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Abstract
BACKGROUND 
Wild rats have the potential to hold zoonotic infectious agents that can spread to 
humans and cause disease.

AIM 
To better understand the composition of gut bacterial communities in rats is 
essential for preventing and treating such diseases. As a tropical island located in 
the south of China, Hainan province has abundant rat species. Here, we examined 
the gut bacterial composition in wild adult rats from Hainan province.

METHODS 
Fresh fecal samples were collected from 162 wild adult rats, including three 
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species (Rattus norvegicus, Leopoldamys edwardsi, and Rattus losea), from nine regions of Hainan 
province between 2017-2018.

RESULTS 
We analyzed the composition of gut microbiota using the 16S rRNA gene amplicon sequencing. 
We identified 4903 bacterial operational taxonomic units (30 phyla, 175 families, and 498 genera), 
which vary between samples of different rat species in various habitats at various times of the 
year. In general, Firmicutes were the most abundant phyla, followed by Bacteroidetes (15.55%), 
Proteobacteria (6.13%), and Actinobacteria (4.02%). The genus Lactobacillus (20.08%), unidentified_
Clostridiales (5.16%), Romboutsia (4.33%), unidentified_Ruminococcaceae (3.83%), Bacteroides (3.66%), 
Helicobacter (2.40%) and Streptococcus (2.37%) were dominant.

CONCLUSION 
The composition and abundance of the gut microbial communities varied between rat species and 
locations. This work provides fundamental information to identify microbial communities useful 
for disease control in Hainan province.
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Core Tip: Several researches have investigated the microbial communities in arthropods but few researches 
have investigated microbial diversity in wild rats’ gut in Hainan province. Here, by 16S rRNA gene 
amplicon sequencing we compared the gut bacterial communities in fecal samples from 162 wild rats of 
three species and nine geographic locations in Hainan.
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INTRODUCTION
The laboratory rat has been used as a useful experimental model for biomedical sciences since the last 
century. Rats were domesticated as early as the Edo period[1]. Gut microbiota is composed of myriad 
microbes (archaea, bacteria, fungi, and viruses) that interact with each other and with their host, playing 
important roles in the host’s metabolism, physiology, homeostasis, health, and disease development[2]. 
There is an increase in studies of the laboratory rat gut microbiota[3-9], but very few on wild rats[10].

Wild rats pose a serious threat to public health because they are reservoirs for a number of zoonotic 
pathogens[11-13] and frequently and closely interact with people, domestic animals, and other animals.

Only a small number of researchers have looked into the microbial diversity in the guts of wild rats in 
the province of Hainan, compared to the number of researchers who have looked into the microbial 
communities in arthropods. Here, by 16S rRNA gene amplicon sequencing we compared the gut 
bacterial communities in fecal samples from 162 wild rats of three species and nine geographic locations 
in Hainan.

MATERIALS AND METHODS
Rat collection and morphology identification
Between December 2017 and November 2018, wild adult rats were collected using mousetraps in rat 
cages from nine geographic locations in Hainan province (L1-L9: L1 = Yinggeling; L2 = Huan-
gjingjiaoling; L3 = Danzhou; L4 = Dongfang; L5 = Haikou; L6 = Jianfengling; L7 = Baisha; L8 = Sanya; 
L9 = Lingao) (Figure 1 and Supplementary Table 1). The trap sites we selected included mountains, 
residential areas, and farmland. When the team got back to the lab, they based their determination of 
gender on the morphology of the external reproductive organs. Based on DNA barcode analysis, a 
polymerase chain reaction (PCR) assay was used to confirm the identification of the species of rats. The 
characteristics of all rats are recorded, including acquisition time, location, sex, weight, and adult or 
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immaturity (Supplementary Table 1).

Molecular identification of rats
The SDS method was used for DNA extraction. The PCR assay was performed to identify rat species 
using the primer 5′-TACCATGAGGACAAATATCATTCTG-3′ and 5′-CCTCCTAGTTTGTTAGGGAT-
TGATCG-3′[14]. Amplification was performed in 25 μL total volume, including DNA template (2 μL), 
each primer (0.5 μL), 10 × Gene Amp PCR Buffer (2.5 μL), dNTP (1.25 mmol/L) (2 μL), rTaq DNA 
polymerase (5 U/μL) (0.5 μL) and double distilled water (17 μL). The PCR procedure was as follows: (1) 
Initial denaturation 95 ℃ (5 min); (2) 35 cycles each of denaturation 94 ℃ (30 s); (3) primer annealing 51 
℃ (30 s); and (4) extension 72 ℃ (30 s). It took 5 min to complete the extension step's 35th cycle. The 
mouse species was determined through a blast to the NCBI nucleotide database, and the amplification 
products were identified using Sanger sequencing.

