W J C C World Journal of Clinical Cases

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2024 February 16; 12(5): 951-965

DOI: 10.12998/wjcc.v12.i5.951

ISSN 2307-8960 (online)

ORIGINAL ARTICLE

Observational Study Urinary metabolic profiles during Helicobacter pylori eradication in chronic gastritis

Wen-Ting An, Yu-Xia Hao, Hong-Xia Li, Xing-Kang Wu

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C, C Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: Sato T, Japan

Received: November 3, 2023 Peer-review started: November 3, 2023 First decision: December 6, 2023

Revised: December 14, 2023 Accepted: January 22, 2024 Article in press: January 22, 2024 Published online: February 16, 2024

Wen-Ting An, Department of Pharmacy, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China

Yu-Xia Hao, Department of Gastroenterology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China

Hong-Xia Li, Department of Oncology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China

Xing-Kang Wu, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, Shanxi Province, China

Corresponding author: Hong-Xia Li, MMed, Chief Physician, Department of Oncology, Shanxi Provincial People's Hospital, No. 29 Shuangta Road, Taiyuan 030012, Shanxi Province, China. 345lihongxia@163.com

Abstract

BACKGROUND

Helicobacter pylori (H. pylori) infection is a major risk factor for chronic gastritis, affecting approximately half of the global population. H. pylori eradication is a popular treatment method for H. pylori-positive chronic gastritis, but its mechanism remains unclear. Urinary metabolomics has been used to elucidate the mechanisms of gastric disease treatment. However, no clinical study has been conducted on urinary metabolomics of chronic gastritis.

AIM

To elucidate the urinary metabolic profiles during *H. pylori* eradication in patients with chronic gastritis.

METHODS

We applied LC-MS-based metabolomics and network pharmacology to investigate the relationships between urinary metabolites and H. pylori-positive chronic gastritis via a clinical follow-up study.

RESULTS

Our study revealed the different urinary metabolic profiles of H. pylori-positive chronic gastritis before and after H. pylori eradication. The metabolites regulated by *H. pylori* eradication therapy include cis-aconitic acid, isocitric acid, citric acid,

L-tyrosine, L-phenylalanine, L-tryptophan, and hippuric acid, which were involved in four metabolic pathways: (1) Phenylalanine metabolism; (2) phenylalanine, tyrosine, and tryptophan biosynthesis; (3) citrate cycle; and (4) glyoxylate and dicarboxylate metabolism. Integrated metabolomics and network pharmacology revealed that MPO, COMT, TPO, TH, EPX, CMA1, DDC, TPH1, and LPO were the key proteins involved in the biological progress of *H. pylori* eradication in chronic gastritis.

CONCLUSION

Our research provides a new perspective for exploring the significance of urinary metabolites in evaluating the treatment and prognosis of *H. pylori*-positive chronic gastritis patients.

Key Words: LC-MS; metabolomics; chronic gastritis; Helicobacter pylori; urinary metabolites

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Urinary metabolomics has been used to elucidate the mechanisms of gastric disease treatment, whereas no clinical study is conducted on metabolomics of chronic gastritis. In this manuscript, we carried out LC-MS-based metabolomics to investigate urinary metabolites changes in *Helicobacter pylori* (*H. pylori*)-positive chronic gastritis treatment. Our study revealed the urinary metabolic profiles of *H. pylori*-positive chronic gastritis after *H. pylori* eradication. Integrated metabolomics and network pharmacology revealed the key proteins involved in H. pylori eradication of chronic gastritis. Our research provides a new perspective for exploring the significance of urinary metabolites in evaluating the treatment and prognosis of *H. pylori*-positive chronic gastritis.

Citation: An WT, Hao YX, Li HX, Wu XK. Urinary metabolic profiles during *Helicobacter pylori* eradication in chronic gastritis. *World J Clin Cases* 2024; 12(5): 951-965

URL: https://www.wjgnet.com/2307-8960/full/v12/i5/951.htm DOI: https://dx.doi.org/10.12998/wjcc.v12.i5.951

INTRODUCTION

Chronic gastritis is a common digestive system disease affecting approximately half of the global population[1]. Chronic gastritis is also the most important risk factor for gastric cancer, the fifth most commonly diagnosed cancer and the fourth leading cause of cancer-related mortality[1,2]. Chronic gastritis can be classified into two major stages, non-atrophic and atrophic, according to the phenotypes of the gastric mucosa[3]. Chronic non-atrophic gastritis will develop into chronic atrophic gastritis if left untreated. A 16-year follow-up study revealed that up to 2% of patients with chronic atrophic gastritis develop gastric cancer annually[4]. Additionally, 24% of gastric cancer patients are first diagnosed with chronic atrophic gastritis. Thus, managing chronic gastritis is an important approach for preventing gastric cancer development.

Helicobacter pylori (*H. pylori*) infection, a major risk factor for chronic gastritis, infects approximately 50% of the global population[6,7]. A portion of infected people will develop various degrees of gastrointestinal disease, such as dyspepsia (5%–10%), chronic gastritis (90%), peptic ulcers (15%–20%), and gastric malignancies (1%)[8]. *H. pylori* has been described as a first-class carcinogen for gastric cancer by the World Health Organization since 1994 and accounts for 16.1% of gastric cancer cases[9,10]. A 26.5-year follow-up report indicated that *H. pylori* eradication might confer long-term protection against gastric cancer in high-risk populations[11]. Therefore, eradication of *H. pylori* is recommended to reduce the occurrence of gastric diseases[8]. Numerous double, triple, and quadruple therapies have been proposed as first-line empiric treatments for *H. pylori* infection[12]. However, the molecular mechanisms underlying these treatment regimens are complicated and remain unclear[13].

Urinary metabolomics has been gradually applied to mine metabolic profiles for diagnosis, prognostic evaluation, and research of treatment mechanisms in gastric diseases. NMR-based urinary metabolomics revealed that urine metabolite levels were changed during oncogenesis in gastric cancer, and 4-hydroxyphenylacetate, alanine, phenylacetylglycine, mannitol, glycolate, and arginine are potential metabolic biomarkers for effectively diagnosing gastric cancer[14,15]. NMR- and UPLC-Q/TOF MS-mediated urinary metabolomics revealed that a traditional Chinese medicine, Huangqi Jianzhong Tang, treated chronic atrophic gastritis by balancing energy consumption, inhibiting inflammation, improving the immune system, and reducing oxidative stress in rats[16]. UPLC-Q-TOF/MS-based urinary metabolomics has also been applied to investigate the therapeutic effect and potential mechanism of berberine on chronic atrophic gastritis[17] and the therapeutic mechanism of palmatine in chronic atrophic gastritis induced by *H. pylori*[18]. However, no clinical study has been conducted on urinary metabolomics in chronic gastritis.

Zaishidena® WJCC | https://www.wjgnet.com

MATERIALS AND METHODS

Clinical characteristics of participants

This study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of Shanxi Provincial People's Hospital (Grant No. 2022-167). Patients with H. pylori-positive chronic gastritis who were hospitalized or outpatients in the Gastroenterology Department of Shanxi Provincial People's Hospital were selected as the research participants. Patients with H. pylori-positive chronic gastritis were enrolled. These patients were diagnosed with chronic gastritis by endoscopy and pathological examination. For the diagnostic criteria of H. pylori infection, refer to the "Fifth National Consensus Report on the Treatment of H. pylori Infection." Those with a positive ¹⁴C or ¹³C urea breath test (UBT) were diagnosed with H. pylori infection. Fasting morning urine was collected from patients diagnosed with H. pylori-positive chronic gastritis and marked as "HP(+)". Subsequently, the patients were treated with therapeutic strategies of *H. pylori* eradication for 2 wk (Figure 1). *H. pylori* eradication was conducted using conventional quadruple therapy, *i.e.*, a proton pump inhibitor combined with two antibiotics and a colloidal bismuth agent. In this study, the quadruple therapy strategies included omeprazole/amoxicillin/furazolidone/bismuth pectin, ilaprazole/ amoxicillin/ furazolidone/bismuth pectin, and pantoprazole/amoxicillin/furazolidone/bismuth pectin (Table 1). The patients were subjected to the ¹⁴C or ¹³C UBT at the end of treatment to evaluate *H. pylori* infection severity. The fasting morning urine of *H. pylori*-negative patients was collected and marked as "HP(-)" (Figure 1), and the fasting morning urine of *H. pylori*-negative healthy individuals was marked as "Health" (Figure 1). The HP(-), HP(+), and Health urine samples were subjected to an LC-MS-based metabolomics analysis.

