, and
hepatorenal syndrome (HRS) I3, In cases of variceal bleeding, the MELD score's
predictive ability was comparable to the CTP score. Concerning HRS, a high MELD
score (>20) has been linked to a median survival of just 1 mo for type 1 HRS, while type
2 HRS patients' survival correlated with their MELD score, with a median survival of 3
mo for MELD >20 and 11 mo for MELD <20 (4. To enhance its predictive power, the
MELD score has evolved into multiple versions, including MELD sodium (MELD NA)
and Delta MELD (D-MELD).

MELD NA, developed due to the observation of dilutional hyponatremia in cirrhotic
patients, stems from systemic arterial vasodilation-induced antidiuretic hormone
release, which was linked to portal hypertension severity [15. Hyponatremia indirectly
contributes to portal hypertension, leading to complications like ascites, hepatorenal
syndrome, and liver-related mortality [16. Neurologic dysfunction, refractory ascites,
hepatorenal syndrome, and liver disease-related death are also associated with

hyponatremia [7]. Numerous studies affirm hyponatremia as an independent predictor




of early mortality, with the most pronounced impact between sodium concentrations of
120 to 135 mEq/L. A 1 mEq/L decrease corresponds to a 12% reduction in 3-month
survival probability. Adding sodium to the MELD score enhances its predictive
accuracy, especially for lower MELD scores. However, this addition doesn't
significantly improve survival prediction at 3 and 12 mo and has its limitations due to
fluctuating serum sodium levels influenced by various factors 1819,

The D-MELD was introduced to address the limitation of a single MELD score at a
specific time. While it is useful in predicting survival in cirrhotic patients awaiting
transplantation, conflicting evidence exists. The potential bias in frequent laboratory
testing for acutely worsening patients also complicates its use [2021l, In summary, all
versions of the MELD score have limitations, including susceptibility to therapeutic
interventions, empirical variable selection, limited predictive ability for post-transplant
mortality, and the need for on-site computation 0],

To improve the prediction of post-liver transplant mortality, various prediction tools
have been explored, including the Donor Risk Index (DRI), Enhanced DRI (ET-DRI),
SOFT, p-SOFT, BAR, ABIC, CLIF C OFS, CLIF-C ACLFS, and the CLIF-SOFA. The DRI,
predating the MELD score, was initially considered as an independent predictor of
allograft failure across different MELD categories. However, numerous studies have
revealed its limited association with outcomes 22, The DRI's limitations include its
validation in the pre-MELD era, the absence of recipient-related risk factors as the fact
that is impractical for predicting morbidity and graft failure due to its poor predictive
ability, inclusion of irrelevant factors (e.g., ethnicity), and omission of relevant factors
[23],

The Eurotransplant-DRI (ET-DRI) replaces ethnicity and height risk factors with
parameters like the latest GGT and rescue offer in the Eurotransplant context. Although
it has been shown to be potentially useful for liver allocation, studies have consistently
shown its limited predictive ability for early post-transplant outcomes [22-26]. Overall, the
ET-DRI is consistently considered an unreliable tool for predicting morbidity and

mortality after liver transplantation.




Various prediction tools have been explored to enhance post-liver transplant
prognostication. The Survival Outcomes following liver transplant (SOFT) scorehas
been tested for predicting 90-day post-transplant mortality 1271, 221 A derivative of
SOFT, the pre-allocation SOFT (p-SOFT) score, exhibited promising predictive accuracy
[2]. However, the complexity of these scores, which involve multiple subjective and
semi-quantitative variables, hampers their prompt clinical assessment and decision-
making. Furthermore, their predictive ability for major morbidity at 3 mo appears
limited [22] 28],

The Balance of risk (BAR) score offers promise by evaluating both recipient and donor
factors for severe complications and 90-day mortality [22 281, This tool has shown
robustness in various patient populations, including pediatric, adolescent, and living
donor liver transplant recipients [2°1 3%l However, in specific patient subgroups, BAR's
accuracy in assessing short-term outcomes, including major complications, 90-day
mortality, and ICU and hospital stay length, may be suboptimal [22].

The Age, Bilirubin, INR, and Creatinine (ABIC) score aim to predict outcomes in
patients with alcoholic hepatitis. While it has shown potential, its validation has been
inconsistent, and it may not be widely applicable. Additionally, it primarily assesses the
risk of wait-time mortality, making it unsuitable for post-liver transplant mortality
ﬁsessment 31 [32],

The Chronic liver failure-SOFA (CLIF-SOFA) score, a modified version of the Sequential
Organ Failure Assessment score (SOFA), is tailored for end-stage liver disease patients.
This adaptation replaces platelet count and Glasgow coma scale with INR and hepatic
encephalopathy, respectively. Additionally, it incorporates terlipressin and renal
replacement therapy into cardiovascular and renal parameters, respectively, and
includes SpO2/FiO2 as an alternative respiratory parameter for patients without an
arterial line %3],

In a study published in 2014, the CLIF-SOFA score proved to be a significant predictor
of 1-year post-LT mortality, surpassing the SOFA score in discriminatory power on

several post-transplant days [ CLIF-SOFA score exhibited greater numerical




differences between 1-year survivor and non-survivor groups, especially post-LT.
Furthermore, CLIF-SOFA score trends reflected patients' responses to therapeutic
strategies, with a CLIF-SOFA score >8 on post-transplant day 7 indicating delayed
recovery from multiple organ dysfunction, associated with higher acute rejection rates
d poorer 1-year survival rates.