Tissue and fecal sampling
CO2 was used for euthanizing rats. Intestinal tissue was dissected for each rat species, rinsing three 
times in sterile normal saline. In the meantime, samples of feces were taken from the intestinal tissues. 
Then, samples were immediately collected in a brain heart infusion medium with glycerol and 
subsequently stored at -80 ℃ until analysis.

16S rRNA microbial profiling preparation
Fecal samples weighing about 50 mg were used for 16S rRNA microbial profiling analyses. Following 
the manufacturer's instructions, microbial DNA was extracted from the fecal samples using a QIAamp 
Fast DNA Stool Mini Kit (Qiagen, Germany). The PCR products were examined using electrophoresis. 
Thermo GeneJET Gel Extraction Kit was used to recover the PCR products after running them on 2% 
agarose gels in TAE buffer. Until analyses, all of the extracted DNA was kept at -20 °C.

The hypervariable regions V3-V4 of the bacterial 16S rRNA were amplified with primers 5′-
CCTAYGGGRBGCASCAG-3′ and 5′-GGACTACNNGGGTATCTAAT-3′. PCR reactions were performed 
in a 30 μL volume consisting of Phusion® High-Fidelity PCR Master Mix with GC buffer (New England 
Biolabs) (15 μL), forward and reverse primers (0.2 μM), and template DNA (10 ng). The PCR reaction 
was done with the following conditions: (1) Initial denaturation at 98 ℃ for 1 min; (2) 30 cycles of 
denaturation at 98 ℃ for 10 s; (3) annealing at 50 ℃ for 30 s; (4) elongation at 72 ℃ for 30 s; and (5) final 
extension 72 ℃ for 5 min. Sequencing libraries were made with an Ion Plus Fragment Library Kit (48 
rxns) (Thermo Scientific) according to the manufacturer’s protocols. The Qubit 2.0 Fluorometer (Thermo 
Scientific) was used to evaluate the library's quality. Sequencing was done on the Ion S5TM XL platform 
last.

16S rRNA microbial profiling analysis
Based on the unique barcode, single-end reads were assigned to samples and truncated by cutting off 
the barcode and primer sequence. The Cutadapt quality control process involved treating the raw reads 
with quality filtering under specific filtering conditions in order to produce high-quality clean reads
[15]. Then, we compared the reads with the Silva database, and reference database[16] using UCHIME 
Algorithm[17] to detect and remove chimera sequences[18] to obtain clean reads.

Uparse software performed analyses of microbial profiling[19]. Sequences with a 97% or higher 
similarity to one another were found to the same Operational taxonomic unit (OTU). We screened the 
representative sequence of each OTU for further annotation. Taxonomic data was annotated at various 
taxonomic levels using the Silva Database, which uses the Mothur algorithm[16]. We used the MUSCLE 
software to conduct multiple sequence alignment to study the difference between the dominant species 
in different groups[20]. We normalized OTUs abundance using the standard sequence number of the 
sample with the least sequences and summarized the OTU abundance in a table. Subsequently, we 
analyzed the alpha diversity (α-diversity) and beta diversity (β-diversity) based on this normalized data.

Bacterial diversity analysis
In the complexity of species diversity, we applied α-diversity through 6 indices (Observed-species, 
Chao1, ACE, Shannon, Simpson, Good’s coverage). Chao1 and ACE were selected as the Chao1 and 
ACE estimators to determine richness. The Shannon index and Simpson index were used to calculating 
Shannon diversity and Simpson diversity. Using Good's coverage, Coverage was chosen to describe the 
depth of the Sequencing.

