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Abstract
The varieties and capabilities of artificial intelligence and machine learning in 
orthopedic surgery are extensively expanding. One promising method is neural 
networks, emphasizing big data and computer-based learning systems to develop 
a statistical fracture-detecting model. It derives patterns and rules from 
outstanding amounts of data to analyze the probabilities of different outcomes 
using new sets of similar data. The sensitivity and specificity of machine learning 
in detecting fractures vary from previous studies. AI may be most promising in 
the diagnosis of less-obvious fractures that are more commonly missed. Future 
studies are necessary to develop more accurate and effective detection models 
that can be used clinically.

Key Words: Artificial intelligence; Machine learning; Orthopedics; Trauma; Neural 
network
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Core Tip: Machine learning is currently applied to image-screening assistance, predictive 
analytics, and intraoperative robotics, specifically in the trauma orthopedics field. 
Artificial intelligence can be used in the emergency department of trauma centers as a 
screening tool and aid to orthopedists, helping them improve their sensitivity and 
specificity and help shorten their diagnosis time. In real-life practice, orthopedic 
surgeons consider various factors when making a prediction; that is why machine 
learning-based predictive models include features such as history and physical exam 
data, along with imaging results. Artificial intelligence application may be able to 
identify such patterns and increase the chance of optimum results.
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INTRODUCTION
Nowadays, artificial intelligence and machine learning are involved significantly in medicine[1-4]. 
Musculoskeletal trauma is one of the main reasons for emergency department (ED) visits. Due to the 
nature of trauma, missed injuries are common after the primary assessment of patients[5]. Avoiding 
missed injuries is essential for the timely and efficient treatment of patients seen in the ED[6,7]. 
Therefore, identifying errors in medical imaging interpretation that contribute to missed and delayed 
diagnoses is critical. AI surveillance may be most promising in settings where misinterpretation is most 
prone to happen. Hallas et al[8] showed that fracture misdiagnoses were most likely to occur between 
the hours of 8 pm and 2 am.

Machine learning (ML) and artificial intelligence (AI) are poised to assist physicians in faster and 
more efficient identification of fractures on radiographs taken in the clinic and/or the ED, working 
through a high volume of images while maintaining high accuracy[9]. The ability of ML to handle large 
amounts of data and multiple simultaneous variables means that it can identify patterns (injuries) that 
humans may be more likely to miss. Analyzing big data gives ML the power to be applied for predictive 
analytics, such as personalized treatment and prediction of surgical outcomes[10].

In this review article, we discuss the developmental frontier of AI applications in commonly used 
image modalities for identifying orthopedic injuries.

OVERVIEW OF DEEP LEARNING TECHNOLOGY
From being introduced in 1959 until now, AI applications have increased exponentially. Physicians are 
now beginning to take advantage of this constantly developing tool within their fields. Better central- 
and graphic-processing units (CPU and GPU) are being designed to have the ability to put into use the 
ever-growing amounts of data that is now accessible[11].

AI is described as algorithms solving issues that usually require humans to intervene. Machine 
learning is a subset of AI that allows it to learn without complex programming. The power of ML lies in 
the learning process, which can be divided into two groups: Supervised learning, which requires 
instructions from humans, and unsupervised learning which the machine itself learns and classifies the 
data in patterns it finds itself; and potentially identifying patterns that have not yet been recognized by 
human rules.