The CLIF-Consortium Organ Failure score (CLIF-C OFs), a simplified version of CLIF-
SOFA, uses a 3-point range per organ system and performs similarly to CLIF-SOFA,
outperforming SOFA B3l This score has proven to be an excellent prognostic tool for
short-term outcomes in liver transplantation. Another variation, the CLIF-Consortium
score for Acute on Chronic Liver Failure (CLIF-C ACLFs), designed for acute-on-
chronic liver failure patients, includes the CLIF-SOFA score, age, and white-cell count.
Jalan ef al (2014) demonstrated the superiority of the CLIF-ACLF score in terms of
performance compared to CLIF-SOFA and CLIF-C OFs scores 33, However, inferior
performance of CLIF-ACLF compared to CLIF-SOFA has been reported B4l Results of
CLIF-SOFA, CLIF-C 3639 and ACLF classification [40-43] has been conflicting 7]

In response to the limitations of existing prognostic scores, there is a growing interest in
harnessing Machine Learning (ML) models and algorithms to enhance the prediction of
outcomes in LT. ML models serve as a bridge between organ allocation and achieving
optimal results, capitalizing on the increasing use of artificial intelligence in medicine
over theﬁast decade (Figure 1). ML algorithms, as illustrated in Figure 2, rely on
various types of input data, including structured, semi-structured, and unstructured
data. Structured data, characterized by well-defined formats and adherence to specific
data models, is organized in a tabular fashion and includes information like names,
dates, and addresses. Semi-structured data, found in NoSQL databases, JSON
documents, HTML, and XML, possesses organizational properties that enable analysis.
On the other hand, unstructured data, comprising text and multimedia materials from
sources like emails, sensor data, and web pages, lacks predefined formats, making it
more challenging to process and analyze. To extract valuable insights from data for

building intelligent applications in specific problem domains, various ML techniques




are applied based oﬁ-leir learning capabilities. Mohammed et al categorized machine
learning algorithms into four main groups: supervised, unsupervised, semi-supervised,
and reinforcement learning (441, Supervised learning involves mapping input to output
based on labeled training data, typically used for tasks like classification and regression.
Unsupervised learning, on the other hand, analyzes unlabeled datasets without human
intervention and is employed for tasks such as clustering and dimensionality reduction,
focusing on extracting generative features and identifying meaningful trends.

In the realm of machine learning, several techniques are employed to enhance
predictive models for wvarious applications, including liver transplantation
prognostication. One such technique is semi-supervised learning, which effectively
leverages both labeled and unlabeled data to achieve improved prediction outcomes,
especially when labeled data is limited. This approach plays a crucial role in bridging
the gap between supervised and unsupervised learning methods, finding utility in

domains such as machine translation, data labeling, and text classification K61,

Reinforcement learning, on the other hand, offers a distinct approach by focusing on
environment-driven algorithms that enable software agents and machines to
autonomously evaluate optimal behavior within specific contexts. This methodology
relies on the concept of rewards and penalties, aiming to utilize insights gained from
interactions with the environment to maximize rewards or minimize risks. While
reinforcement learning possesses significant potential in training Al models, it is better
suited for complex scenarios rather than straightforward problems 171,

Within the realm of classification algorithms, several notable methods find application
in health-related domains. Logistic Regression (LR) stands as a commonly used
technique, relying on logistic functions to estimate probabilities. While LR can excel in
linearly separable datasets, it may suffer from overfitting in high-dimensional scenarios.
Regularization techniques like L1 and L2 regularization are often employed to mitigate

this issue [46],




Support Vector Machine (SVM) is another prominent classification method with
applications in health data. SVM operates in high-dimensional spaces by constructing
hyperplanes that maximize the margin between data points in different classes. The
choice of kernel functions, such as polynomial, linear, radial basis function (RBF), and
sigmoid, significantly influences SVM's performance. However, SVM's efficacy can
diminish in the presence of noisy datasets and overlapping target classes 101,

Random Forest (RF) offers a distinct ensemble classification technique, widely used in
machine learning and data science applications. RF employs parallel ensembling,
training multiple decision tree classifiers on different data subsets and combining their
outcomes through averaging or majority voting. This approach effectively addresses
overfitting concerns and enhances prediction accuracy, making it suitable for both
continuous and categorical data in classification and regression problems [40],
Additionally, Adaptive Boosting (AdaBoost) serves as a valuable classification
algorithm in the realm of health data. It adopts a sequential ensembling approach to
improve the performance of weak classifiers by learning from their errors. By
combining multiple underperforming classifiers, AdaBoost creates a robust classifier
with high accuracy, boosting the performance of decision trees, base estimators, and
binary classification tasks. However, it's essential to note that AdaBoost can be
susceptible to overfitting and sensitivity to noisy data and outliers 431,

These various machine learning techniques have been instrumental in addressing
complex problems in health-related domains, including liver transplantation
prognostication. However, they also come with their own set of challenges, such as
overfitting and interpretability issues. Therefore, periodic reviews are crucial to
evaluate their performance and reliability compared to traditional scoring methods.
This study aims to conduct a systematic review of observational studies, assessing the
effectiveness of machine learning models in liver transplantation prognostication and
comparing their performance with established scoring systems.