We applied β-diversity for evaluating the similarity of different samples rather than describing 
within-sample diversity like α-diversity. We calculated β-diversity on both Weighted and Unweighted 
unifrac. The dimension of the original variables was reduced using principal component analysis. 
Principal coordinate analysis (PCoA) was performed to visualize complex, multidimensional data and 
was displayed to visualize microbial community structure relationships. Firstly, we obtained a distance 
matrix among samples in weighted or unweighted unifrac. Secondly, we transformed the distance 
matrix to a new set of orthogonal axes. Finally, the first principal coordinate demonstrated the 
maximum variation factor, and the second principal coordinate demonstrated the second maximum 
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one, and so on. We performed Adonis analysis to know to what extent location explained variation in 
microbial composition. For significant difference analysis, either the USEARCH software (https://
www.drive5.com/usearch) or R software (version 4.0.3) was used.

RESULTS
Rat species from different sampling areas
Among the 162 wild rats collected by traps from nine district areas which covered almost half of Hainan 
province (Figure 1), three rat species (Rattus norvegicus, Leopoldamys edwardsi, and Rattus losea) were 
predominant (Table 1 and Supplementary Table 1). These rat species showed distinct geographic distri-
butions. Rattus norvegicus (brown rat) was mainly found in farmland (Danzhou, Dongfang, Baisha, and 
Sanya) and residential areas (Haikou); Leopoldamys edwardsi (Edward’s long-tailed rat) was exclusively 
found in mountain areas in Yinggeling, Huangjingjiaoling, and Jianfengling; Rattus losea (Lesser rice-
field rat) was only found from mountains in Lingao area (Table 1).

Gut bacterial species composition among rat species
A total of 162 fecal samples (one from each rat) were collected from the field-collected wild adult rats 
and subjected to bacterial profiling analyses, and estimating the bacterial community composition of 
these samples involved 16S rRNA gene amplicon sequencing. A total of 13326753 raw reads (mean ± SE 
= 82263.91 ± 8277.45 per sample) were obtained from the 162 samples that were sequenced 
(Supplementary Table 2). Among them, 12537453 clean reads (mean ± SE = 77391.69 ± 7604.97 per 
sample) remained for subsequent analyses after quality control processing. These sequences were 
divided into 4903 OTUs that belonged to 30 phyla, 175 families, and 498 genera (Supplementary Table  
3). Among those OTUs that were defined to species level (Supplementary Table 3), some notoriously 
famous bacteria were found, such as Bacillus anthracis (OUT_426), Bacteroides pyogenes (OUT_3846), 
Clostridium perfringens (OUT_8), Streptococcus suis (OUT_410), and Vibrio cholerae (OUT_3092).

As shown in Figure 2A, sequences originating from Firmicutes (average 65.76%, Supplementary 
Table 4) were dominant, followed by Bacteroidetes (15.55%), Proteobacteria (6.13%), Actinobacteria 
(4.02%), Unclassified bacteria (3.68%), Tenericutes (1.93%), Fusobacteria (1.00%), Spirochaetes (0.88%), 
Chlamydiae (0.27%), Melainabacteria (0.17%), and so on (detailed in Supplementary Table 4, those < 
0.15% were pooled together as “Others” in Figure 2A). Although Bacteroidetes were the second most 
abundant on average, this was not the case for samples from Danzhou, Haikou, Baisha, and Lingao 
(Supplementary Table 4).

Following a similar trend, Clostridia (averaged 32.72%) and Bacilli (averaged 26.48%) were the top 
two classes of bacteria in most samples (Figure 2B), but Clostridia only ranked fourth in samples from 
the Jianfengling area, and Bacteroidia was the 2nd most abundant in samples from Yinggeling, 
Huangjingjiaoling and Sanya (Supplementary Table 5).

According to the average value, the most abundant family was Lactobacillaceae (20.08%), followed by 
Ruminococcaceae (12.03%), Lachnospiraceae (8.11%), Muribaculaceae (6.33%), Peptostreptococcaceae 
(5.61%), unidentified_Clostridiales (5.58%), Erysipelotrichaceae (5.50%), Bacteroidaceae (3.66%), 
Enterobacteriaceae (3.25%), and Streptococcaceae (2.71%) (detailed in Supplementary Table 6, those < 
2.5% were pooled together as “Others” in Figure 2C). Compared to the profiles for the bacterial phylum 
and class, the profiles for the actual values were more complex. Lactobacillaceae was the most abundant 
in samples from five areas (Danzhou, Dongfang, Jianfengling, Baisha, and Lingao), Ruminococcaceae 
was most abundant in samples from Yinggeling and Huangjingjiaoling, and Peptostreptococcaceae and 
Bacteroidaceae were the richest in samples from Haikou and Sanya, respectively (Supplementary 
Table 6).

