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Abstract
Liver disease is a major health concern globally, with high morbidity and mor-
tality rates. Precise diagnosis and assessment are vital for guiding treatment 
approaches, predicting outcomes, and improving patient prognosis. Magnetic 
resonance imaging (MRI) is a non-invasive diagnostic technique that has been 
widely used for detecting liver disease. Recent advancements in MRI technology, 
such as diffusion weighted imaging, intravoxel incoherent motion, magnetic 
resonance elastography, chemical exchange saturation transfer, magnetic 
resonance spectroscopy, hyperpolarized MR, contrast-enhanced MRI, and ra-
diomics, have significantly improved the accuracy and effectiveness of liver 
disease diagnosis. This review aims to discuss the progress in new MRI techno-
logies for liver diagnosis. By summarizing current research findings, we aim to 
provide a comprehensive reference for researchers and clinicians to optimize the 
use of MRI in liver disease diagnosis and improve patient prognosis.
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Core Tip: Accurate evaluation of liver disease is essential for effective treatment strategies and better patient prognosis. 
Magnetic resonance imaging (MRI), a non-invasive diagnostic tool, has become a necessary technique for detecting liver 
diseases. The advancements in various magnetic resonance techniques have significantly enriched the diagnostic methods for 
liver diseases, each with a different focus and expertise in examining the liver. This article reviews the principles, 
advantages, limitations, and clinical applications of these new technologies in the diagnosis of liver disease, providing 
necessary references for researchers and clinical physicians to enhance the application of MRI in liver disease diagnosis and 
improve patient prognosis.
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INTRODUCTION
Liver disease is a major global health concern with high rates of morbidity and mortality[1]. Chronic liver diseases often 
lead to liver fibrosis and cirrhosis, which are the primary risk factors for hepatocellular carcinoma (HCC)[2]. The accumu-
lation of large molecules such as collagen protein and glycosaminoglycans in the extracellular matrix is the basic 
pathological feature of liver fibrosis[3]. Reports suggest that 80%-90% of new HCC cases occur in individuals with 
cirrhosis[4]. Liver cancer is the sixth most common malignancy in humans and the fourth leading cause of cancer-related 
deaths worldwide. HCC accounts for 90% of all liver cancer cases[5]. Surgery is the preferred method for treating early-
stage HCC[6]. However, due to the absence of apparent symptoms in the early stages, most patients are diagnosed late or 
with distant metastasis[7]. In major Western centers, the incidence of HCC recurrence within 5 years after curative liver 
resection is estimated to be 60%-70%[8]. Therefore, early diagnosis and recurrence monitoring are crucial for these 
patients.

Imaging examinations are vital in diagnosing chronic liver disease and liver cancer. HCC can be diagnosed non-
invasively without requiring pathological confirmation, unlike most solid tumors[9]. MRI is a commonly used imaging 
technique that provides detailed information on the pathological and physiological aspects of liver cancer. It reflects 
changes in the tissue structure, metabolic status, tumor microenvironment, and other relevant factors.

Recent advancements in magnetic resonance imaging (MRI) technology, such as diffusion weighted imaging (DWI), 
intravoxel incoherent motion (IVIM), magnetic resonance elastography (MRE), chemical exchange saturation transfer 
(CEST), magnetic resonance spectroscopy (MRS), hyperpolarized MR (HP MR), contrast-enhanced MRI (CE-MRI), and 
radiomics, have significantly improved the accuracy and effectiveness of liver disease diagnosis. These new technologies 
are expected to provide further important information on tumor biological behavior.

This review aims to discuss the progress in new MRI technologies for liver disease diagnosis. By summarizing current 
research findings, we aim to provide a comprehensive reference for researchers and clinicians to optimize the use of MRI 
in liver disease diagnosis and improve patient prognosis.

NEW MRI TECHNOLOGIES FOR LIVER DISEASE DIAGNOSIS
DWI and IVIM
DWI is a non-invasive imaging technique that provides information on liver tumors, diffuse liver lesions, and liver 
function status without the need for contrast agents[10]. DWI has become a popular tool in tumor chemotherapy response 
assessment and follow-up after treatment due to its ability to detect recurrent lesions earlier than traditional imaging 
techniques[11].