Extreme Gradient Boosting (XGBoost) stands out as a prominent classifier, belonging to

the ensemble learning algorithm family, akin to Random Forest. XGBoost represents a




specific variant of gradient boosting that intricately considers detailed approximations
when determining the optimal model. It effectively addresses overfitting concerns by
minimizing the loss function and employing advanced regularization techniques,
including L1 and L2 regularization. These regularization methods are implemented
through the computation of second-order gradients of the loss function, resulting in
enhanced model generalization and performance 148,
In the domain of machine learning, Artificial Neural Networks (ANN) and deep
learning techniques hold significant sway. Deep learning, a subset of ANN-based
approaches, encompasses representation learning and comprises multiple layers,
including input, hidden, and output layers. These layers collaboratively facilitate
learning from data, giving rise to a computational architecture that excels, particularly
hen dealing with large datasets. Notable deep learning algorithms encompass
Multilayer Perceptron (MLP), Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN), Convolutional Neural Network (CNN), and ConvNet, among others [49].
Machine learning demonstrates versatility by not only addressing diagnostic challenges
but also serving as a valuable tool in prognostic applications. It proves beneficial in
disease prediction, data pattern identification, extraction of medical insights, and
patient management [*], Nevertheless, machine learning models are not without their
limitations, as highlighted earlier. Concerns encompass overfitting, interference
phenomena, where new data may disrupt previous learning, and the black box
dilemma, which pertains to the challenge of explaining model results [>1].
Within the context of liver transplantation, machine learning models have garnered
increasing attention, underscoring the need for periodic assessments of their reliability
and performance compared to conventional scoring systems. To this end, this study
endeavors to conduct a systematic review of observational studies. The objective is to
comprehensively evaluate the evidence concerning the deployment of machine learning
models for prognostication in liver transplantation. This evaluation encompasses an
assessment of their performance and reliability, juxtaposed with the array of traditional

scoring systems currently available.




MATERIALS AND METHODS
METHODS

This systematic review adhered to the Preferred Reporting Items for Systematic

Reviews and Meta-Analysis (PRISMA-P) guidelines to ensure a standardized approach

[52],

Search Strategy:

A comprehensive literature search was conducted using the PubMed/MEDLINE search
engine by one researcher. The search strategy included the following terms: ("Machine
Learning" OR "Artificial Intelligence") AND ("Liver Transplantation" OR "Allograft
liver") AND ("Prognosis" OR "Mortality" OR "Prognostication"). A reference manager

tool, Zotero, was utilized for sorting and managing references.

Study Selection:

All observational studies discussing machine learning models and prognosis of liver
transplantation, regardless of the year of publication, age, or sex, were included. Studies
written in English were considered. Additionally, studies examining machine learning
models and the risk of post-transplant complications were included, as these
complications often contribute to transplant failure or mortality. Exclusion criteria
encompassed non-English papers, review articles, case reports, conference articles,

studies with missing data, or studies with evident methodological flaws.

Data Extraction and Synthesis:

The systematic search was conducted by one reviewer, who screened the potential




studies based on their titles and abstracts. Full-text versions of eligible studies were
obtained and thoroughly analyzed for content and methodology.

A summary of the included studies was created, providing a narrative overview of each
paper's objectives, methods, results, and conclusions. After reviewing the full papers,
data on various elements was extracted including; study type, population studied and
year of study, purpose of the study, setting of the study, its methods and results,
conclusion, limitations and strengths of the study as well as a summary of the study.
Additionally, if reported by the studies, a comparison was made between traditional
scores and algorithms vs machine learning models. This analysis aimed to explore the
performance and effectiveness of machine learning approaches in prognosing liver
transplantation outcomes.

By systematically extracting relevant information from the selected studies, a
comprehensive understanding of the role of artificial intelligence in liver
transplantation prognosis was obtained. The data synthesis process involved
organizing and presenting the findings in a coherent manner, allowing for a
comprehensive evaluation of the current literature in this field.

This approach enabled to examine the various methodologies employed in the studies,
identify key trends, and evaluate the potential benefits and limitations of using machine
learning models for prognostication in liver transplantation. The synthesized data from
the included studies will contribute to providing valuable insights into the current state
of research on the role of artificial intelligence in predicting outcomes in liver

transplantation.

RESULTS
RESULTS
Using the predetermined search strategy, a total of 64 references were initially
identified. Among these, 7 references were excluded as they were conference articles or

review papers. Additionally, 1 duplicate article was removed, and 8 articles were




excluded as they were abstracts only and could not be accessed for full-text reading.
Subsequently, a thorough evaluation of the remaining 48 articles was conducted
through full-text reading and content analysis.
Following the comprehensive assessment, 23 studies met the inclusion criteria and were
included in the final analysis. The selection process and reasons for exclusion of certain
studies are visually represented in Figure 3, which depicts the flowchart illustrating the

search strategy employed. Table 3, summarizes the findings of every study included.