As illustrated in Figure 2D and detailed in Supplementary Table 7, the genus with the highest OTU 
abundance in the feces of rats was those (with relative abundance less than 0.5%) designated as ‘others’ 
(average 26.80%), followed by Lactobacillus (20.08%), unidentified_Clostridiales (5.16%), Romboutsia 
(4.33%), and so on. In samples from eight different areas, "Others" or Lactobacillus ranked first and 
second, but not in samples from the Haikou area, which had the highest concentrations of unidentified 
Clostridiales and Romboutsia.

As shown in Figure 3, the heatmap color-coded the different OUT compositions in samples of the 
nine groups (Figure 3A); all of the samples contained unique bacterial OTUs, according to the upset plot 
(Figure 3B), but those from the Jianfengling region had the highest numbers of both (618 for unique and 
153 for common with the Lingao area).

Gut bacterial diversity of rat
Alpha diversity indices were performed to detect whether bacterial diversity and richness significantly 
varied among samples of different rat species and geographic locations. The bacterial species richness, 
represented by Chao1 and ace denoting the number of species rather than the abundance of each species 
was highest for samples from the Yinggeling area (Table 2). Statistics were conducted for the Chao1 
values because the values of both indices (Chao1 and ace) changed in a remarkably similar way across 
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Table 1 Location, species, number, season, and habitat of trapped rats

Site Rat species Number of midgut samples Sampling season Trap sites

YGL LE 32 2018.11 Mountains

HJJL LE 25 2018.11 Mountains

DZ RN 12 2017.12 Farmland

DF RN 12 2018.01 Farmland

HK RN 13 2017.12 Residential areas

JFL LE 13 2018.06 Mountains

BS RN 12 2018.01 Farmland

SY RN 23 2018.05 Farmland

LG RL 20 2018.11 Mountains

YGL: Yinggeling; HJJL: Huangjingjiaoling; DZ: Danzhou; DF: Dongfang; HK: Haikou; JFL: Jianfengling; BS: Baisha; SY: Sanya; LG: Lingao; LE: 
Leopoldamys edwardsi; RN: Rattus norvegicus; RL: Rattus losea.

Figure 1 Sketch map of Hainan province. The map shows the locations of the nine collection study sites. L1 = Yinggeling, mountain; L2 = Huangjingjiaoling, 
mountain; L3 = Danzhou, residential areas; L4 = Dongfang, residential areas; L5 = Haikou, residential areas; L6 = Jianfengling, mountain; L7 = Baisha, residential 
areas; L8 = Sanya, residential areas; L9 = Lingao, farmland.

the nine groups. Except for Lingao and Jianfengling, samples from Yinggeling and Huangjingjiaoling, 
the two highest among all, had significantly more bacteria than the other five samples (Figure 4A). 
Taking Yinggeling as an example, it was most significantly higher (P < 0.0001) than those from 
Danzhou, Dongfang, Haikou, Sanya and Baisha, and significant (P < 0.05) compared to Lingao and 
Jianfengling (Figure 4A). In addition, samples from the Jianfengling area had higher bacterial richness 
compared to those from Danzhou and Sanya, and those from the Lingao area had higher richness than 
those from Danzhou and Sanya. There was no significant difference between other groups if not 
mentioned above.

Species diversity, represented by Shannon diversity and Simpson diversity, indicates species richness 
and evenness in the community. As the two indices changed accordingly (Table 2), values of the 
Shannon diversity were used to do the statistics. In comparison to samples from Danzhou (P < 0.0001), 
Dongfang (P < 0.01), Haikou (P < 0.001), and Sanya (P < 0.05), samples from the Yinggeling area showed 
significant differences. Although similar in its bacterial composition pattern to those from the 
Yinggeling area, the species diversity of samples from the Huangjingjiaoling area was less significant 
with samples from Danzhou (P < 0.001) and Haikou (P < 0.05). In contrast to the insignificant results 
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Figure 2 Mean relative abundances of bacterial phylum, class, family, and genus associated with three rat species at different sites. A: Phylum; B: Class; C: Family; D: Genus. Families with an abundance of less than 2.50% 
and Phyla with an abundance of less than 0.15% were combined to form the category "Others." YGL: Yinggeling; HJJL: Huangjingjiaoling; DZ: Danzhou; DF: Dongfang; HK: Haikou; JFL: Jianfengling; BS: Baisha; SY: Sanya; LG: Lingao; LE: 
Leopoldamys edwardsi; RN: Rattus norvegicus; RL: Rattus losea.

among sample groups not mentioned above, the species diversity of samples from the Danzhou area 
was significantly different (P < 0.05) from those from the Lingao area (Figure 4B).