IVIM, an extension of DWI, has shown great potential in liver function assessment[12], diagnosis of diffuse liver lesions
[13] and liver tumors, and liver lesion characterization[14]. It is commonly used to estimate blood flow and microvascular 
perfusion[15]. The IVIM analysis includes the D value (representing pure diffusion factors), the D* value (representing 
transport and perfusion factors), and the f value (representing microvascular perfusion factors). Research has 
demonstrated that IVIM has a higher diagnostic efficacy for displaying different liver lesions than DWI. Additionally, the 
diagnostic efficacy of the D value derived from IVIM is significantly higher than that of the apparent diffusion coefficient 
(ADC) value[16]. IVIM can also be used to predict histological grade, as the D value exhibits good diagnostic performance 
in distinguishing high-grade from low-grade liver cancer[17].

The perfusion-diffusion ratio (PDR) is a recent concept proposed to enhance the effectiveness of DWI. PDR is the ratio 
of the decreased signal rate caused by IVIM to the decreased signal rate caused by diffusion. A study was conducted to 
compare the effectiveness of IVIM parameters, ADC value, and PDR in distinguishing solid benign and malignant liver 
diseases in patient imaging data. The results indicate that PDR had better accuracy compared to IVIM parameters and the 
ADC value, with an accuracy rate of 79%, while also exhibiting high sensitivity and specificity[18].

https://www.wjgnet.com/1007-9327/full/v29/i28/4384.htm
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The technologies of DWI and IVIM show great promise in aiding the diagnosis and treatment of liver cancer. 
Furthermore, the introduction of PDR has provided new insights for DWI, allowing for a more precise evaluation of liver 
cancer. However, DWI does have some limitations, such as the low repeatability of the ADC value, which prevents it 
from being a dependable imaging biomarker[19]. In addition, DWI is prone to several artifacts such as blurring, ghosting, 
and distortion which pose a challenge in achieving the repeatability of IVIM parameters and the ADC value[20]. To 
address this issue, Simchick et al[21] proposed a two-dimensional (2D) b-M1-optimized data acquisition technique that 
offers better stability and repeatability in measuring IVIM parameters. This technique can be instrumental in establishing 
IVIM quantitative biomarkers for liver disease.

MRE
Liver biopsy is widely accepted as the most reliable method for diagnosing and staging liver fibrosis[22]. However, its 
invasiveness, cost, and potential for complications limit its use. Furthermore, the diagnostic reliability of liver biopsy is 
questionable due to its sampling variability and subjectivity[23]. Ultrasound elastography is a low-cost and easy-to-use 
alternative, but it is highly influenced by obesity[24]. For example, vibration-controlled transient elastography (VCTE) is 
one of the most widely used ultrasound-based methods for diagnosing liver fibrosis. Its rapid, safe, and reproducible 
nature has made it widely used for bedside diagnosis. However, its reliability is lower than that of MRE as 15% of its 
conclusions are inaccurate, which is mainly due to the impact of obesity and insufficient experience of doctors[25,26]. 
According to a large sample meta-analysis, the summary area under the curve (AUC) values of VCTE for diagnosing 
significant fibrosis, advanced fibrosis, and cirrhosis were lower than those of MRE, with values of only 0.83, 0.85, and 
0.89, respectively, while MRE had AUC values as high as 0.91, 0.92, and 0.90, respectively[27]. Serum biomarkers have 
also been explored for liver fibrosis evaluation, but their lack of specificity poses a challenge as they may also be released 
during inflammation in other tissues[28].

MRE proves to be a better method for diagnosing and staging liver fibrosis as it is not influenced by factors such as 
obesity, ascites, inflammation, or etiology[29]. The accuracy and reliability of MRE in diagnosing all stages of liver 
fibrosis, especially late-stage fibrosis and cirrhosis, have been confirmed by multiple meta-analyses[27,30]. However, the 
clinical application of MRE is still restricted due to its long examination time and high cost.