In this study, approximately 180 patients were diagnosed with H. pylori-positive chronic gastritis, and their urine samples were collected at the first diagnosis. However, only 17 patients met the clinical assessment inclusion criteria and were willing to be reexamined for *H. pylori* infection after treatment (Table 1). These patients were treated with quadruple therapy strategies for *H. pylori* eradication. After 2 wk of treatment, 17 patients in our study were *H. pylori*-negative and discontinued treatment.

Sample preparation

The first morning urine was collected from fasting patients and healthy individuals and stored at -80°C. The frozen urine samples were thawed in an ice bath and centrifuged at a low temperature for 10 min (10000 ×g, 4°C). The supernatant was transferred to a new 1.5 mL EP tube. The proteins were precipitated by adding methanol-acetonitrile (2:1). Then, the mixtures were subjected to ultrasonic extraction in an ice water bath for 10 min and centrifuged for 20 min (10000 ×g, 4°C). The supernatant was filtered through a 0.22 µm organic phase pinhole filter and transferred to an LC sample vial. Samples were stored at 4°C until the LC-MS analysis. In addition, 10 µL of urine from each group was taken, mixed, and prepared as QC samples according to the sample preparation method.

UHPLC-Q-TOF/MS liquid phase conditions

The mobile phases were A (0.1% formic acid water) and B (0.1% formic acid acetonitrile). Elution was conducted according to the following gradient: 0-2 min, 2% B; 2-3 min, 2%-35% B; 3-17 min, 35%-70% B; 17-18 min, 70% B; 18-29 min, 70%-98% B; 29-31 min, 98% B; 31-33 min, 98%-2% B; and 33-35 min, 2% B. A Waters ACQUITYUPLC HSS T3 (2.1 × 100 mm, 1.7 µm) chromatographic column with a 5 µL injection volume, 0.2 mL/min flow rate, and 40°C temperature was then used for the liquid chromatographic analysis.

UHPLC-Q-TOF/MS mass spectrometry conditions

The mass spectrometry profiles of the urine metabolome were obtained on a UPLC (ExionLC AD) coupled with a Triple TOF 5600+ mass spectrometer (AB Sciex). The mass spectrometry conditions were set as follows: Electronspray ionization (ESI); mode: positive and negative ion scanning; mass scanning range: 50-1500 Da; atomizing gas pressure (GS1) and auxiliary gas pressure (GS2): 0.55 kPa; atomizing gas temperature: 550°C; spray voltage: +5500 V in positive ion mode and -4500 V in negative ion mode; curtain pressure: 0.3 kPa; and cluster fragmentation voltage: 100 V. Data were collected in information association mode, collision energy was ± 35 eV, and the collision energy rolling interval was (35 ± 15) eV.

Data processing of UHPLC-Q-TOF/MS

The raw data from UHPLC-Q-TOF/MS were imported into One-MAP software, and all metabolite names, peak areas, retention times, and other information were calculated. The results were exported as Excel files, and the total peak area data of each group of metabolites were normalized to obtain the peak-normalized data per metabolite.

Multivariate statistical analysis and differential metabolite screening

The above peak-normalized data were imported into Simca-P 14.1. A principal component analysis (PCA) was used for the exploratory analysis to determine possible clusters and outliers, and partial least square discriminant analysis (PLS-DA) and orthogonal partial least square discriminant analysis (OPLS-DA) were performed to explore different metabolites with metabolic profile changes, combining VIP > 1 and a t test (P < 0.05) in the S-plot to screen different metabolites.

Identification of metabolites

The identification of metabolites was performed by importing the m/z values of metabolites into the One-map database (http://www.5omics.com/) to obtain the names of metabolites. The chemical structures of the metabolites were

An WT et al. Urinary metabolic profiles during H. pylori eradication

Table 1 Clinical and demographic patient data		
Parameters	HP(+) and HP(−)	Health
Case	17	20
Sex		
Male	11	12
Female	7	8
Age (yr)		
31-40	2	2
41-50	8	9
51-60	6	7
> 60	1	2
Average age (yr)	49.35	48.65
Treatment		
Omeprazole/amoxicillin/furazolidone/bismuth pectin	3	-
Ilaprazole/amoxicillin/furazolidone/bismuth pectin	6	-
Pantoprazole/amoxicillin/furazolidone/bismuth pectin	8	-

HP(+): Helicobacter pylori-positive; HP(-): Helicobacter pylori-negative.

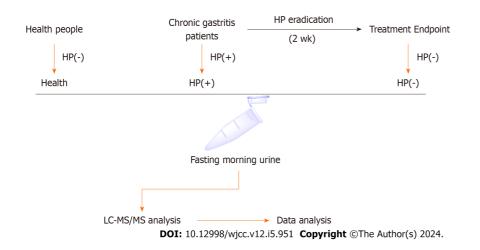


Figure 1 Schematic of patient enrollment and sample collection and analysis. Fasting morning urine samples were collected from enrolled patients and subjected to metabolomics using LC-MS/MS analysis. Data were analyzed using One-Map, SIMCA, and MetaboAnalyst. HP(+): Helicobacter pylori-positive; HP(-): Helicobacter pylori-negative.

confirmed by comparing MS/MS data with the compound information in the One-map database.

Metabolic pathway enrichment analysis and ROC curve analysis

The Pathway Analysis module in MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/) was used to perform metabolic pathway enrichment analyses on differential metabolites, and the pathway with an impact value (impact) greater than or equal to 0.1 was considered to be the main metabolism path.

The area under the receiver operating characteristic (ROC) curve was used to evaluate the quality and the predictive ability of the classification models. Univariate ROC analysis was conducted, and the area under curve (AUC) and P values of each ROC curve were used to evaluate the predictability. Then, to improve the discriminatory accuracy, multivariate ROC curves were plotted with false-positive and true-positive rates using a combination of significant metabolites with AUC > 0.5 (P value < 0.05).

Integrated metabolomics and network pharmacology

Integrated metabolomics and network pharmacology were applied to reveal the regulatory network of the identified differential metabolites. First, a metabolite-related network construction was performed by importing the identified

Baishidena® WJCC https://www.wjgnet.com

differential metabolites into Cytoscape 3.7.2 (Cytoscape Consortium, San Diego, CA, USA) equipped with MetScape. This network was constructed to visualize the interactions among the metabolites, pathways, enzymes, and genes. The key metabolites and proteins were recognized by combining the metabolite-reaction-enzyme-gene network with hub genes and metabolic pathways. Then, the candidate targets of *H. pylori*-positive chronic gastritis were acquired by taking the intersection of targets between chronic gastritis and H. pylori infection. The targets of chronic gastritis and H. pylori infection were obtained by searching the keywords "chronic gastritis" and "Helicobacter pylori" in the Genecards database (https://www.genecards.org/), respectively. Finally, the key proteins involved in regulating the identified differential metabolites were obtained by matching the H. pylori-positive chronic gastritis-related targets with the differential metabolite-related targets.

Statistical analysis

GraphPad Prism 8 software was used for generating figures and statistical analyses. Data are presented as the mean ± SD. The normality of data distribution was analyzed with SPSS software. Comparisons between two groups were performed using independent-sample t tests; comparisons between multiple groups were performed by one-way ANOVA. P < 0.05was considered to represent significance.