Variation of gut bacterial communities among study locations
Distance metrics were used to estimate differences between rat species and geographical locations in 
bacterial community profiles. The results showed a significant difference in microbiota among the three 
rat species and nine locations based on unweighted unifrac and weighted unifrac distances. When 
analyzing the fecal microbiota from various study sites, we used PCoA plots to visualize its 
composition. Using Unweighted Unifrac distance, two PCoA coordinates percent variation explained 
PCo1 (21.33%) and PCo2 (6.98%) of the total variation, respectively. We observed significant differences 
in fecal microbial β-diversity among communities from different locations, including Leopoldamys 
edwardsi from Yinggeling, Huangjingjiaoling, and Jianfengling; Rattus norvegicus from Danzhou, Baisha, 
and Sanya. Rattus norvegicus from the Dongfang area does not cluster tightly. There were no observable 
differences between Rattus norvegicus from Danzhou and Haikou (Figure 5A). Two PCoA coordinates 
based on Weighted Unifrac distance percent variation revealed PCo1 (44.41%) and PCo2 (10.69%), 
respectively (Figure 5B). These differences were mainly due to the geographical location, which 
included a plethora of variables (rat species, habitat, season, diet, etc.).

Heatmaps based on Bray-Curtis distances and Weighted unifrac distances, respectively, showed the 
diversity and similarity of microbial communities (Figure 5C and D). As shown in Figure 5C, the most 
similar (0.508, the lowest in Supplementary Table 8) intestinal bacterial community structure was 
between samples from Jianfengling and Huangjingjiaoling (highlighted with blue triangles in 
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Figure 3 Heatmap and upset plot featuring the rat gut bacterial community. A: The heatmap in log scale depicting the gut bacterial community of rat 
feces obtained with open reference operational taxonomic unit (OTU) picking methods. Blue colors represent high abundance, and red colors represent low 
abundance; white indicates absence; B: Visualizing the relationships between OTUs in all rat species across all sites using an upset plot. The Sangerbox tools, a free 
online platform for data analysis, were used to create the plot (http://www.sangerbox.com/tool). YGL: Yinggeling; HJJL: Huangjingjiaoling; DZ: Danzhou; DF: 
Dongfang; HK: Haikou; JFL: Jianfengling; BS: Baisha; SY: Sanya; LG: Lingao; LE: Leopoldamys edwardsi; RN: Rattus norvegicus; RL: Rattus losea.

http://www.sangerbox.com/tool
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Table 2 Richness and diversity (mean ± SD) of the rat intestinal content bacterial community

Group Observed_species Chao1 Ace Shannon Simpson

YGL-LE 662.16 ± 185.6 853.76 ± 201.05 862.86 ± 191.94 6.30 ± 1.19 0.95 ± 0.05

HJJL-LE 654.16 ± 207.22 827.96 ± 227.51 835.31 ± 217.91 5.83 ± 1.88 0.88 ± 0.15

DZ-RN 213.42 ± 128.99 340.60 ± 168.92 348.04 ± 161.47 3.70 ± 1.14 0.82 ± 0.10

DF-RN 369.50 ± 177.23 490.55 ± 186.68 511.53 ± 179.36 4.59 ± 1.39 0.87 ± 0.12

HK-RN 346.85 ± 188.71 492.23 ± 226.98 511.22 ± 234.13 4.19 ± 1.59 0.80 ± 0.21

JFL-LE 533.77 ± 209.11 696.02 ± 238.19 700.85 ± 227.48 5.25 ± 1.17 0.89 ± 0.07

BS-RN 424.17 ± 126.51 550.92 ± 164.77 574.32 ± 159.53 5.04 ± 1.07 0.89 ± 0.09

SY-RN 342.91 ± 129.91 458.86 ± 162.56 466.06 ± 153.41 5.12 ± 1.01 0.92 ± 0.06

LG-RL 532.85 ± 221.85 715.35 ± 259.97 747.67 ± 259.51 5.30 ± 1.31 0.90 ± 0.09

YGL: Yinggeling; HJJL: Huangjingjiaoling; DZ: Danzhou; DF: Dongfang; HK: Haikou; JFL: Jianfengling; BS: Baisha; SY: Sanya; LG: Lingao; LE: 
Leopoldamys edwardsi; RN: Rattus norvegicus; RL: Rattus losea.