Quality assessment

The majority of the included studies were considered to be of good quality, despite
being observational in nature and not appraised using any specific quality assessment
tool. Many of these studies incorporated validation sets in their analyses, which

contributes to the robustness of their findings.

Study outcomes:

The studies assessed in this systematic review covered a range of transplantation
reasons, including acute-on-chronic liver failure (ACLF) from various causes, primary
sclerosing cholangitis (PSC), and hepatocellular carcinoma (HCC). Among the 23
studies analyzed, the highest number (8 studies, accounting for 34.8%) were conducted
in America, followed by 6 studies (26 %) from China. Additionally, 2 studies (8.7%) were
from Korea, while the remaining studies originated from Spain, Australia, Portugal,
Taiwan, Iran, and Brazil, each contributing 1 study (4.3%). Furthermore, there was one
multinational study involving participants from the USA, Canada, and the UK, which
represented 4.3% of the total sample as depicted by figure 4.

The studies analyzed in this review spanned from 2014 to 2023. Notably, the highest
proportion of studies (26%, 6 studies) were published in 2021, followed by 5 studies
(21.7%) from 2022. Studies from 2019, 2020, 2018, and 2023 accounted for 13% (3 studies)
each, while 2014 and 2015 each contributed 1 study (4.3%) as shown in figure 5.




Regarding the age of participants, one study involved individuals under 18 years old,

while the remaining 22 studies focused on adults aged 18.

Primary outcomes and findings

The primary outcomes of interest in the included studies were mortality and the
emergence of complications post liver transplant. Most of the studies reported the
receiver operating characteristic (ROC) curve and used the area under the ROC cu
(AUROC) as a measure of predictive performance. AUROC values were categorized as
excellent (0.9-1), very good (0.8-0.9), good (0.7-0.8), satisfactory (0.6-0.7), and
unsatisfactory (0.5-0.6) based on previous classification 175,

Across all the studies, machine learning algorithms and models were developed using
pre-transplant donor and/or recipient variables. Short-term mortality predictions were
typically up to 90 days, while long-term predictions extended up to 5 years. Analysis of
AUROC demonstrated that machine learning models consistently yielded satisfactory
to excellent results in predicting short and long-term mortality or the risk of
complications post liver transplant.

Furthermore, the AUROC analysis revealed that machine learning models
outperformed traditional models and scoring systems, including commonly used
models such as MELD, D-MELD, SOFT, P-SOFT, BAR, DRI score, ABIC, CLIF-C OFs,
CLIF-C ACLFs, and CLIF SOFA. Additionally, machine learning models showed
superiority over models based on Cox and logistic regression. Detailed comparisons

and findings are presented in Table 3.

Sub-analysis:

In terms of predicting 90-day mortality, the Random Forest (RF) model demonstrated
the highest area under the curve (AUC) value of 0.940 compared to other machine
learning models. Additionally, among the six studies identified in the literature search

that discussed the prediction of complications post liver transplant using machine




learning models, an analysis of the AUC values indicated that the 'gradient boosting
machine' model performed better than other machine learning models in predicting the
risk of graft-versus-host disease (GVHD), pneumonia, and acute kidney injury (AKI).
On the other hand, the RF model showed better performance in predicting the risk of
sepsis and AKI post liver transplant. Detailed results and comparisons are provided in
Table 3.

This sub-analysis highlights the specific performance of machine learning models in
predicting 90-day mortality and the risk of complications following liver
transplantation. The Random Forest model exhibited superior predictive capability for
mortality within the 90-day timeframe.

Furthermore, when examining the prediction of post-transplant complications, the
'gradient boosting machine' model demonstrated better performance in predicting
GVHD, pneumonia, and AKI, while the RF model showed greater effectiveness in
predicting the risk of sepsis and AKIL These findings emphasize the potential of
machine learning techniques in enhancing prognostic accuracy and tailoring clinical

management strategies in liver transplantation.

DISCUSSION
DISCUSSION

The review highlights a limited number of studies, just 64, that have explored the
application of ML models in the context of liver transplantation. This scarcity of
research, despite an unrestricted search, indicates a historical lack of emphasis on the
potential of ML models in the realm of prognosis and transplant decision-making.
Factors contributing to this limited attention include lingering perceptions of ML
models as associated with science fiction and concerns regarding potential errors and
patient harm. However, it's noteworthy that ML models have advanced in

sophistication and have implemented strategies to address challenges like overfitting.




Their effectiveness is contingent upon access to substantial datasets for continuous
learning and refinement [761.