Encouragingly, recent studies suggest that combining serum biomarkers and MRE could have unexpected benefits. For 
instance, fibrosis-4 (FIB-4) index, an indicator used to assess liver injury and fibrosis, includes aspartate aminotransferase, 
alanine aminotransferase, age, and platelet count[31]. Tamaki et al[32] conducted a study where they used a two-step 
strategy combining FIB-4 index and MRE to detect late-stage fibrosis. They found that the accuracy of the two-step 
strategy was equivalent to that of using MRE alone, which could lead to cost reduction by reducing excess MRE. 
Therefore, the two-step strategy can serve as a screening method for large populations. Another study also demonstrated 
that the combined use of MRE and FIB-4 index has excellent negative predictive value in liver decompensation, which has 
significant clinical implications[33]. In addition, MRE has acceptable specificity and sensitivity in evaluating splenic 
stiffness and portal hypertension[34], which is crucial for assessing the overall health status of patients with cirrhosis.

Currently, liver fibrosis assessment can be carried out using 2D MRE, but a more advanced option now available is 
three-dimensional (3D) MRE. Unlike 2D MRE, 3D MRE images allow analysis of the entire volume of the liver in a 3D 
manner, providing better accuracy by collecting and processing information in all directions. In a study by Li et al[35], the 
diagnostic performance of 2D MRE and 3D MRE was compared, and both were found to have strong performance in 
detecting and staging liver fibrosis. However, 3D MRE provided significantly better image quality than the 2D MRE 
method and had higher inter-observer consistency in measuring liver stiffness (LS). Furthermore, in their study, Catania 
et al[36] found that 3D MRE is more repeatable due to its lower sensitivity to artifacts and provides a more comprehensive 
liver evaluation by including a larger area of liver parenchyma.

MRE has been found to be useful in predicting the occurrence and recurrence of HCC. Reports suggest that the risk of 
developing HCC increases with LS as measured by MRE[37]. Late-stage HCC recurrence is predicted by LS (P < 0.001), 
which has a high specificity (90.0%)[38]. MRE has also shown potential in diagnosing microvascular invasion (MVI) in 
HCC. A study by Zhang et al[39] found that tumor stiffness (TS) increased with MVI severity, with TS/LS > 1.47 (P = 
0.001), TS > 4.33 kPa (P < 0.001), and irregular tumor margins (P = 0.006) being important independent predictors of MVI 
positivity.

In summary, MRE is a valuable tool for the thorough evaluation of liver fibrosis, cirrhosis, HCC, and portal 
hypertension in individuals with liver disease. Although MRE has demonstrated high accuracy in identifying advanced 
fibrosis or cirrhosis, there are discrepancies in the diagnostic threshold for fibrosis staging based on retrospective data 
meta-analyses[40], which require further validation.

CEST MRI
The CEST technique, first introduced by Ward et al[41] in 2000, utilizes off-resonance saturation pulses to saturate a 
specific substance, which in turn affects the signal intensity of free water through chemical exchange, providing relevant 
information about the substance. There are several types of CEST, including Glu CEST, Cr CEST, LATEST, and Gluco 
CEST, which can, respectively, map glutamate, creatine, lactate, and glucose, all of which are important substances 
involved in tumor metabolism. CEST can be divided into two categories: Exogenous CEST and endogenous CEST, 
depending on whether exogenous CEST agents are used. In liver imaging, CEST MRI can be used to evaluate tumor 
metabolism and tumor microenvironment, and monitor tumor treatment response.

Tumors are known to exhibit increased glucose uptake and glycolysis. To monitor tumor glucose metabolism and 
treatment response, 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) is commonly used. However, 
the high cost and radioactivity of this method limit its application. CEST MRI has emerged as a potential alternative. A 
study by Chan et al[42] showed that using D-glucose, a simple carbohydrate, to detect tumor metabolism was possible. 
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The Gluco CEST image showed a significant enhancement in the tumor region, consistent with PET results. However, the 
CEST signal decreases rapidly due to the rapid metabolism of D-glucose after entering the cells[43]. In recent years, 3-O-
methyl-D-glucose (3OMG) has emerged as a promising option for monitoring tumor progression and treatment efficacy. 
Unlike D-glucose, 3OMG is not metabolized after being taken up by cells, and accumulates in tumor cells, giving it a 
different kinetic profile[44]. Its similar CEST contrast efficiency to D-glucose makes it a suitable reporter for tumor cell 
glucose transporters. The Gluco CEST technique, which utilizes 3OMG, offers a low-risk option for patients with renal 
diseases to display tumor metabolism without using radioactive tracers.