Figure 4 Boxplot representation of observed species. Boxplots show the distribution of bacteria between rat samples categorized under different locations 
and rat species. A: Boxplot representation of chao1; B: Boxplot representation of Shannon diversity. Values from all statistical tests are available in additional Table 2. 
YGL: Yinggeling; HJJL: Huangjingjiaoling; DZ: Danzhou; DF: Dongfang; HK: Haikou; JFL: Jianfengling; BS: Baisha; SY: Sanya; LG: Lingao; LE: Leopoldamys 
edwardsi; RN: Rattus norvegicus; RL: Rattus losea. aP < 0.05; bP < 0.01; cP < 0.001; dP < 0.0001.

Figure 5C), followed by that between Baisha and Dongfang (0.57), and those of Danzhou area (0.61-0.63, 
Supplementary Table 8) with Baisha, Dongfang, Haikou, and Lingao (Figure 5C). Conversely, samples 
from the Sanya area were most dissimilar to those from Huangjingjiaoling (0.91), Lingao (0.89), and 
Haikou (0.88). As shown in Figure 5D, the lowest difference (0.16, Supplementary Table 9) was observed 
between samples from Yinggeling and Huangjingjiaoling (highlighted by the blue triangles), suggesting 
the bacteria in these two groups of samples were evolutionary more similar. Conversely, the bacteria in 
the samples from the Sanya area were evolutionary most distant (highlighted by the stars in Figure 5D) 
to those from Danzhou and Haikou (0.51 and 0.57, respectively; Supplementary Table 9).

DISCUSSION
Through the same procedure from sample collection and processing to sequencing, the gut bacterial 
communities differed at all levels (phylum, class, family, and genus) among fecal samples of wild rats 
from nine geographical locations, three different habitats, and rat species, and two seasons (winter vs 
summer). According to scant research, diet uncontrollable for wild rats is a significant determinant of 
gut bacterial composition[21-23], which differs for rats living in diverse habitats in every location at all 

https://f6publishing.blob.core.windows.net/1e9a3d78-6938-4086-937e-eaec255fb6e6/WJG-29-3469-supplementary-material.pdf
-https://f6publishing.blob.core.windows.net/1e9a3d78-6938-4086-937e-eaec255fb6e6/WJG-29-3469-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1e9a3d78-6938-4086-937e-eaec255fb6e6/WJG-29-3469-supplementary-material.pdf
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Figure 5 Principal coordinate analysis plot based on unweighted Unifrac distance and weighted Unifrac distance matrix depicting 
differences in the composition of the gut microbiota from different rat species and locations. A: unweighted Unifrac distance; B: Weighted Unifrac 
distance; C and D: Colors represent community profiles of location. Matrix heatmap of the Bray-Curtis distances (C) and the weighted unifrac beta diversity (D) 
between the microbial communities of rats from nine different areas. YGL: Yinggeling; HJJL: Huangjingjiaoling; DZ: Danzhou; DF: Dongfang; HK: Haikou; JFL: 
Jianfengling; BS: Baisha; SY: Sanya; LG: Lingao; LE: Leopoldamys edwardsi; RN: Rattus norvegicus; RL: Rattus losea.

seasons. There were quite a few striking findings from our study. As the only representative samples of 
residential area (Haikou) rats, their gut bacterial composition was different at the family and genus 
level, richest with Peptostreptococcaceae and unidentified_Clostridiales at the family level, and with 
unidentified_Clostridiales and Romboutsia at the genus level. Although collected from the same rat 
species (Rattus norvegicus) during the same winter season, the bacterial profiles of the four groups of 
samples from different areas (Baisha, Dongfang, Danzhou, and Haikou) were distinctly different at the 
class, family, and genus level, revealing the complexity of factors (e.g., habitat, farmland vs residential 
area) behind the bacterial community. The general bacterial profile of samples taken from the same 
species of rat (Leopoldamys edwardsi) in the summer in one mountain area (Yinggeling) varied from 
samples taken in the winter from the other two mountain areas (Huangjingjiaoling and Jianfengling), 
indicating that season (and thus a variety of factors) played a significant role in determining their gut 
bacterial composition.