RESULTS

Overall metabolic profiles and the untargeted metabolomics analysis

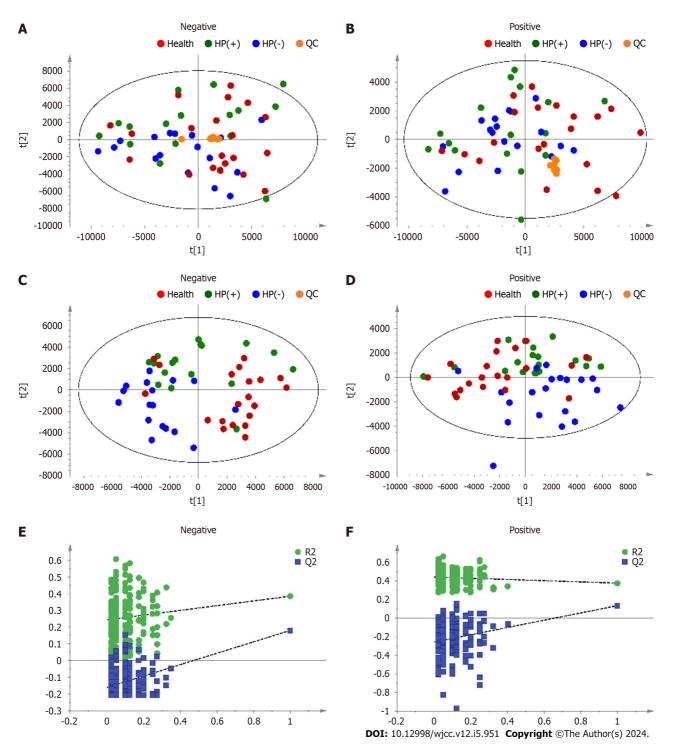
Metabolic profiling of urine samples was performed in positive and negative ion modes in an unsupervised model without grouping conditions using PCA. The QC samples were clustered, indicating good system stability. The results show that the samples Health, HP(+), and HP(-) cannot be effectively separated (Figure 2A and B). Therefore, PLS-DA was performed to reduce the dimensionality of the complex data obtained from the Health, HP(+), and HP(-) urine samples to distinguish the differences between groups. The results are shown in Figure 2C-F. The Health, HP(+), and HP(-) samples were significantly separated in ESI- and ESI+ modes, indicating that 2 wk of drug treatment alters urinary metabolic disorders in patients with chronic gastritis. In summary, the untargeted metabolomics analysis indicated that the urinary metabolic profiles changed during *H. pylori* eradication.

Metabolic profile of healthy individuals vs H. pylori-positive chronic gastritis patients

The OPLS-DA model was used to further evaluate the changes in metabolic profile in the sixth week after drug treatment. The CV-ANOVA diagnostics, in which the P values were 0.0000000894092 (negative ion mode) and 0.00000465157 (positive ion mode), worked well in the OPLS-DA model. The results are shown in Figure 3A and B. The Health and HP(+) groups were clearly separated in the positive and negative ion modes, indicating that the metabolic profiles of the two groups significantly changed. The corresponding S-plot was applied to observe and screen differential variables (Figure 3C and D), of which the values of variable importance in the projection (VIP) were used to evaluate their contribution to the model. The differential metabolites were screened between the Health and HP(+) groups according to S-plots of VIP value (VIP > 1) and a *t* test (P < 0.05).

The differential metabolites were imported into the Pathway Analysis module in MetaboAnalyst5.0, and a metabolic pathway analysis was conducted to find the 10 metabolic pathways most related to *H. pylori* eradication: (1) Phenylalanine metabolism; (2) phenylalanine, tyrosine, and tryptophan biosynthesis; (3) citrate cycle; (4) glyoxylate and dicarboxylate metabolism; (5) alanine, aspartate, and glutamate metabolism; (6) ubiquinone and other terpenoid-quinone biosynthesis; (7) arginine and proline; (8) aminoacyl-tRNA biosynthesis; (9) glycine, serine, and threonine metabolism; and (10) pyrimidine metabolism (Figure 3E).

Comparison of metabolic profiles of patients at the treatment endpoint with those before the treatment


In both positive and negative ion modes, the OPLS-DA model was used to evaluate the effects of H. pylori eradication on metabolic profiles after 2 wk of treatment. The CV-ANOVA diagnostics, in which the P values were 0.000665011 (negative ion mode) and 0.00535801 (positive ion mode), worked well in the OPLS-DA model. The plot of the scores obtained from the urine samples showed a significant separation between the HP(+) and HP(-) groups (Figure 4A and B), indicating that *H. pylori* eradication affected the urinary metabolites. The corresponding S-plot was applied to observe and screen differential variables (Figure 4C and D). The VIP value was used to evaluate their contribution to the model. The differential metabolites between the HP(+) and HP(-) groups were obtained by combining the VIP values (VIP > 1) and t test (P < 0.05) in the S-plot.

The differential metabolites were imported into MetaboAnalyst 5.0 software for pathway enrichment analysis to find the 10 most relevant metabolic pathways (pathway impact > 0.1) related to *H. pylori* eradication: (1) Phenylalanine metabolism; (2) phenylalanine, tyrosine, and tryptophan biosynthesis; (3) citrate cycle; (4) glyoxylate and dicarboxylate metabolism; (5) aminoacyl-tRNA biosynthesis; (6) ubiquinone and other terpenoid-quinone biosynthesis; (7) arginine and proline metabolism; (8) purine metabolism; (9) alanine, aspartate, and glutamate metabolism; and (10) glycine, serine, and threonine metabolism (Figure 4E).

Discovery of differential metabolites in urine

A joint pathway analysis was performed on the differential metabolites between the HP(+) and HP(-) groups and the Health and HP(-) groups using the Joint-pathway Analysis module in MetaboAnalyst to screen the key metabolic

Figure 2 Principal component analysis and partial least square discriminant analysis score scatter plots from urine analysis data. A, B: Principal component analysis (PCA) model score scatter plots; C, D: Partial least square discriminant analysis (PLS–DA) model score scatter plots; and (E and F) PLS-DA validation plot; A, C, E: Negative electronspray ionization (ESI) mode; B, D, F: Positive ESI mode. HP(+): *Helicobacter pylori*-positive; HP(-): *Helicobacter pylori*-positive; HP(-): *Helicobacter pylori*-positive; HP(-): *Helicobacter pylori*-positive.

pathways. The top four metabolic pathways co-regulated in Health vs HP(+) and HP(+) vs HP(-) are as follows: (1) Phenylalanine metabolism; (2) phenylalanine, tyrosine, and tryptophan biosynthesis; (3) citrate cycle; and (4) glyoxylate and dicarboxylate. Seven differential metabolites related to these four metabolic pathways were found, and the results are shown in Figure 5A. Cis-aconitic acid, isocitric acid, and citric acid were involved in the citrate cycle, glyoxylate, and dicarboxylate metabolism; L-tyrosine, L-phenylalanine, and L-tryptophan were involved in phenylalanine, L-tyrosine, and L-tryptophan biosynthesis; and hippuric acid, L-tyrosine, and L-phenylalanine were involved in phenylalanine metabolism.