Figure 1 illustrates a hierarchic relationship between these terms with deep learning (DL) being the 
following subclass. The main difference between classic ML and DL is that, unlike classic algorithms, 
DL algorithms learn which features are the best for the calculating task rather than human experts 
choosing them[12,13]. Deep learning algorithms are applied as neural networks that can learn the input 
data's nonlinear functions. The concept of computer learning pictures lies in convolutional neural 
networks (CNNs). CNNs contain many layers that are limited in transforming their input with the 
convolution lters (Figure 2)[14]. Schematic representation illustrated an artificial network inspired by a 
biological neural system composed of many artificial neurons. As dendrites receive inputs in a neuron 
cell, an artificial neuron receives signals multiplied by their weights (w) so that output can be 
determined based on the weighted sum of the input. There is a specific weight for each neuron, and the 
bias value (b) is to shift the activation function along with the weighted sum of inputs. Here, the 
activation function is shown as rectified linear unit function to introduce non-linearity to the neuron 
decision. Here, it chooses the maximum of either z or 0. Considering a collection of connected artificial 
neurons and when the output of some becomes the inputs of another, arranged in a multilayer complex 
that is only connected to their adjacent layers (Figure 3).

CNNs are a subset of DL algorithms that has surpassed image analysis by acting as an arrangement 
of layers that simplifies image volume into basic class scores. Using learnable layers that reduce the 
complexity and parameter requirements per layer starting from the "Dense layer," where all the possible 
connections between input and output nodes are introduced and classified. Moving on to the "Convolu-
tional layer (CONV layer)," "Pooling layer," and "Dropout layer," which are created to learn more 
complex features and avoid overfitting, that is when there is a good performance on the training data 
but poor employment to other data. CONV layer also can be used for determining the exact input 
volume. CNNs gained enormous popularity in neutral image recognition when they outperformed 
humans[15].

https://www.wjgnet.com/2307-8960/full/v11/i18/4231.htm
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Figure 1 Diagram demonstration of convolutional neural networks in the artificial intelligence hierarchy.

Figure 2 Schematic exemplification of an artificial neuron to highlight its similarity to a biological neuron. Data input (X) is termed weight (W) in 
an artificial neuron. As in, Xs are multiplied by their Ws, bias value (b) is added to allow the model to fit better, and a nonlinear mathematical formula determines the 
output (Y) for the next neurons in line.

DL and CNNs can train with input data and its standard labels (for example, fracture or no fracture). 
Self-learning is a prominent feature of this system, which gives them the advantage of handling novel 
tasks with less computational power and time, stepping up the interpretation process. It is difficult to 
determine how a CNN works, but more information on its decision-making has been presented in many 
related articles[12-14].

Although, medicine as a eld has underutilized AI applications so far, its use is increasing[16]. ML is 
now applied to intraoperative robotics, predictive analytics, and, most importantly, image-screening 
assistance, specifically in the trauma field[15,17-19].

IMAGE-BASED AI APPLICATION
Physicians have been quick to apply machine learning and AI to fracture detection, given the large 
number of medical images that must be reviewed and the potential for missed injuries. The image-based 
DL model is one of the most used AI techniques for fracture detection and has been applied to various 
modalities such as computed tomography (CT) images, X-Ray, and magnetic resonance imaging.
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Figure 3 Schematic representation illustrated an artificial network inspired by a biological neural system. A: Graphic model of artificial neural 
network and its similarity to (B) biological neural network; B: Biological neural network. Output of one layer is considered the input of another.

Given the prevalence of hand and wrist injuries, and scaphoid fractures being the most common 
carpal bone fractures, Ozkaya et al[20] used CNN for detecting scaphoid fractures, comparing its 
performance with ED physicians and two orthopedic specialists (one of them being experienced in hand 
surgery) for detecting scaphoid fractures on anteroposterior wrist radiographs. Even though the 
experienced orthopedic specialist showed the highest area under the receiver operating curve (AUC) 
value (0.920), CNN's AUC value was higher than both the untrained orthopedic specialist and ED 
physicians (0.840 vs 0.820 and 0.760, respectively). CNN also had a significantly higher sensitivity than 
the ED physicians (72% compared to 62%), even though it showed lower sensitivity than the 
experienced orthopedic specialist (86%). This article recommended using CNN for detecting scaphoid 
fractures in centers without experienced hand surgeons available. Oka et al[21] 2021 used image 
augmentation to increase their training data in an AI model they developed to diagnose distal radius 
fractures. Their model displayed an excellent diagnostic accuracy at 98% ± 1.6% for detecting distal 
radius fractures and a 91.1% ± 2.5% diagnostic accuracy for fractures of the ulnar styloid process, 
despite using a relatively small amount of data. This promising diagnostic rate was achieved by using 
bi-planar X-ray images. The sensitivity and specificity for distal radius fractures were 98.6% ± 1.8% and 
96.7% ± 3.5%, respectively, with the sensitivity and specificity for the styloid process of the ulna being 
92.2% ± 5.7% and 90.4% ± 3.9%, respectively.