In addition, CEST MRI provides a non-invasive method for evaluating tumor pH, which is important due to the 
Warburg effect. This effect leads to increased lactate production within cancer cells and results in an acidic extracellular 
pH in the tumor microenvironment. This acidic environment can enhance tumor invasiveness, metastasis, angiogenesis, 
and resistance to radiotherapy and chemotherapy[45]. The CEST measurement of pH is not limited by observation depth 
and can be used for whole-body imaging. While amide proton transfer (APT) CEST MRI is capable of measuring pH[46], 
it is limited in its ability to calculate the absolute value of pH. To address this limitation, exogenous agents have been 
utilized to measure extracellular pH in the tumor microenvironment. The use of iodinated agents in CEST MRI has 
emerged as a promising non-invasive technique for pH assessment[47], as these clinically approved agents are not 
affected by concentration and offer advantages over APT MRI.

CEST has found another novel application in image-guided nanoparticle (NP) drug delivery. This technique can 
monitor the transformation and distribution of NP drugs in the body, thereby assisting in adjusting treatment plans. 
CEST-guided NP drug delivery systems can be divided into labeled and unlabeled systems, depending on the labeling 
strategy used to achieve the CEST signal[48]. For example, Law et al[49] successfully used CEST MRI to detect the specific 
distribution of iohexol-labeled liposome drugs in the brain of an animal model. In a separate study, Liu et al[50] 
introduced a new labeling-free strategy that uses CEST MRI imaging technology to detect the delivery efficiency of anti-
cancer drug lentinan-functionalized SeNPs and achieve image-guided drug delivery. The ability of CEST MRI to visualize 
NP drug delivery provides a unique opportunity for the integration of tumor diagnosis and treatment. However, this 
technology is still in its infancy, and nearly all related research is currently being conducted in preclinical animal models. 
Therefore, extensive validation is necessary to ensure its accuracy and acceptability for clinical translation.

CE-MRI
CE-MRI is a technique used to enhance liver lesion imaging by injecting a contrast agent intravenously. The contrast 
agent distribution patterns in the liver can be classified into four categories[51]: (1) Extracellular fluid agents, such as Gd-
DTPA and Gd-DOTA, rapidly enter the hepatic capillary network and diffuse into the tissue space after injection, 
eventually being excreted by the kidneys; (2) Hepatobiliary agents, such as Gd-EOB-DTPA and Gd-BOTPA, can be 
absorbed and metabolized by normal liver cells. During the hepatobiliary phase, regions with premalignant liver lesions 
or malignant tumors display low signal due to decreased contrast agent uptake[52]; (3) Superparamagnetic iron oxide 
(SPIO) particles can be taken up by Kupffer cells in normal liver tissue, resulting in a ‘black liver’ effect. Tumor tissue 
displays high signal because it almost does not take up SPIO particles; and (4) Molecular targeted MRI contrast agents can 
be modified with specific antibodies or ligands, allowing them to bind specifically to tumor tissue and highlight the 
tumor.

The development of MRI contrast agents with tumor targeting, safety, and efficacy has been extensively researched. 
The use of molecular targeted MRI contrast agents with specific antibodies or ligands has shown promising results in 
actively targeting tumor tissue, enabling early detection of tumors. Various specific targets can be utilized to produce 
specific contrast agents. This review will introduce glypican-3 (GPC3) and alpha-fetoprotein (AFP) as examples.

GPC3 is a cancer embryonic polysaccharide present on the cell membrane. Studies have shown that GPC3 is highly 
expressed in over 70% of HCCs, but not in hepatitis, cirrhosis, benign liver lesions, or healthy adult tissue. GPC3 
promotes the progression of liver cancer by binding to molecules such as Wnt signaling proteins and growth factors[53]. 
In terms of diagnosis, GPC3 has a diagnostic specificity similar to AFP but with higher sensitivity[54]. Additionally, 
GPC3 can be used to distinguish AFP-negative HCC[55], making it a more reliable diagnostic marker for HCC. Overall, 
GPC3 shows promise as a potential diagnostic tool for HCC. Zhao et al[56] have developed a novel liver cancer-targeting 
probe by combining USPIO with GPC3-specific ligands. The probe demonstrated preferential binding to GPC3 in both in 
vitro and in vivo experiments. Furthermore, it exhibited good stability and biocompatibility, making it a promising 
candidate for a targeted MRI contrast agent.