Next, the levels of these differential metabolites were investigated by assessing the peak intensity of ions (Figure 5A). Compared with the Health group, in the HP(+) group, the levels of cis-aconitic acid, isocitric acid, citric acid, L-tyrosine, and L-phenylalanine were decreased, while L-tyrosine and hippuric acid levels were increased. The levels of these seven

Raishideng® WJCC | https://www.wjgnet.com

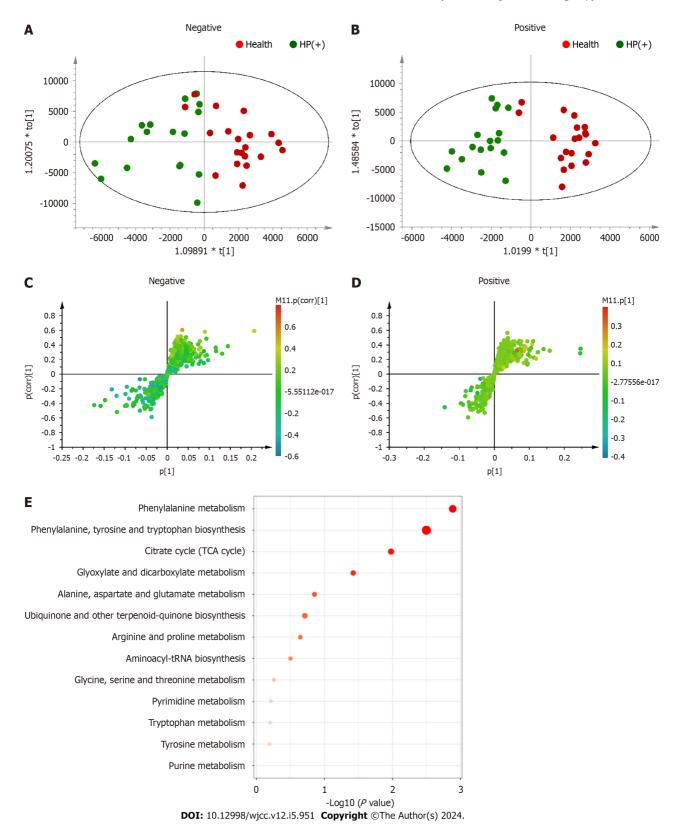


Figure 3 Orthogonal partial least square discriminant analysis and pathway enrichment analysis of the health and *Helicobacter pylori*positive samples. A, B: Orthogonal partial least square (OPLS) score plots; C, D: S-plots; A, C: Negative electronspray ionization (ESI) mode; B, D: Positive ESI mode. Model parameters of the negative ESI mode: R2X = 0.537, R2Y = 0.935, and Q2 = -0.33. Model parameters of the positive ESI mode: R2X = 0.467, R2Y = 0.955, and Q2 = -0.0553; E: Pathway enrichment analysis of differential metabolites between *Helicobacter pylori*-negative and health samples. Differential metabolites were obtained from OPLS-discriminant analysis and subjected to Kyoto encyclopedia of genes and genomes analysis using MetaboAnalyst software. *Helicobacter pylori*-positive; HP(-): *Helicobacter pylori*-negative.

Zaishidena® WJCC | https://www.wjgnet.com

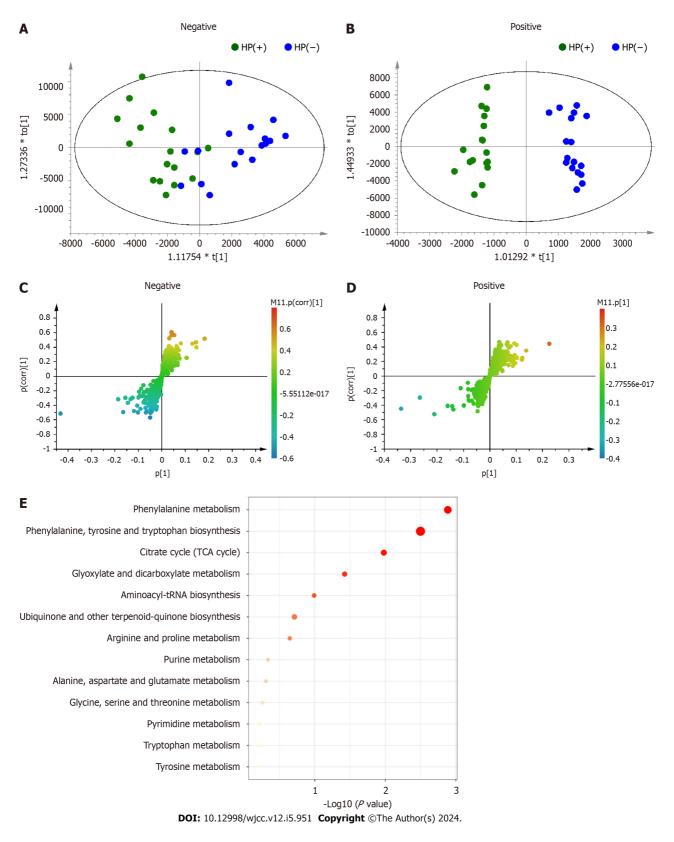


Figure 4 Orthogonal partial least square discriminant analysis and pathway enrichment analysis between the *Helicobacter pylori*-positive and -negative samples. A, B: Orthogonal partial least square (OPLS) score plots; C, D: S-plots; A, C: Negative electronspray ionization (ESI) mode; B, D: Positive ESI mode. Model parameters of the negative ESI mode: R2X = 0.472, R2Y = 0.944, and Q2 = 0.119; model parameters of the positive ESI mode: R2X = 0.424, R2Y = 0.985, and Q2 = -0.109; E: Pathway enrichment analysis of differential metabolites between the *Helicobacter pylori*-negative and -positive samples. Differential metabolites were obtained from the OPLS-discriminant analysis and subjected to Kyoto encyclopedia of genes and genomes analysis using MetaboAnalyst. *Helicobacter pylori*-positive; HP(-): *Helicobacter pylori*-negative.

Zaishideng® WJCC | https://www.wjgnet.com

metabolites returned to normal after *H. pylori* eradication.

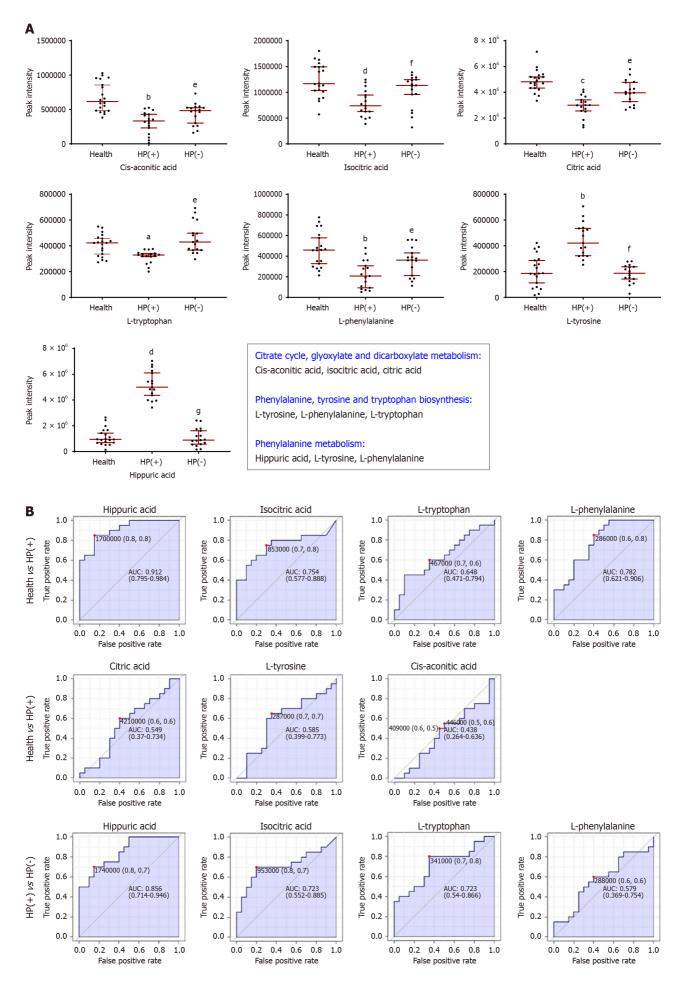
Evaluation of the predictive effectiveness of significant metabolites

We performed a univariate ROC curve analysis using the prominent seven metabolites to confirm the discriminative accuracy of individual metabolites between groups. The X-axis is the false-positive rate; the closer the X-axis value is to zero, the higher the accuracy is. The Y-axis is the true-positive rate; the larger the Y-axis value is, the higher the accuracy is. The result shows that the false-positive and true-positive rates in the Health vs HP(+) groups were higher than those in the HP(+) vs HP(-) groups, indicating that these urinary metabolites could reveal the treatment and prognosis progression of chronic gastritis with *H. pylori* infection (Figure 5B).