Liu and colleagues improved an AI algorithm (RetinaNet) and trained it with X-rays of patients with 
tibial plateau fractures (TPF) to help orthopedic physicians detect TPF. The algorithm's performance 
was promising; not only was it 16 times faster than the orthopedists, but it also showed a similar 
accuracy rate (0.91 vs 0.92). Liu suggests that their AI algorithm would perform even better in clinical 
settings. Humans have been shown to be prone to missed diagnoses when under pressure or 
overworked, making AI a potentially useful tool in these scenarios[22].

In a study conducted by Small et al[23], C-spine, a CNN developed to detect cervical spine fractures 
on CT, showed a lower accuracy (92% vs 96%) and sensitivity (79% vs 93%) rate compared to that of 
radiologists. Nevertheless, CNN was superior to radiologists regarding radiology interpretation times. 
This decrease in fracture detection time illuminates the possible role of CNN in prioritizing unstable 
fractures to intervene promptly. Murata et al[24] trained a deep convolutional neural network (DCNN) 
with plain thoracolumbar radiography (PTLR) to detect vertebral fractures (VF). PTLR is cheaper and 
more available in primary care centers than CT and MRI, yet PTLRs sensitivity for detecting VF is 
considerably lower than theirs. The DCNN Murata and his colleagues showed higher sensitivity than 
orthopedic residents (84.7% vs 72.4%) but lower sensitivity than orthopedic surgeons and spine 
surgeons (77.5% and 96%, respectively). Their work suggests that DCNN can be used by general and 
emergency physicians or even orthopedic residents to identify VFs not only early and timely for 
management but with an 86.0% accuracy rate, higher than the accuracy rate of orthopedic residents 
(77.5%) and almost equivalent to that of orthopedic surgeons (88%)[24].

In a retrospective study conducted by Mutasa et al[25], CNN was used to not only diagnose but to 
classify femoral neck fractures (FNF) based on the radiograph-based Garden classification system of 
FNF[26]. They trained two networks, one to localize the femoral neck on anteroposterior (AP) 
radiographs, the other to classify the femoral neck into Garden I/II, Garden III/IV, or no fracture 
groups. Data augmentation improved their CNN performance by providing additional training data. 
The CNN detected fractures with an accuracy of 92.3%, sensitivity of 0.91, and specificity of 0.93. It also 
showed a higher sensitivity for detecting and correctly classifying displaced fracture (Garden III or IV) 
compared to non-displaced fractures (Garden class I or II), with an accuracy rate of 86% vs 80% and a 
sensitivity of 0.91 vs 0.54, respectively, suggesting that DL using a CNN can help physicians with the 
timely detection and therefore management of FNFs in the emergency department. More recently, Bae et 
al[27] used hip and pelvic AP films for training a CNN developed to detect FNFs. They then performed 
an external validation for their CNN model. This study was conducted in two hospitals. After training 
and internal validation of one hospital dataset, the test values were 0.999 AUC, 0.986 accuracy, 0.966 
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sensitivity, and 0.993 specificity. Values of external validation with the other hospital dataset were 0.977, 
0.971, 0.939, and 0.982, respectively. Values of the combined hospital dataset were 0.987 AUC, 0.983 
accuracy, 0.973 sensitivity, and 0.987 specificity, indicating that even though other hospitals could use 
the completed model trained with the data set of one hospital for screening FNF, the CNN should also 
be trained with images from those hospitals, to improve the CNNs performance.