AFP is not typically expressed in adults, but in liver cancer patients. AFP levels may be very high, making it a potential 
target for detecting liver cancer[57]. AFP antibodies can be used to create targeted probes, but as previously mentioned, 
AFP is not highly expressed in all liver cancer patients. To address this issue, Ma et al[58] conjugated AFP antibodies and 
GPC3 antibodies to ultra-small SPIO NPs (USPIO), resulting in the development of a dual-antibody-conjugated MRI 
probe that can detect heterogeneity and small HCC with higher sensitivity than single-target probes. The experiment 
demonstrated that using dual-antibody-conjugated USPIO probes for targeting cancer cells was more efficient and 
sensitive compared to using single-labeled probes that targeted AFP-USPIO and GPC3-USPIO, as well as non-targeted 
USPIO. This finding highlights the potential of using multi-target probes to overcome tumor heterogeneity and improve 
sensitivity to HCC.

Gadolinium-based contrast agents (GBCAs) are commonly used in MRI, but they carry the risk of allergic reactions and 
nephrogenic systemic fibrosis[59]. Furthermore, even patients with normal kidney function can experience gadolinium 
accumulation in all tissues with GBCA exposure[60]. Therefore, the development of effective Gd-free MRI contrast agents 
is becoming increasingly important. Manganese (Mn) has emerged as a promising alternative to GBCAs[61], with 
researchers discovering that Mn oxide nanoparticles have negligible toxicity and produce good T1-weighted contrast 
effects[62]. Mn2+ has also demonstrated potential as an anti-cancer drug or adjuvant, making it a fascinating area of 
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research[63]. In a recent study, researchers found that administering Mn2+ to a mouse model induced a strong systemic 
anti-cancer response. This was achieved through promoting natural killer cell function, macrophage and dendritic cell 
maturation and activation, CD8+ T cell differentiation and activation, and memory T cell survival in tumors. As a result, 
tumor growth and metastasis were greatly inhibited. Another group of researchers developed an intelligent therapeutic 
probe called MnTBs, which decomposes quickly in acidic and reducing cellular environments, releasing Mn2+ and 
triggering chemodynamic therapy. This probe was found to be effective in inhibiting tumor growth and metastasis, as 
well as detecting millimeter-sized liver metastases with a high contrast of 316%[64]. These findings suggest that Mn-
based contrast agents have potential in targeted tumor therapy.

MRS
MRS is a non-invasive method that monitors organ metabolites, making it particularly suitable for the liver due to its high 
concentration of multiple metabolites such as ATP, glutamine, and glycogen. The liver MRS analysis primarily uses 1H, 
31P, and 13C. Its major applications include the diagnosis and grading of fatty liver and liver fibrosis, as well as the 
diagnosis of liver tumors.

The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing, and some patients with NAFLD may develop 
non-alcoholic steatohepatitis, which can progress to liver cirrhosis and HCC[65]. Therefore, early diagnosis is crucial for 
preventing and treating NAFLD. 1H-MRS is a non-invasive method that can accurately measure the content of trigly-
cerides in the liver[66]. However, it has some limitations, such as long processing time, motion artifacts, and sampling 
errors.

The use of MRI proton density fat fraction (MRI-PDFF) has become a popular method for measuring liver fat content in 
recent years[67]. MRI-PDFF has a strong correlation with MRS (r = 0.983, P < 0.001) and can quantitatively measure the 
lipid content of the entire liver[68], overcoming the limitations of MRS and liver tissue biopsy. This makes MRI-PDFF a 
widely used reference standard for image-based fat quantification with broader application prospects than MRS[69]. In 
addition, the recent use of the multi-echo Dixon sequence has shown promising results in detecting NAFLD[70].