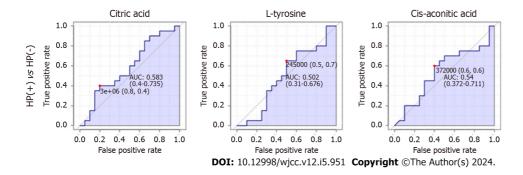
The criteria for assessing the accuracy of the signature based on AUC were summarized into a single metric, the ROC curve. According to the Swets criterion, AUC < 0.5 indicates that the test has no diagnostic value; AUC 0.5–0.7 indicates that the diagnostic test has low accuracy; AUC 0.7-0.9 indicates that the diagnostic test has good accuracy; and AUC > 0.9 indicates that the diagnostic test has high accuracy. In HP(+) vs HP(-) groups, the AUC values of hippuric acid, isocitric acid, L-tryptophan, L-phenylalanine, citric acid, L-tyrosine, and cis-aconitic acid were 0.856, 0.723, 0.723, 0.579, 0.583, 0.502, and 0.54, respectively (Figure 5B). In the Health vs HP(+) groups, the AUC values of these metabolites were 0.912, 0.754, 0.648, 0.782, 0.549, 0.585, and 0.438 (Figure 5B). Thus, hippuric acid, isocitric acid, L-tryptophan, and Lphenylalanine were the most related to the treatment effect and prognosis of chronic gastritis patients with H. pylori infection.

Exploring the mechanisms of metabolite changes during H. pylori eradication

We constructed an interaction network based on metabolomics and network pharmacology to further explore the relationships between metabolite changes and H. pylori eradication in chronic gastritis patients. First, differential metabolites were imported into the MetScape plugin in Cytoscape to collect the metabolite-reaction-enzyme-gene networks. By analyzing the identified metabolites in MetScape analysis, we gathered 60 targets of the significant differential metabolites and found four key metabolism pathways, namely the TCA cycle, tryptophan metabolism, biopterin metabolism, and tyrosine metabolism (Figure 6). Then, we performed network pharmacology to explore the key proteins involved in the regulatory mechanism of the identified differential metabolites in *H. pylori*-positive chronic gastritis. We collected 1313 targets in H. pylori-positive chronic gastritis from the Genecards database. After matching the H. pyloripositive chronic gastritis-related targets with the significant metabolite-related targets, nine targets were identified as potential key proteins involved in the biological progress of *H. pylori* eradication in chronic gastritis. These nine targets were MPO, COMT, TPO, TH, EPX, CMA1, DDC, TPH1, and LPO, which may play essential roles in the therapeutic effect in H. pylori-chronic gastritis.


DISCUSSION

Here, to the best of our knowledge, urinary metabolomics of patients with H. pylori-positive chronic gastritis was investigated for the first time. A therapeutic follow-up was conducted to collect urine from patients during H. pylori eradication and evaluate the changes in urinary metabolic profiles between H. pylori-positive and -negative patients. Urinary metabolic profiles were altered during *H. pylori* eradication. The metabolic pathways involved in *H. pylori* eradication in H. pylori-positive chronic gastritis patients included: (1) Phenylalanine metabolism; (2) phenylalanine, tyrosine, and tryptophan biosynthesis; (3) citrate cycle; and (4) glyoxylate and dicarboxylate. The decrease in hippuric acid and the increase in isocitric acid, L-tryptophan, and L-phenylalanine were mostly related to the treatment and prognosis of H. pylori-positive chronic gastritis patients. Our results provide a new perspective for evaluating the prognosis of H. pyloripositive chronic gastritis patients: the analysis of urinary metabolites.

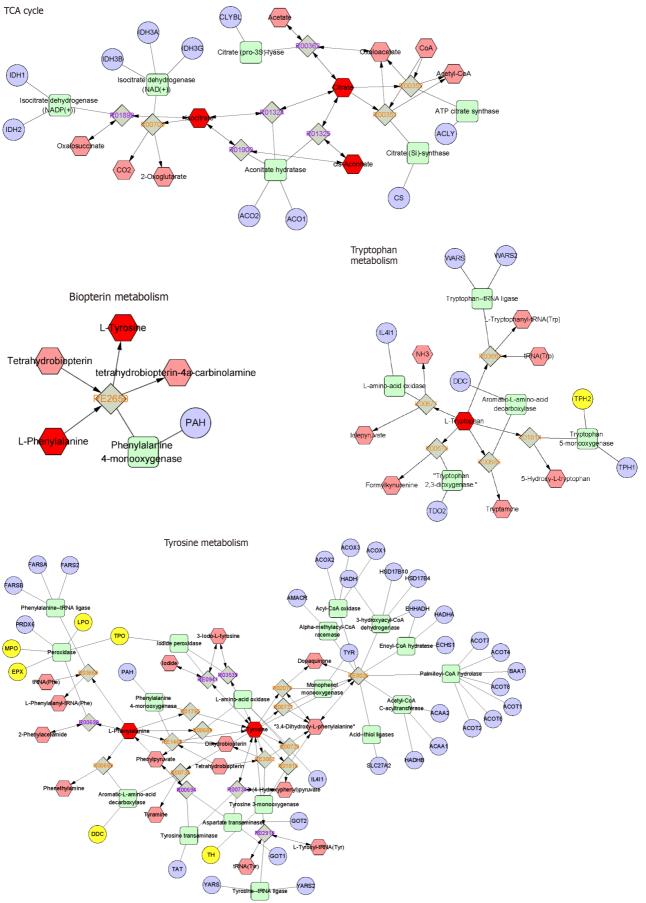

The citrate cycle was found to be a vital urinary metabolic pathway related to the prognosis of *H. pylori*-positive chronic gastritis patients. After H. pylori eradication, the levels of three citrate cycle intermediates, namely cis-aconitic acid, isocitric acid, and citric acid, were elevated in the urine of cured patients with H. pylori-positive chronic gastritis. These results were partly consistent with those from *H. pylori*-infected experimental animals reported in the literature. UPLC-Q-TOF/MS-based urinary metabolomics revealed that the citrate cycle was involved in the pathogenesis, development, and prognosis of H. pylori-positive chronic gastritis in a rat model [18]. H. pylori infection reduced the levels of oxalosuccinate in rat urine, and the cure of chronic gastritis elevated the levels of oxalosuccinate[18]. ¹H NMR-based urinary metabolomics showed that *H. pylori* infection disturbs the citrate cycle by elevating the levels of cis-aconitate in *H.* pylori-infected gerbil chronic gastritis models^[19]. Indeed, many studies have shown that *H. pylori* infection disrupts the citrate cycle in the stomach. GC/MS-based metabolomics revealed that H. pylori infection disturbs the citrate cycle of gastric epithelial cells by elevating the levels of citric acid and isocitric acid^[20]. GC-TOF-MS-based metabolomics revealed that *H. pylori* infection disturbs the citrate cycle of the gastric mucosa by elevating the levels of citric, malic, and fumaric acid[21]. Overall, the urinary metabolomics results obtained from patients and animals with *H. pylori*-positive chronic gastritis indicate that urinary metabolites in the citrate cycle are involved in the pathogenesis, development, and treatment of *H. pylori*-positive chronic gastritis. However, the mechanisms underlying the disruption of the citrate cycle by *H. pylori* in patients with chronic gastritis required further exploration.