In recent years, there has been a notable surge in research at the intersection of ML and
liver transplantation, particularly within the last five years. Among the 23 studies
reviewed, a substantial majority (91%) were conducted between 2018 and 2023,
signifying a burgeoning interest in this field [”7). Additionally, a significant proportion
of these studies (61%) originated from the United States and China. A multinational
study involving participants from the USA, UK, and Canada stands out, as it evaluated
the 90-day predictive capacity of ML models post-liver transplantation across these
countries, utilizing transplant registries. Notably, the study revealed that ML model
performance varied when applied across countries, indicating limited external validity.
Therefore, it is suggested that ML algorithms should be tailored to each country's
specific transplant registry data for enhanced reliability. The underrepresentation of
other countries in these studies underscores the importance of more diverse ML
research to benefit liver transplant patients worldwide.

Crucially, ML methods employed for the allocation of orthotopic liver transplants,
whether from living donors, deceased donors, or cadaveric sources, should be rooted in
population-specific parameters pertaining to the recipient. This individualized
approach is essential to ensure post-transplant longevity and minimize the risk of
complications. The utilization of ML models that take into account an individual's
unique population parameters or variables to assess the risk of mortality prior to
transplantation holds the potential to prevent unnecessary mortality and morbidity
associated with high-risk transplantations 781,

Concerning the underlying reasons for transplantation, factors such as Acute-on-
Chronic Liver Failure (ACLF), Primary Sclerosing Cholangitis (PSC), and
Hepatocellular Carcinoma (HCC) have been prominent considerations. Existing studies
have demonstrated the pivotal role of liver transplantation as a life-saving intervention
for ACLF patients. ACLF can manifest at any stage of chronic liver disease, leading to a

rapid deterioration in liver function and a high mortality rate within a short timeframe




180, as it is noticeable a high mortality rate for non-transplanted ACLF patients within 28
and 90 days [81] [82],

Liver transplantation is a critical treatment option for various liver-related conditions,
including Acute-on-Chronic Liver Failure (ACLF), Primary Sclerosing Cholangitis
(PSC), and Hepatocellular Carcinoma (HCC). However, the efficacy of liver
transplantation in ACLF patients remains debated, with conflicting findings suggesting
no significant survival advantage over non-transplanted patients [83l. Machine Learning
(ML) models have the potential to improve the assessment of short-term mortality risk
in ACLF patients post-transplantation, thereby aiding in the allocation of liver allografts
and potentially enhancing outcomes [79]. It is imperative to expand the scope of research
on ML models in liver transplantation to encompass diverse patient populations,
thereby increasing the external validity of these models. Customizing ML algorithms to
specific transplant registries and incorporating population-specific parameters can
enhance the accuracy and effectiveness of prognosis and decision-making in liver

splantation.

Primary Sclerosing Cholangitis (PSC) is a chronic liver disease characterized by
progressive bile duct inflammation, cholestasis, and fibrosis. Liver transplantation is the
primary treatment for end-stage PSC, yielding generally favorable outcomes, although
complications like cholangiocarcinoma, recurrent disease, worsening of inflammatory
bowel disease (IBD), and an elevated risk of colonic cancer pose challenges [84l.
Cholangiocarcinoma develops in 8-18% of long-standing PSC patients %], and PSC
recurrence post-transplantation is observed in some cases [8¢l. Increased dysplasia and
colon cancer risk are also associated with colitis patients having coexisting PSC [87] [88],
Consequently, accurate evaluation and allocation of liver allografts in PSC patients are
critical, with ML algorithms incorporating pertinent variables from PSC patients
facilitating informed and precise decision-making 18681,

Hepatocellular carcippma (HCC) is a common indication for liver transplantation,
ranking fifth among the most prevalent malignancies and being the third leading cause

of cancer-related mortality worldwide (%92, Liver transplantation offers a promising




therapeutic option for long-term survival in HCC cases by addressing both advanced
liver disease and HCC itself [%3l. However, the risk of HCC recurrence post-
transplantation underscores the necessity for careful patient selection. HCC recurrence
occurs most frequently among liver transplant recipients compared to other liver
diseases, estimated at 8-20% 5. Guidelines recommend active post-transplant
surveillance for HCC patients, such as regular liver imaging tests within the first
postoperative year and subsequent monitoring to detect lung metastases [%l. Tumor
recurrence in HCC patients after transplantation is often attributed to advanced tumor
burden and unclear tumor biology [¥71.

The Milan criteria, comprising specific size and number requirements for liver lesions
along with the absence of vascular invasion or extra-hepatic metastases, were
established to guide liver transplantations for Hepatocellular Carcinoma (HCC) [%81.
Transplantations adhering to these criteria have demonstrated comparable survival
outcomes to those performed for cirrhosis. However, criticism of the Milan criteria
centers on their strictness in terms of lesion size and number, with some studies
suggesting successful transplantation outcomes for HCC patients beyond these criteria.
Additionally, the Milan criteria do not account for tumor biology, potentially limiting
their applicability 9.