One of the limitations of most algorithms that have been developed is that they are limited to one 
anatomical area. Therefore, in account to apply them to interact with other algorithms, one intercon-
nected software was needed. Jones et al[28] article using 715343 radiographs is an example of this 
interaction. This multicentric study, 16 anatomic regions were analyzed using an ensemble of 10 CNNs 
with mean AUCs above 0.98 for most areas (Figure 4).

Guermazi et al[29] aimed to compare the performance of medical doctors of several fields, four of 
them being orthopedists, in detecting fractures of various anatomic locations (foot and ankle, knee and 
leg, hip and pelvis, hand and wrist, elbow and arm, shoulder and clavicle, rib cage and thoracolumbar 
spine) with and without the assistance of AI, with a minimum washout period of 1 mo. With AI 
assistance, orthopedists' sensitivity per patient improved by 9.1%, and their specificity per patient 
enhanced by 2.0%. Their study showed no difference between specialties for sensitivity or specificity per 
patient improvement with the assistance of AI and that the AI can help clinicians shorten the radiograph 
reading time by 6.3 per patient. Inoue and colleagues[30] used a CNN model to localize fractures on 
whole-body CT scans of polytrauma patients and to classify them into pelvic, rib, and spine fractures. 
The CNN showed 0.839 sensitivity for pelvic fractures, with 0.645 precision. For rib fractures, the 
sensitivity was 0.713, and the precision was 0.602. In detecting spine fractures, the CNN's sensitivity 
was 0.780 with a 0.683 precision. Overall, The CNN model demonstrated promising outcomes for 
detecting all three types of fractures; for the grouped mean values, sensitivity was 0.786, and accuracy 
was 0.648. They also had their CNN model assist orthopedic surgeons with fracture diagnosis, resulting 
in increased sensitivity and reduced CT image reading time. The results of these two articles suggest 
that AI can be used in the emergency department of trauma centers as a screening tool and aid to 
orthopedists, helping them improve their sensitivity and specificity and help shorten their diagnosis 
time.

PREDICTIVE ANALYSIS
Even in orthopedic surgery, a field that largely relies on technical devices and imaging modalities, AI 
use is not limited to fracture detection and surgical robots in the operating room. Predictive modeling in 
traditional statistical modeling is based on known underlying structures and various hypotheses, but 
this is not the case for ML[31], which makes ML-based predictive models more efficient. We will review 
some of the predictive applications of ML in trauma orthopedics.

Orthopedic surgeons use pre-operative data (e.g., imaging information) to choose the best surgery 
method. But, clinical decision-making in trauma patients is not always straightforward; fractures may 
not be evident in pre-operative routine assessments (i.e. occult fractures). The study of Hendrickx et al
[32] is an example. Tibial shaft fracture complicated with posterior malleolar fracture benefits from the 
“malleolus first” surgical technique; however, the latter may remain undiagnosed before the surgery. 
So, the authors used ML methods that accurately predicted posterior malleolar fracture.

Sports medicine is an important topic for predictive medicine. Researchers have compared the 
performance of ML and traditional regression analysis to predict following-season injuries among 2322 
national hockey league players[33]. Advanced ML models outperformed logistic regression in their 
study. A similar study was also conducted among (American) league baseball players[34]. In another 
study evaluating soccer players with Achilles tendon rupture[35], 32853 soccer matches were analyzed 
with ML methods, and pre-injury performance was the best predictor of match participation level after 
the trauma. Studies have also used ML to predict secondary meniscus tears in 1187 patients who 
underwent primary anterior cruciate ligament (ACL) reconstruction[32]. They used four ML models, 
and they all outperformed logistic regression. ML can even identify patients at risk of prolonged opioid 
use following arthroscopic ACL repair[36].

If it were not for AI, would it be possible to analyze such extensive data while training individualized 
predictive models?