In the diagnosis and staging of liver fibrosis, 1H-MRS and 31P-MRS have distinct values. Ding et al[71] discovered that 
choline (Cho) levels measured by 1H-MRS increased in proportion to the severity of liver fibrosis. They also found that 
the Cho/lipid ratio was the most significant diagnostic indicator of liver fibrosis based on the receiver operating charac-
teristic curve. The diagnostic thresholds for liver fibrosis and early cirrhosis were ≥ 0.028 and ≥ 0.131, respectively. In 
comparison to 1H-MRS, 31P-MRS is advantageous in diagnosing cirrhosis as it can distinguish between different causes of 
liver disease. Through quantitative analysis of metabolite concentrations such as phosphate monoester (PME), phosphate 
diester (PDE), Pi, and ATP, 31P-MRS has the potential to differentiate between alcoholic liver disease, viral liver disease, 
NAFLD, and cirrhosis[72]. However, larger-scale multi-center studies are needed to confirm the clinical relevance and 
usefulness of this finding.

Liver cancer patients can benefit from the use of 1H-MRS and 31P-MRS as well. In 1H-MRS, the Cho peak is a significant 
indicator of focal liver lesions, and its elevation could suggest the proliferation of tumor tissue due to increased synthesis 
of cell membrane phospholipids. Furthermore, the information provided by the Cho peak can be further developed. Liao 
et al[73] conducted a study to compare the diagnostic performance of Cho peak area, Cho peak amplitude, and combined 
methods for early detection of rabbit liver cancer. The results showed that the combined method had higher accuracy in 
the early diagnosis of liver cancer, and the correlation between Cho peak amplitude and tumor volume was the best. In 
31P-MRS, the contents of PME and PDE can reflect cell membrane synthesis and breakdown, and their increase means cell 
proliferation. Liver tumors can be associated with an increase in PME/PDE and PME/Pi, and changes in PME/PDE after 
treatment are significant. However, further multi-center studies are needed to confirm their accuracy due to high hetero-
geneity[74]. 31P-MRS is also reliable for measuring ATP consumption and identifying the degree of acute liver ischemia-
reperfusion injury (IRI)[75], which is particularly meaningful for patients who require hepatectomy and liver 
transplantation. Diagnosis and treatment of IRI during surgery have always been a challenging task.

13C MRS is considered the gold standard for imaging human liver glycogen metabolism after oral ingestion of 13C-
labeled glucose[76]. However, the low natural abundance and sensitivity of 13C nuclei can limit their application. To 
overcome this challenge, researchers have developed hyperpolarization techniques, which will be discussed below. For 
readers’ convenience, the targets of MRS and HP MR in liver metabolism evaluation are summarized in Figure 1.

However, motion still has an impact on the accuracy of MRS. Additionally, liver tissue has significant heterogeneity, so 
excluding extraneous tissue when setting the observation area is crucial. As technology continues to advance, MRS is 
expected to become an increasingly important tool for diagnosing and grading liver tumors, potentially replacing the 
need for invasive biopsies.

HP MR
The development of HP MR can be attributed to the dynamic nuclear polarization (DNP) technique, which was initially 
proposed by Ardenkjaer-Larsen et al[77]. This technique can increase MR signal by more than 10000 times. Currently, the 
leading HP biomarkers primarily consist of 13C, with [1-13C] pyruvate being the most commonly used due to its central 
role in cellular metabolism. When absorbed by liver cells, [1-13C] pyruvate can produce three observable metabolic 
intermediates: Lactate, alanine, and CO2, thus allowing visualization of liver metabolism.

Cancer cells often have higher levels of the enzyme lactate dehydrogenase[78], which convert pyruvate to lactate. 
Measuring the metabolic transformation from pyruvate to lactate is important for analyzing tumor invasiveness, grade, 
and prognosis[79]. In a study, HCC was induced in rats, and tumor cells were extracted and re-implanted into another 
group of nude mice. The study found that tumors re-implanted from cells with higher lactate/pyruvate ratios showed 
higher lactate signals. Therefore, using HP MR to evaluate glucose metabolism differences in liver cancer tissue could 
potentially reveal tumor phenotypes[80].
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Figure 1 The targets of magnetic resonance spectroscopy and hyperpolarized magnetic resonance in liver metabolism evaluation. AA: 
Acetoacetate; CPT: Carnitine palmitoyl transferase; Cho: Choline; EAA: Ethyl acetoacetate; F1P: Fructose-1-phosphate; G6P: Glucose-6-phosphate; IRI: Ischemia-
reperfusion injury; HCC: Hepatocellular carcinoma; PDE: Phosphate diester; PGA: Phosphoglyceric acid; PME: Phosphate monoester; TCA: Tricarboxylic acid; MRS: 
Magnetic resonance spectroscopy.