Down-staging, a strategy involving loco-regional therapy (LRT) to reduce tumor
burden and bring lesions outside the transplant criteria within the criteria, has shown
promise in achieving favorable long-term outcomes for HCC patients beyond the Milan
criteria. Nevertheless, tumor recurrence remains a concern, occurring in 8-20% of
transplanted HCC patients, typically within 2 years post-transplantation, with a median
survival of 1 year following recurrence diagnosis 'L,

To address the risk of tumor recurrence, various prognostic scores have been
developed, such as the Risk Estimation of Tumor REcurrence After Transplant
(RETREAT) score. This score considers three factors associated with post-transplant
HCC recurrence: explant liver tumor burden, microvascular invasion evidence, and

AFP levels at the time of transplant. The RETREAT score ranges from 0 to 8, with higher




scores indicating an elevated risk of recurrence. A score of 0 correspondg to a 1%
recurrence rate at 1 year and a 2.9% recurrence rate at 5 years. Conversely, RETREAT
scores of 5 or higher are associated with 1- and 5-year HCC recurrence rates of 39.3%
and 75.2%, respectively [171]. Deep learning models can be used for diagnosis of HCC [102.
103

The RETREAT score, while valuable for post-transplant management, has limitations as
it relies on factors that assess explant tissue biology and anatomy. This restricts its
utility to assessing transplant failure risk after transplantation. Machine learning (ML)
models, utilizing pre-transplant data in HCC patients, can effectively allocate liver
allografts before transplantation, thereby enhancing long-term survival prospects [101].
Although ML is gaining traction in various medical disciplines, this review reveals a
dearth of pediatric studies among the 23 studies discussing ML and liver
transplantation. This shortage reflects the limited interest in applying ML in pediatric
patients, aligning with trends in other pediatric disciplines where ML adoption has
been low. Consequently, there's a clear need for more research on ML in pediatric liver
transplantation to assess its impact in this domain ™. Furthermore, the high mortality
rate in pediatric acute liver failure underscores the importance of robust criteria,
including ML models, to inform decision-making in this patient group %I,

Evaluating ML model performance involves various metrics like accuracy, precision,
confusion matrix, recall, specificity, precision-recall (PR) curve, F1 score, and receiver
operating characteristic (ROC) curve. The use of ROC values in this study for assessing
different ML models across studies is justified and reliable.

The utilization of ML algorithms in LT prognostication is a significant advancement.
These models are primarily based on pre-transplant donor and recipient data, allowing
for accurate predictions before transplantation. Considering that crucial decisions
regarding liver transplantation must be made pre-procedure, ML models hold promise
in addressing the complex challenge of allocating allografts to the most suitable

recipients [101].




Numerous studies reviewed consistently indicate that ML models provide satisfactory
to excellent predictions for both short- and long-term mortality or complication risks
[1%6] - Additionally, emerging evidence suggests that artificial intelligence can surpass
traditional tools in predicting cardiac events post liver transplantation [1%71 and mortality
related to esophageal variceal bleeding [108. 1] Accurate predictions of short- and long-
term complications following liver transplantation are crucial, as they inform the need
for additional surveillance or even potential halting of the transplantation process for
patients at higher risk of mortality. Long-term complications post liver transplantation
remain a significant concern, with limited improvement in survival rates over the years
[110],

Long-term survivors face increased risks of comorbidities like metabolic syndrome,
renal dysfunction, cardiovascular disease, and extrahepatic malignancies, necessitating
multidisciplinary management strategies to prevent medical complications and their
associated cost implications [111l. Metabolic syndrome, in particular, is prevalent among
liver transplant recipients and is associated with chronic liver disease progression and
increased cardiovascular risk [0, Sustained transient post-transplant diabetes
significantly elevates the long-term risk of major adverse cardiac events and mortality
[13], Therefore, precise prognostication of patients at risk of long-term complications is
essential, and Al algorithms offer promise in enhancing risk assessment and improving
patient outcomes.

Furthermore, ML models consistently outperform traditional scoring systems, including
MELD, D-MELD, SOFT, p-SOFT, BAR, DRI score, ABIC, CLIF-C OFs, CLIF-C ACLFs,
and CLIF SOFA, as well as models based on Cox and logistic regression. This finding is
particularly significant given the limitations of traditional scoring systems in predicting
post-transplant outcomes [191l, The incorporation of ML algorithms in organ allocation
can enhance efficiency by preventing unnecessary transplantations and allocating
allografts to patients with a higher likelihood of success. This optimization helps
manage the associated costs of transplant failure and complications, especially

considering the limited availability of donor organs. Regarding short and long-term




mortality prediction (90-day), the Random Forest (RF) model consistently exhibits the
highest area under the curve [114] [115],

ML models provide numerous advantages, such as managing large datasets, objectivity,
and assisting in cases with similar probabilities. In liver transplantation, artificial neural
networks (ANNs) and random forest classifiers are the commonly used artificial
intelligence models. ANNs excel at identifying complex patterns beyond human
capability and can yield near-perfect predictions, reaching up to 95% accuracy in 3-
month graft survival. However, ANNs lack transparency regarding the variables they
consider. In contrast, random forest (RF) models offer better confidence in utilizing
marginal organs, resulting in improved post-transplantation outcomes [114].