In general, and with trauma surgeries, studies have also used ML to determine which characteristics 
would lead to a worse outcome. An example is using ML to predict surgical site infection[37]. The 
authors analyzed patient and surgical procedure-related factors in 2882526 surgical procedures; the 
results support the superiority of ML models compared to logistic regression. Other examples include 
(1) Promising performance to predict delirium after hip fracture fixation in geriatrics (internally and 
externally validated)[38]; and (2) accurate prediction of short-term outcomes after open reduction and 
internal fixation in ankle fractures[39]. Martin and colleagues have used ML models to predict ACL 
revision surgery and developed an in-clinic calculator; in another study, they externally validated their 
previous findings suggesting that incorporating this tool helps clinicians predict revision risk among 
these patients[40,41].
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Table 1 Stated studies and comparison of performances between artificial intelligence and human experts

Ref. Region of interest Modality AI performance Human performance

Niiya et al
[33], 2022

Ribs CT 0.93 (sensitivity) Data has not provided by the authors

Meng et al
[34], 2021

Ribs CT 0.92 (recall rate); 0.94 (precision) 0.79, 083 (recall rate of radiologist 1 & 2); 0.88 
(precision of radiologist 1 & 2)

Ozkaya et al
[22], 2022

Hand & Wrist 
(Scaphoid)

Radiographs 0.84 (AUC); 0.72 (sensitivity) 0.92, 0.76 (AUC of experienced orthopedist, and 
ED physician, respectively); 0.86, 0.62 (sensitivity 
of experienced orthopedist, and ED physician, 
respectively)

Oka et al
[23], 2021

Hand & Wrist 
(Distal of radius & 
styloid process of 
the ulna)

Radiographs 0.98 ± 0.016/0.98 ± 0.018 & 0.91 ± 0.025/0.96 ± 
0.035; (accuracy/sensitivity for detecting distal 
radius fractures & fractures of the ulnar styloid 
process, respectively)

Data not provided by the authors

Liu et al[24], 
2021

Tibial plateau 
fractures

Radiographs 0.91 (accuracy) 0.92 ± 0.03 (accuracy)

Small et al
[25], 2021

Vertebrae (Cervical) CT 0.92 (accuracy); 0.79 (sensitivity); 3-8 min (report 
time)

0.96 (accuracy); 0.93 (sensitivity); 33-43 min 
(report time)

Murata et al
[26], 2020

Vertebrae Radiographs 0.86 (accuracy); 0.84 (sensitivity) 0.77, 0.88 (accuracy rate of orthopedic residents & 
orthopedic surgeons, respectively); 0.72, 0.77, 0.96 
(sensitivity of orthopedic residents, orthopedic, 
surgeons & spine surgeons, respectively)

Mutasa et al
[27], 2020

Femur (Femoral 
neck)

Radiographs 0.92 (accuracy); 0.91 (sensitivity); 0.93 (specificity) Data not provided by the authors

Bae et al
[29], 2021

Femur (Femoral 
neck)

Radiographs 0.98 (AUC); 0.98 (accuracy); 0.97 (sensitivity); 0.98 
(specificity)

Data not provided by the authors

Jones et al
[30], 2020

Various anatomic 
regions

Radiographs Mean AUCs above 0.98 for most areas Data not provided by the authors

Guermazi et 
al[31], 2022

Various anatomic 
regions

Radiographs 0.93 (AUC) 0.88 (Sensitivity); 0.88 (specificity) 0.64 ± 0.09 (sensitivity); 0.90 ± 0.08 (specificity)

Inoue et al
[32], 2022

Pelvis, rib, vertebrae CT 0.78 (sensitivity); 0.64 (accuracy) 0.69 (sensitivity of orthopedic surgeon 1); 0.67 
(sensitivity of orthopedic surgeon 2); 0.76 
(sensitivity of orthopedic surgeon 3)

AI: Artificial intelligence; CT: Computed tomography; AUC: Area under the curve; ED: Emergency Department.