In this study, hippuric acid was the most differentially expressed urinary metabolite related to the prognosis of H. pylori-positive chronic gastritis patients, with AUC values of 0.856 [HP(+) vs HP(-)] and 0.912 [(Health vs HP(+)]. H. pylori eradication decreased the levels of hippuric acid in the urine. These results are consistent with those observed in previously reported chronic gastritis model animals. ¹H NMR- and UPLC-Q/TOF MS-based urinary metabolomics

Baishideng® WJCC | https://www.wjgnet.com

Figure 5 Metabolites involved in *Helicobacter pylori* elimination. A: Peak intensity of the significant urinary metabolites associated with chronic gastritis management during *Helicobacter pylori* (*H. pylori*) elimination. Data presented as the mean \pm SD (n = 20). P < 0.05 was considered to represent significance. Health group vs *H. pylori*-positive [HP(+)] group: $^{\circ}P < 0.05$, $^{b}P < 0.01$, $^{\circ}P < 0.001$, and $^{d}P < 0.0001$; HP(+) group vs *H. pylori*-negative group: $^{\circ}P < 0.05$, $^{f}P < 0.01$, and $^{\circ}P < 0.001$; B: Receiver operating characteristic curve analysis of seven identified biomarkers. *Helicobacter pylori*-positive; HP(-): *Helicobacter pylori*-negative.

revealed that hippuric acid increased in the urine of sodium deoxycholate/ammonia-induced chronic atrophic gastritis rats and decreased in the urine of rats cured by a celebrated traditional Chinese medicine, Huangqi Jianzhong Tang[16, 22]. In addition, in another analysis of ¹H NMR-based metabolomics, compared with control rats and rats cured by electroacupuncture stimulation, hippuric acid concentrations were increased in the urine of chronic atrophic gastritis rats [23]. Overall, our results and the previous literature indicate that the levels of hippuric acid are increased in the urine of patients with chronic gastritis, providing a potential urinary biomarker for evaluating the pathogenesis, development, and prognosis of chronic gastritis. However, the relationships between hippuric acid and chronic gastritis need to be further investigated.


Currently, the standard diagnostic method for the detection of chronic gastritis is gastroscopy, which is relatively invasive and is associated with poor patient compliance[24-27]. In addition, the UBT has been used for almost 30 years to test for *H. pylori* infection in the diagnosis of chronic gastritis; however, this approach also has drawbacks[28,29]. ¹⁴C UBT is not suitable for children and pregnant women as it emits higher radiation levels than ¹³C UBT[7]. H2 receptor antagonists, antibiotics, and bleeding impair the sensitivity of UBT[7,25]. No single method can be considered the gold standard for diagnosing chronic gastritis. Thus, investigations into potential and novel biomarkers of H. pylori-positive chronic gastritis have clinical significance for the diagnosis of chronic gastritis. As urine is a completely non-invasive and inexpensive sample, urine biomarkers are promising for clinical application in gastric diseases. One case-control study revealed a novel urinary protein biomarker panel for the early diagnosis of gastric cancer^[30]. A follow-up study of gastric cancer patients after curative surgery demonstrated that urinary metabolic profiles are an effective early screening tool for gastric cancer [14]. Urinary 5-hydroxyindoleacetic acid levels are significantly higher in gastric cancer patients than in chronic gastritis patients or normal individuals^[31]. Indeed, rapid urine tests that apply antibodies to detect H. pylori-specific IgG are convenient for screening for H. pylori infection[32-34]. Nevertheless, no urinary biomarkers have been used for the clinical diagnosis of *H. pylori*-positive chronic gastritis. This is a groundbreaking original clinical of the urinary biomarkers of *H. pylori*-positive chronic gastritis. According to our findings and previous literature, the levels of hippuric acid and metabolites in the citrate cycle in the urine are promising biomarkers for the better diagnosis and management of *H. pylori*-positive chronic gastritis. However, some issues still require attention, such as the false-positive results of non-targeted metabolomics. Therefore, future experiments should aim to confirm the roles of hippuric acid and metabolites of the citrate cycle as pivotal urinary biomarkers of *H. pylori*-positive chronic gastritis.

Integrated metabolomics and network pharmacology revealed that MPO, COMT, TPO, TH, EPX, CMA1, DDC, TPH1, and LPO were the key proteins involved in the biological progress of *H. pylori* eradication in chronic gastritis. Many researchers have reported that MPO protein levels are reduced during *H. pylori* eradication. In *H. pylori*-infected gerbils, MPO activity of stomach tissues decreased approximately tenfold[35]. In C57BL/6 mouse, *H. pylori* infection induced substantially higher MPO activity in the submucosa and the lamina propria of the stomach[36]. In one clinical study, MPO serum levels were significantly higher in *H. pylori*-positive chronic gastritis patients than in *H. pylori*-negative controls[37]. However, little research has been conducted on the relationship between proteins other than MPO and *H. pylori* eradication or infection in chronic gastritis. To the best of our knowledge, we are the first to demonstrate that COMT, TPO, TH, EPX, CMA1, DDC, TPH1, and LPO may be related to the therapeutic effect of *H. pylori* eradication in chronic gastritis patients.

In summary, this is the first clinical research that dissected the relationships between urinary metabolites and the therapy of *H. pylori*-positive chronic gastritis. Although this is a groundbreaking original clinical study of *H. pylori*-positive chronic gastritis, it is limited in that the results still require confirmation in further studies, such as targeted metabolomics, larger patient sample size, and animal experimental studies. Through further study, we expect to develop hippuric acid and metabolites of the citrate cycle as faster urinary biomarkers for evaluating the pathogenesis, development, and prognosis of *H. pylori*-positive chronic gastritis.

Zaishideng® WJCC | https://www.wjgnet.com

An WT et al. Urinary metabolic profiles during H. pylori eradication

DOI: 10.12998/wjcc.v12.i5.951 **Copyright** ©The Author(s) 2024.

Figure 6 The metabolite-reaction-enzyme-gene networks of the key metabolites and targets. The hexagons, diamonds, rounded rectangles, and

Baishideng® WJCC https://www.wjgnet.com

circles represent the metabolites, reactions, metabolic enzymes, and regulatory genes of metabolic enzymes, respectively. The differential metabolites and differential metabolite-related metabolites are shown as dark and bright red hexagons, respectively. The yellow circles represent the potential proteins involved in the regulation of the identified differential metabolites in Helicobacter pylori-positive chronic gastritis.

CONCLUSION

LC-MS-based metabolomics revealed that the major metabolites regulated by H. pylori eradication therapy include cisaconitic acid, isocitric acid, citric acid, L-tyrosine, L-phenylalanine, L-tryptophan, and hippuric acid, which were involved in four metabolic pathways: (1) Phenylalanine metabolism; (2) phenylalanine, tyrosine, and tryptophan biosynthesis; (3) citrate cycle; and (4) glyoxylate and dicarboxylate metabolism. MPO, COMT, TPO, TH, EPX, CMA1, DDC, TPH1, and LPO were the key proteins involved in the biological process of *H. pylori* eradication in chronic gastritis. Hence, our research provides a new perspective for exploring the clinical significance of urinary metabolites in chronic gastritis.

ARTICLE HIGHLIGHTS

Research background

Helicobacter pylori (H. pylori) infection is a major risk factor of chronic gastritis, which perhaps influence approximately one-half of global population. H. pylori eradication is a popular treatment method for H. pylori-positive chronic gastritis, but its mechanism is far from clear.

Research motivation

Urinary metabolomics is gradually applied to mine the treatment mechanism of gastric diseases. However, there is no clinical study on urinary metabolomics of chronic gastritis.

Research objectives

This article aimed to investigate metabolic profiles of urine obtained during H. pylori eradication from patients with chronic gastritis.

Research methods

In this article, we applied LC-MS-based metabolomics and network pharmacology to investigate the relationships between urinary metabolites and *H. pylori*-positive chronic gastritis via a clinical follow-up study.

Research results

Our study revealed the different urinary metabolic profiles of H. pylori-positive chronic gastritis before and after H. pylori eradication. The metabolites regulated by *H. pylori* eradication include: cis-aconitic acid, isocitric acid, citric acid, Ltyrosine, L-phenylalanine, L-tryptophan and hippuric acid, which were involved in four metabolic pathways: (1) Phenylalanine metabolism; (2) phenylalanine, tyrosine and tryptophan biosynthesis; (3) citrate cycle; and (4) glyoxylate and dicarboxylate metabolism. Integrated metabolomics and network pharmacology revealed that MPO, COMT, TPO, TH, EPX, CMA1, DDC, TPH1 and LPO were the key proteins involved in the involved the biological progress of H. pylori eradication in chronic gastritis.