Several studies report that Firmicutes, Bacteroidetes, and Proteobacteria are the most abundant phyla, 
and Lactobacillus is the predominant genus in fecal samples from both wild (Rattus norvegicus) and 
laboratory (Sprague-Dawley) rats[7,9], a pattern similar to our results. Fusobacteria was interestingly 
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the fourth most prevalent phylum in[10], which is most consistent with findings from one of our nine 
groups (Dongfang) (Figure 2B). Although of the same species (Rattus norvegicus), sample size (12), and 
similar climate, rats from the Dongfang area of this study were trapped in January from farmland on an 
isolated island contrasting to all year round (one mouse per month) from a residential area in an inland 
metropolitan city[10].

Although we identified some potential bacterial pathogens by their species names and reputation in 
the samples (Supplementary Table 3), a profile distinct from the results of other studies[11,12], they still 
need to be tested for virulence and pathogenesis. Because wild rats carry some bacteria (Bacillus 
anthracis, Vibrio cholerae, and Yersinia pestis)[11,12] and this study] can cause a serious outbreak or even a 
pandemic, it would be prudent to start a regular survey program at some strategic points to monitor the 
distribution of sentinel rodents and the target pathogens the animals may transmit.

The ideal comparison should only have one factor, but this seems like an impossible task for our 
current research. Admittedly our study had some limitations, to name a few: (1) As some variables, like 
sex, age, and so on, were difficult, if not impossible, to control as a baseline investigation; (2) despite the 
interesting findings (having the highest Corynebacteriaceae in all samples) of the gut bacterial 
composition in Rattus losea, it was from only one area (Lingao); (3) the summer samples were collected 
from two different rat species (Rattus norvegicus vs Leopoldamys edwardsi,) in two different habitats 
(farmland vs mountain) from only one area each, making the results less conclusive and comparable; 
and (4) samples from residential rats were only from Haikou area, making some of the results less 
comparable.

CONCLUSION
The study revealed the structure of gut bacterial communities by sampling wild rats’ feces. In general, 
the gut microbiota was different in both composition and abundance in samples from the nine areas of 
Hainan of three wild rat species, three habitats (mountain, farmland, and residential area), and two 
seasons (summer and winter). This study provides fundamental information for identifying microbial 
communities that will be useful for disease control in Hainan Province.

ARTICLE HIGHLIGHTS
Research background
Wild rats are potential reservoirs for zoonotic infectious agents which can be transmitted to and cause 
diseases in humans.

Research motivation
As a tropical island locating in the south of China, Hainan province has abundant rat species.

Research objectives
To better understand the composition of gut bacterial communities in rats is essential for preventing and 
treating such diseases. Here, we examined the gut bacterial composition in wild adult rats from Hainan 
province.

Research methods
Fresh faecal samples were collected from 162 wild adult rats, including three species (Rattus norvegicus, 
Leopoldamys edwardsi, and Rattus losea), from nine regions of Hainan province between 2017-2018.

Research results
We analyzed the composition of gut microbiota using the 16S rRNA gene amplicon sequencing. We 
identified 4,903 bacterial operational taxonomic units (30 phyla, 175 families, and 498 genera), which is 
different among samples of different rat species in different habitat during different season. In general, 
Firmicutes were the most abundant phyla, followed by Bacteroidetes (15.55%), Proteobacteria (6.13%) 
and Actinobacteria (4.02%). The genus Lactobacillus (20.08%), unidentified_Clostridiales (5.16%), 
Romboutsia (4.33%), unidentified_Ruminococcaceae (3.83%), Bacteroides (3.66%), Helicobacter (2.40%) and 
Streptococcus (2.37%) were dominant.

Research conclusions
Among locations for rat species, the gut microbial communities were different in composition and 
abundance. This work provides fundamental information to identify microbial communities useful for 
disease control in Hainan province.

https://f6publishing.blob.core.windows.net/1e9a3d78-6938-4086-937e-eaec255fb6e6/WJG-29-3469-supplementary-material.pdf
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Research perspectives
The study revealed the structure of gut bacterial communities by sampling wild rats’ feces. In general, 
the gut microbiota was different in both composition and abundance in samples from the nine areas of 
Hainan of three wild rat species, three habitats (mountain, farmland and residential area), and of two 
seasons (summer and winter). This work provides fundamental information to identify microbial 
communities which will be useful for disease control in Hainan province.
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