The precise predictive ability of ML is advantageous in critical settings where traditional methods 
may come up short. For example, pertrochanteric fracture surgery in elderly patients accompanies 
higher morbidity and mortality rates. ML methods were used to predict 1-year mortality after per-
trochanteric fracture surgery in 448 patients[42]. ML-based analysis of patients undergoing primary 
emergency hip fracture surgery accurately predicted 30-d postoperative mortality[43,44].

Orthopedic trauma patients also benefit from long-term rehabilitation, and clinicians assess its 
success based on patient-reported outcome measures and clinical assessments. ML analyzes these data 
to determine which factors most likely lead to better outcomes[45]. In a study on hip, knee, and foot 
trauma patients[46], ML was able to predict rehabilitation success. Hopefully, by applying these 
findings in the future, trauma patients will receive individualized treatments that provide the optimal 
outcome of healthier and happier patients.

Studies do not always confirm the superiority of AI and ML-based prediction models in trauma 
orthopedics[39]. AI-based predictive analysis is an emerging field, but despite potential capabilities, we 
must address its shortcomings to yield more accurate algorithms. Some limitations are as follows: the 
predictive model is affected by the type and nature of variables; the exact data size to build a precise 
model is not clear; only the output can be obtained, and the information and knowledge that lead to an 
ML algorithm is unknown[47,48]. In real-life practice, orthopedic surgeons consider various factors 
when making a prediction; that is why ML-based predictive models include features such as history and 
physical exam data, along with imaging results. It is essential that the ML algorithm considers all the 
variables necessary for making the correct prediction. These novel predictive models still have a long 
way to go before they can be successfully implemented in day-to-day practice, however[49] (Table 1).
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Figure 4 Schematic representation of detection of fracture and localizing it. A: To better outline the fractures, 10 convolutional neural networks were 
used to predict and generate bounding boxes around them; B: Sixteen anatomical regions and the result of fracture detection in them. Reprinted with permission from 
Jones et al[28].

LIMITATIONS AND STRENGTHS OF THE CURRENT STUDY
The inclusion of search details is not mandatory in narrative reviews, which may compromise the 
thoroughness and impartiality of the search methods. Selective inclusion of publications that support a 
particular hypothesis can introduce bias and hinder the exploration of the existing evidence. Narrative 
reviews often lack descriptions of their selection and review methods, making replication and 
verification of their results impossible, which conflicts with scientific evidence. These reviews rely on 
written paragraphs to summarize research findings and do not conduct pooled analyses, which limits 
objectivity and instead reflects dominant opinions at the time of publication. While narrative reviews 
may provide a general understanding of a body of evidence, they do not fully explore alternative 
hypotheses and cannot ensure the correctness of dominant opinions. The aforementioned statements 
have been added to the manuscript.
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CONCLUSION
As the long history of AI inclusion in medicine tells us[50], AI has a great potential to enhance 
diagnostic accuracy, especially in imaging-related areas[51]. However, has it gained the reliability to act 
in an emergency in severe trauma patients? A recent study by De Simone et al[49] demonstrated that 
emergency surgeons have a growing interest in AI implantation in the acute settings of the ED and 
emphasized that the support of healthcare systems is essential for the progress of AI in this field.

Aside from being used in hospital settings, high-accurate outcome predictors have also been helpful 
for bedside counseling of elderly patients concerned about trauma[52]. These predictors can help 
trauma detection before the patient arrives at the hospital.

All of this can give us a picture of how hospitals and Eds may be affected in the next 10 years: 
considering all of this potential that AI has, user-friendly applications must be developed to guide 
doctors through the most critical data and imaging available in emergencies. AI applications may be 
able to identify such patterns and increase the chance of optimum results. It cannot be defined how the 
future will be precisely, but it is safe to say that AI has not yet been able to do all of the complex tasks 
that humans do, but it can augment their performance to help them keep up with the ever-increasing 
workflow.
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