Research conclusions

Our research provides a new perspective for exploring the clinical significance of urinary metabolites in chronic gastritis.

Research perspectives

Although this is a groundbreaking original clinical study of *H. pylori*-positive chronic gastritis, it is limited in that the results still require confirmation in further studies, such as targeted metabolomics, larger patient sample size, and animal experimental studies.

FOOTNOTES

Co-first authors: Wen-Ting An and Yu-Xia Hao.

Co-corresponding authors: Hong-Xia Li and Xing-Kang Wu.

Author contributions: An WT contributed to conceptualization, investigation, methodology, project administration, resources, data curation, writing and formal analysis; Hao YX contributed to investigation, methodology, data curation and formal analysis; Wu XK contributed to supervision, writing, review and editing; Li HX contributed to conceptualization, methodology, supervision, funding acquisition, review and editing; all authors read and approved the final manuscript.

Supported by Shanxi Provincial Health Commission, No. 2019022.

Institutional review board statement: This study was approved by the Ethics Committee of Shanxi Provincial People's Hospital (No. 2022-167).

Informed consent statement: All the patients voluntarily participated in the study and signed informed consent forms.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Data sharing statement: All data and materials are available from the corresponding author.

STROBE statement: The authors have read the STROBE Statement - checklist of items, and the manuscript was prepared and revised according to the STROBE Statement - checklist of items.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Yu-Xia Hao 0000-0002-6844-6071; Hong-Xia Li 0009-0006-7856-4270; Xing-Kang Wu 0000-0001-6480-7952.

S-Editor: Wang JL L-Editor: A P-Editor: Zheng XM

REFERENCES

- 1 Sipponen P, Maaroos HI. Chronic gastritis. Scand J Gastroenterol 2015; 50: 657-667 [PMID: 25901896 DOI: 10.3109/00365521.2015.1019918]
- 2 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249 [PMID: 33538338 DOI: 10.3322/caac.21660]
- 3 Rugge M, Genta RM. Staging and grading of chronic gastritis. Hum Pathol 2005; 36: 228-233 [PMID: 15791566 DOI: 10.1016/j.humpath.2004.12.008]
- Lahner E, Esposito G, Pilozzi E, Purchiaroni F, Corleto VD, Di Giulio E, Annibale B. Occurrence of gastric cancer and carcinoids in atrophic 4 gastritis during prospective long-term follow up. Scand J Gastroenterol 2015; 50: 856-865 [PMID: 25645880 DOI: 10.3109/00365521.2015.1010570
- de Vries AC, van Grieken NC, Looman CW, Casparie MK, de Vries E, Meijer GA, Kuipers EJ. Gastric cancer risk in patients with 5 premalignant gastric lesions: a nationwide cohort study in the Netherlands. Gastroenterology 2008; 134: 945-952 [PMID: 18395075 DOI: 10.1053/j.gastro.2008.01.071]
- Maluf S, Salgado JV, Cysne DN, Camelo DMF, Nascimento JR, Maluf BVT, Silva LDM, Belfort MRC, Silva LA, Guerra RNM, Salgado 6 Filho N, Nascimento FRF. Increased Glycated Hemoglobin Levels in Patients With Helicobacter pylori Infection Are Associated With the Grading of Chronic Gastritis. Front Immunol 2020; 11: 2121 [PMID: 33013895 DOI: 10.3389/fimmu.2020.02121]
- 7 Yang H, Hu B. Diagnosis of Helicobacter pylori Infection and Recent Advances. Diagnostics (Basel) 2021; 11 [PMID: 34441240 DOI: 10.3390/diagnostics11081305]
- Ding SZ, Du YQ, Lu H, Wang WH, Cheng H, Chen SY, Chen MH, Chen WC, Chen Y, Fang JY, Gao HJ, Guo MZ, Han Y, Hou XH, Hu FL, 8 Jiang B, Jiang HX, Lan CH, Li JN, Li Y, Li YQ, Liu J, Li YM, Lyu B, Lu YY, Miao YL, Nie YZ, Qian JM, Sheng JQ, Tang CW, Wang F, Wang HH, Wang JB, Wang JT, Wang JP, Wang XH, Wu KC, Xia XZ, Xie WF, Xie Y, Xu JM, Yang CQ, Yang GB, Yuan Y, Zeng ZR, Zhang BY, Zhang GY, Zhang GX, Zhang JZ, Zhang ZY, Zheng PY, Zhu Y, Zuo XL, Zhou LY, Lyu NH, Yang YS, Li ZS; National Clinical Research Center for Digestive Diseases (Shanghai), Gastrointestinal Early Cancer Prevention & Treatment Alliance of China (GECA), Helicobacter pylori Study Group of Chinese Society of Gastroenterology, and Chinese Alliance for Helicobacter pylori Study. Chinese Consensus Report on Family-Based Helicobacter pylori Infection Control and Management (2021 Edition). Gut 2022; 71: 238-253 [PMID: 34836916 DOI: 10.1136/gutjnl-2021-325630]
- 9 Navashenaq JG, Shabgah AG, Banach M, Jamialahmadi T, Penson PE, Johnston TP, Sahebkar A. The interaction of Helicobacter pylori with cancer immunomodulatory stromal cells: New insight into gastric cancer pathogenesis. Semin Cancer Biol 2022; 86: 951-959 [PMID: 34600095 DOI: 10.1016/j.semcancer.2021.09.014]
- Zhang W, Cui N, Ye J, Yang B, Sun Y, Kuang H. Curcumin's prevention of inflammation-driven early gastric cancer and its molecular 10 mechanism. Chin Herb Med 2022; 14: 244-253 [PMID: 36117672 DOI: 10.1016/j.chmed.2021.11.003]
- Yan L, Chen Y, Chen F, Tao T, Hu Z, Wang J, You J, Wong BCY, Chen J, Ye W. Effect of Helicobacter pylori Eradication on Gastric Cancer 11 Prevention: Updated Report From a Randomized Controlled Trial With 26.5 Years of Follow-up. Gastroenterology 2022; 163: 154-162.e3 [PMID: 35364066 DOI: 10.1053/j.gastro.2022.03.039]
- Rokkas T, Gisbert JP, Malfertheiner P, Niv Y, Gasbarrini A, Leja M, Megraud F, O'Morain C, Graham DY. Comparative Effectiveness of 12 Multiple Different First-Line Treatment Regimens for Helicobacter pylori Infection: A Network Meta-analysis. Gastroenterology 2021; 161: 495-507.e4 [PMID: 33839101 DOI: 10.1053/j.gastro.2021.04.012]