RF models exhibit superiority when predicting the risk of sepsis and acute kidney
injury (AKI). Although overall survival post-liver transplantation has improved, post-
transplantation infections remain a significant challenge, contributing to morbidity and
mortality. Studies reveal that 35-55% of liver transplant recipients experience infection-
related complications, including bacterial, fungal, and multidrug-resistant infections.
Most of these infections occur within the first six months after transplantation and are
responsible for a significant portion of early post-transplant deaths [116-119],

AKI and chronic renal dysfunction are C(ﬁu’non complications following liver
transplantation.  Contributing  factors  include long-term  exposure to
immunosuppressive medications like calcineurin inhibitors (CNI), preoperative kidney
dysfunction, perioperative acute kidney injury/hypertension, diabetes mellitus (DM),
and atherosclerosis pre- and/or post-transplantation. Long-term data indicates that
kidney failure, defined as a glomerular filtration rate of 29 mL/minute/1.73 m? or less
or the development of end-stage renal disease (ESRD), occurs in 18% at 5 years and 25%
at 10 years post-transplantation [120], Factors significantly associated with worse survival
in patients with renal dysfunction include higher age at transplantation, increased
creatinine levels, post-transplant diabetes mellitus, and transplantation in the pre-
MELD era. Consequently, serum creatinine was incorporated into the MELD score to

prioritize donor livers for transplant candidates with renal dysfunction 121l [122] AK]




immediately following liver transplantation is linked to increased morbidity and
mortality, with an incidence ranging from 25% to 60% [1.

The use of ML models in predicting the risk of sepsis and AKI is vital to enhance post-
liver transplant outcomes. Post-transplant infections and AKI are associated with
increased healthcare costs, prolonged hospital stays, and adverse effects on both
allograft and patient survival [16l 1191 Also, ML models have been used for the
diagnosis of appendicitis and heart disease [12] [124] Employing ML models for
predicting and managing these complications holds the potential to yield improved
patient outcomes, reduced healthcare expenditures, and an overall better quality of life.
Despite the demonstrated superiority of ML models in the review, certain limitations
must be acknowledged. Many studies relied on retrospective designs, which can
introduce biases and impact result generalizability. Prospective studies with larger
sample sizes and more diverse populations are necessary to validate ML model
performance across different contexts and patient groups.

Another limitation stems from the lack of standardization and consistency in data
collection and reporting of liver transplantation-related variables across various centers
and studies. Data collection disparities can result in inconsistencies and hinder accurate
comparisons of different ML models. Efforts should be made to standardize data
collection practices in liver transplantation research to enhance the reliability and
general applicability of ML models.

The underrepresentation of pediatric liver transplantation in the reviewed studies
underscores a research gap. Pediatric patients have unique considerations and
challenges in liver transplantation, and developing ML models tailored to this
population could significantly enhance their outcomes.

Ethical considerations are paramount when implementing ML models in clinical
decision-making. These models must be transparent, explainable, and accountable to
ensure that clinicians and patients comprehend the rationale behind predictions,

enabling informed decisions. Furthermore, addressing the black box dilemma of Al




models for prognostication is imperative, as ensuring transparency and interpretability

in these models is essential to uphold ethical standards in healthcare decision-making.

CONCLUSION
CONCLUSION

This study reveals a significant surge in interest in the application of machine learning
(ML) for liver transplant prognostication, with the majority of the studies emerging
within the past five years. Notably, the United States and China stand out as the
frontrunners in this field. This research also emphasizes that the performance of ML
models exhibits variability when applied across different countries, underscoring
limited external validity. Consequently, ML algorithms tailored to each country's
unique transplant registry data demonstrate greater reliability.

Furthermore, the study highlights the superior predictive accuracy of ML models built
on pre-transplant data in comparison to established scoring systems like MELD,
irrespective of the underlying cause of hepatic failure, including HCC. Additionally,
the study suggests that when selecting an ML model for predicting the risk of sepsis
and acute kidney injury post-liver transplantation, the RF model may be the most
suitable choice.

Overall, the use of ML models in liver transplantation has the potential to optimize
organ allocation, improve patient outcomes, and reduce healthcare costs. However,
more prospective studies with larger and diverse populations are needed to validate
ML model performance and standardize data collection practices in liver
transplantation research. Additionally, the inclusion of pediatric patients in ML
research is crucial to address their unique needs. With continued research and
advancements in ML techniques, ML models are poised to play an increasingly pivotal

role in liver transplantation in the coming years.

ARTICLE HIGHLIGHTS

Research background




+ADw-html+AD4APA-p+AD4-Liver transplantation (LT) is a life-saving procedure for

individuals with end-stage liver disease, offering not only health restoration but also a
potential 15-year extension of life. However, the equitable allocation of donor organs
remains a challenge due to donor scarcity. While the survival rates post-transplant are
commendable, the shortage of donor organs persists, pushing the field towards
utilizing less conventional donors. An efficient system of liver organ allocation is
essential as there's a growin emand, leading to escalating healthcare costs.
Traditional scoring systems like Child-Pugh-Turcotte (CTP) and Model for End-stage
Liver Disease (MELD) have been employed for organ allocation, but they have
limitations, such as empirical variable selection and limited predictive ability.+ADw-

/p+AD4APA-/html+AD4-

Research motivation

+ADw-html+AD4APA-p+AD4-The primary challenge in liver transplantation is
optimizing organ allocation. The scarcity of donor organs necessitates accurate
prognostication for organ allocation and transplant success. While traditional scoring
systems have been useful, they are not without limitations. Therefore, there's a need to
explore more reliable and predictive methods. In this context, machine learning (ML)
models present a promising avenue. ML algorithms can analyze various data types,
from structured to unstructured, and offer a new dimension in predictive accuracy.
Their ability to handle complex datasets and discover intricate patterns makes them
suitable for enhancing prognostication in liver transplantation. Given the critical
importance of optimizing organ allocation and predicting transplant outcomes,
evaluating the utility of ML models is a significant step towards improving the liver

transplantation process.+ ADw-/p+AD4APA-/html+AD4-

Research objectives
+ADw-html+AD4APA-p+AD4-The primary objectives of this study are to

comprehensively assess the effectiveness of ML models in liver transplantation




prognostication and to compare their performance and reliability with traditional
scoring systems. This evaluation involves a systematic review of observational studies
to determine the real-world utility of ML models in predicting transplant outcomes.
Realizing these objectives is crucial for advancing the field of liver transplantation and
ensuring that patients receive the most suitable organs, ultimately improving survival
rates and healthcare resource allocation. Moreover, the study aims to bridge the gap
between machine learning and traditional scoring systems, shedding light on the

potential of ML models to revolutionize prognostication in liver transplantation.+ ADw-

/p+AD4APA-/html+AD4-

Research methods

+ADw-html+AD4APA-p+AD4-This systematic review followed PRISMA-P guidelines
and conducted a comprehensive literature search on PubMed/MEDLINE using specific
terms related to machine learning, artificial intelligence, liver transplantation, and
prognosis. It included all relevant observational studies without restrictions on
publication year, age, or gender, focusing on machine learning models for liver
transplantation prognosis and post-transplant complications. Exclusion criteria covered
non-English papers, review articles, case reports, conference papers, studies with
missing data, or methodological flaws. A single reviewer screened and analyzed
eligible studies, summarizing their objectives, methods, results, and conclusions. Data
extraction included study type, population, year, purpose, setting, methods, results, and
strengths/Limitations. The review also compared machine learning models to
traditional scoring systems. This systematic approach synthesized information, offering
a comprehensive understanding of artificial intelligence's role in liver transplantation
prognosis and identified trends and potential benefits and limitations. It provides
valuable insights into the current state of research in predicting liver transplantation

outcomes with AL+ADw-/p+AD4APA-/html+AD4-

Research results




In this systematic review, an initial pool of 64 references was identified and refined
through a selection process. After excluding conference articles, review papers, and
duplicates, 23 studies were included for analysis. These studies spanned from 2014 to
2023 and covered various transplantation reasons, with the majority conducted in the
United States (34.8%), followed by China (26%). The primary outcomes assessed were
mortality and post-transplant complications, with machine learning models consistently
outperforming traditional models and scoring systems. The receiver operating
characteristic (ROC) curve analysis demonstrated machine learning models' excellent
predictive performance for both short-term and long-term outcomes. Notably, the
Random Forest (RF) model excelled in predicting 90-day mortality, while the 'gradient
boosting machine' model showed proficiency in forecasting complications like graft-
versus-host disease, pneumonia, and acute kidney injury. The RF model was
particularly adept at predicting sepsis and AKI. These findings highlight the potential
of machine learning to enhance prognostic accuracy and inform clinical management in

liver transplantation.

Research conclusions

+ADw-html+AD4APA-p+AD4-This study underscores the growing interest in
applying machine learning (ML) to liver transplant prognostication, with a surge in
research within the last five years. Notably, the United States and China have been
leaders in this field. The research emphasizes the need for customized ML algorithms,
adapted to each country's unique transplant registry data, to enhance the reliability of
predictions. ML models, based on pre-transplant data, consistently outperform
established scoring systems like MELD, regardless of the underlying cause of hepatic
failure, including HCC. Additionally, when selecting an ML model for predicting the
risk of sepsis and acute kidney injury post-liver transplantation, the Random Forest
(RF) model appears to be a promising choice. These findings point to the potential of
ML models in optimizing organ allocation, improving patient outcomes, and reducing

healthcare costs in liver transplantation.+ ADw-/p+AD4APA-/html+AD4-




Research perspectives

The future of research in this field should focus on conducting more prospective studies
with larger and diverse patient populations to validate the performance of ML models
and enhance their generalizability. Standardizing data collection practices in liver
transplantation research is crucial to ensure consistency and facilitate accurate
comparisons of different ML models.

Furthermore, there is a pressing need to include pediatric patients in ML research to
address their unique requirements and challenges in liver transplantation. Ethical
considerations should remain paramount, with a focus on ensuring transparency,
explainability, and accountability in ML models to uphold ethical standards in
healthcare decision-making. Continued advancements in ML techniques and the
expansion of research efforts are expected to play an increasingly pivotal role in liver
transplantation, offering the potential to further enhance patient care and clinical

decision-making in the coming years.
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