- Li H, Wang R, Sun H. Systems Approaches for Unveiling the Mechanism of Action of Bismuth Drugs: New Medicinal Applications beyond 13 Helicobacter Pylori Infection. Acc Chem Res 2019; 52: 216-227 [PMID: 30596427 DOI: 10.1021/acs.accounts.8b00439]
- 14 Jung J, Jung Y, Bang EJ, Cho SI, Jang YJ, Kwak JM, Ryu DH, Park S, Hwang GS. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based metabolomic profiling. Ann Surg Oncol 2014; 21 Suppl 4: S736-S742 [PMID: 25092158 DOI: 10.1245/s10434-014-3886-0]
- Kwon HN, Lee H, Park JW, Kim YH, Park S, Kim JJ. Screening for Early Gastric Cancer Using a Noninvasive Urine Metabolomics 15 Approach. Cancers (Basel) 2020; 12 [PMID: 33050308 DOI: 10.3390/cancers12102904]
- Liu Y, Jin Z, Qin X, Zheng Q. Urinary metabolomics research for Huangqi Jianzhong Tang against chronic atrophic gastritis rats based on (1) 16 H NMR and UPLC-Q/TOF MS. J Pharm Pharmacol 2020; 72: 748-760 [PMID: 32128823 DOI: 10.1111/jphp.13242]
- Tong Y, Zhao X, Wang R, Li R, Zou W, Zhao Y. Therapeutic effect of berberine on chronic atrophic gastritis based on plasma and urine 17 metabolisms. Eur J Pharmacol 2021; 908: 174335 [PMID: 34265298 DOI: 10.1016/j.ejphar.2021.174335]
- 18 Chen X, Zhang J, Wang R, Liu H, Bao C, Wu S, Wen J, Yang T, Wei Y, Ren S, Tong Y, Zhao Y. UPLC-Q-TOF/MS-Based Serum and Urine Metabonomics Study on the Ameliorative Effects of Palmatine on Helicobacter pylori-Induced Chronic Atrophic Gastritis. Front Pharmacol 2020; 11: 586954 [PMID: 33041831 DOI: 10.3389/fphar.2020.586954]
- Gao XX, Ge HM, Zheng WF, Tan RX. NMR-based metabonomics for detection of Helicobacter pylori infection in gerbils: which is more 19 descriptive. Helicobacter 2008; 13: 103-111 [PMID: 18321300 DOI: 10.1111/j.1523-5378.2008.00590.x]
- 20 Matsunaga S, Nishiumi S, Tagawa R, Yoshida M. Alterations in metabolic pathways in gastric epithelial cells infected with Helicobacter pylori. Microb Pathog 2018; 124: 122-129 [PMID: 30138760 DOI: 10.1016/j.micpath.2018.08.033]
- 21 Son SY, Lee CH, Lee SY. Different Metabolites of the Gastric Mucosa between Patients with Current Helicobacter pylori Infection, Past Infection, and No Infection History. Biomedicines 2022; 10 [PMID: 35327358 DOI: 10.3390/biomedicines10030556]
- 22 Liu Y, Xu W, Wang G, Qin X. Material basis research for Huangqi Jianzhong Tang against chronic atrophic gastritis rats through integration of urinary metabonomics and SystemsDock. J Ethnopharmacol 2018; 223: 1-9 [PMID: 29777900 DOI: 10.1016/j.jep.2018.05.015]
- Xu J, Zheng X, Cheng KK, Chang X, Shen G, Liu M, Wang Y, Shen J, Zhang Y, He Q, Dong J, Yang Z. NMR-based metabolomics Reveals 23 Alterations of Electro-acupuncture Stimulations on Chronic Atrophic Gastritis Rats. Sci Rep 2017; 7: 45580 [PMID: 28358020 DOI: 10.1038/srep45580]
- Rahman I, Afzal NA, Patel P. The role of magnetic assisted capsule endoscopy (MACE) to aid visualisation in the upper GI tract. Comput Biol 24 Med 2015; 65: 359-363 [PMID: 25934086 DOI: 10.1016/j.compbiomed.2015.03.014]
- Wang YK, Kuo FC, Liu CJ, Wu MC, Shih HY, Wang SS, Wu JY, Kuo CH, Huang YK, Wu DC. Diagnosis of Helicobacter pylori infection: 25 Current options and developments. World J Gastroenterol 2015; 21: 11221-11235 [PMID: 26523098 DOI: 10.3748/wjg.v21.i40.11221]
- Domsa AT, Gheban D, Lazăr C, Pop B, Borzan CM. Particular Morphological Features in the Diagnosis of Pediatric Helicobacter pylori 26 Gastritis: A Morphometry-Based Study. J Clin Med 2020; 9 [PMID: 33198263 DOI: 10.3390/jcm9113639]
- Uematsu J, Sugimoto M, Hamada M, Iwata E, Niikura R, Nagata N, Fukuzawa M, Itoi T, Kawai T. Efficacy of a Third-Generation High-27 Vision Ultrathin Endoscope for Evaluating Gastric Atrophy and Intestinal Metaplasia in Helicobacter pylori-Eradicated Patients. J Clin Med 2022; 11 [PMID: 35456291 DOI: 10.3390/jcm11082198]
- Alzoubi H, Al-Mnayyis A, Al Rfoa I, Agel A, Abu-Lubad M, Hamdan O, Jaber K. The Use of (13)C-Urea Breath Test for Non-Invasive 28 Diagnosis of Helicobacter pylori Infection in Comparison to Endoscopy and Stool Antigen Test. Diagnostics (Basel) 2020; 10 [PMID: 32635179 DOI: 10.3390/diagnostics10070448]
- 29 Cardos AI, Maghiar A, Zaha DC, Pop O, Fritea L, Miere Groza F, Cavalu S. Evolution of Diagnostic Methods for Helicobacter pylori Infections: From Traditional Tests to High Technology, Advanced Sensitivity and Discrimination Tools. Diagnostics (Basel) 2022; 12 [PMID: 35204598 DOI: 10.3390/diagnostics12020508]
- Shimura T, Dayde D, Wang H, Okuda Y, Iwasaki H, Ebi M, Kitagawa M, Yamada T, Hanash SM, Taguchi A, Kataoka H. Novel urinary 30 protein biomarker panel for early diagnosis of gastric cancer. Br J Cancer 2020; 123: 1656-1664 [PMID: 32934343 DOI: 10.1038/s41416-020-01063-5]
- 31 Mokhtari M, Rezaei A, Ghasemi A. Determination of urinary 5-hydroxyindoleacetic acid as a metabolomics in gastric cancer. J Gastrointest Cancer 2015; 46: 138-142 [PMID: 25761643 DOI: 10.1007/s12029-015-9700-9]
- Mabe K, Kikuchi S, Okuda M, Takamasa M, Kato M, Asaka M. Diagnostic accuracy of urine Helicobacter pylori antibody test in junior and 32 senior high school students in Japan. Helicobacter 2017; 22 [PMID: 27400382 DOI: 10.1111/hel.12329]
- Aumpan N, Vilaichone RK, Chotivitayatarakorn P, Pornthisarn B, Cholprasertsuk S, Bhanthumkomol P, Kanokwanvimol A, Siramolpiwat S, 33 Mahachai V. High Efficacy of Rapid Urine Test for Diagnosis of Helicobacter pylori Infection in Thai People. Asian Pac J Cancer Prev 2019; 20: 1525-1529 [PMID: 31128058 DOI: 10.31557/APJCP.2019.20.5.1525]
- Syam AF, Miftahussurur M, Uwan WB, Simanjuntak D, Uchida T, Yamaoka Y. Validation of Urine Test for Detection of Helicobacter pylori 34 Infection in Indonesian Population. Biomed Res Int 2015; 2015: 152823 [PMID: 26824034 DOI: 10.1155/2015/152823]
- Chang CC, Chen SH, Lien GS, Lou HY, Hsieh CR, Fang CL, Pan S. Eradication of Helicobacter pylori significantly reduced gastric damage 35 in nonsteroidal anti-inflammatory drug-treated Mongolian gerbils. World J Gastroenterol 2005; 11: 104-108 [PMID: 15609406 DOI: 10.3748/wjg.v11.i1.104]
- Shiomi S, Toriie A, Imamura S, Konishi H, Mitsufuji S, Iwakura Y, Yamaoka Y, Ota H, Yamamoto T, Imanishi J, Kita M. IL-17 is involved in 36 Helicobacter pylori-induced gastric inflammatory responses in a mouse model. Helicobacter 2008; 13: 518-524 [PMID: 19166417 DOI: 10.1111/j.1523-5378.2008.00629.x]
- Rautelin HI, Oksanen AM, Veijola LI, Sipponen PI, Tervahartiala TI, Sorsa TA, Lauhio A. Enhanced systemic matrix metalloproteinase 37 response in Helicobacter pylori gastritis. Ann Med 2009; 41: 208-215 [PMID: 18979291 DOI: 10.1080/07853890802482452]

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: office@baishideng.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