Alanine is another potential biomarker for liver cancer diagnosis. It was found that an increase in alanine generation 
was the earliest metabolic change detected in liver cancer models, even before the formation of primary tumors. In pre-
tumor tissues, the conversion rate of pyruvate to alanine significantly increased, and the area with the most abundant 
alanine signal in pre-tumor tissues was often the region where tumor nodules form[81]. Thus, [1-13C] pyruvate HP MR 
can be used for early diagnosis of liver cancer by monitoring alanine generation.

Recent studies have shown an increased interest in the use of other hyperpolarization probes, including HP [1,3-13C2]-
ethyl acetoacetate, HP [2-13C]-fructose, and HP [5-13C, 4,4-2H2,5-15N]-L-glutamine. Ethyl acetoacetate (EAA) is converted to 
acetoacetate (AA) at a reduced rate in HCC cells due to lower concentrations and activity of carboxylesterases. In a rat 
liver transplant tumor model, HP [1,3-13C2]-ethyl acetoacetate MR revealed that the EAA/AA ratio in tumor tissue was 
approximately four times higher than that in healthy tissue (P = 0.009)[82]. Similarly, HP [2-13C]-fructose can be used to 
explain HCC cell metabolism. HCC cells have reduced generation of fructose-1-phosphate (F1P) due to lower expression 
of ketohexokinase[83]. HP MR has successfully detected F1P and its loss in an HCC model. Finally, evaluation of 
glutamine metabolism is also beneficial for liver cancer diagnosis because it is rapidly consumed by proliferating cells in 
tumor tissue. The newly developed HP [5-13C, 4,4-2H2,5-15N]-L-glutamine proved to be the best choice for determining in 
vivo glutamine metabolism[84].

Importantly, HP MR provides a unique advantage in obtaining information on tumor metabolism and perfusion, 
which is not easily obtainable through other methods. The latest technology utilizes the dual-probe imaging method, 
which involves the use of [1-13C]-pyruvate and [13C, 15N2]-urea for simultaneous tumor perfusion and metabolic imaging
[85]. The metabolic conversion rate of pyruvate indicates enzyme activity and transporter expression, whereas HP 13C 
urea is a non-metabolically active extracellular probe that reflects tissue perfusion and distribution. The combination of 
these two probes can effectively explain changes in metabolism and perfusion during disease progression and treatment 
response.

PET is currently the preferred imaging method in clinical practice as it provides metabolic information through non-
invasive analysis of cancer metabolism in vivo. This is achieved through the injection of 18F-FDG[86]. Although PET is 
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useful for assessing glucose metabolism, it has limited ability to evaluate downstream metabolism, which can be 
important in many cases. However, HP 13C-pyruvate MR can provide information about downstream metabolism. To 
obtain a complete picture of glucose metabolism, a combination of 18F-FDG and [1-13C] pyruvate methods can be used. 
Hansen et al[87] have demonstrated the feasibility of this approach through a technique called hyperPET, which shows 
the consistency between tumor 18F-FDG uptake and [1-13C] lactate production. Clemmensen et al[88] have also shown that 
combining [68Ga]Ga-NODAGA-E[(cRGDyK)]2 PET and HP [1-13C]-pyruvate MR can enhance the ability of hyperPET to 
detect tumor angiogenesis. HyperPET is a promising tool for evaluating glucose metabolism direction in order to predict 
tumor occurrence and evaluate the malignancy degree of the tumor. It achieves this by describing the transformation of 
pyruvate into alanine, lactate, or entering oxidative phosphorylation in the body. While the complexity and high cost of 
hyperPET may seem impractical for routine use, advancements in MRI and PET-related technologies may make it a 
valuable tool for diagnosing liver cancer.

Recent advancements in HP MR have led to improvements in both efficiency and accuracy. The slow production of 
hyperpolarized pyruvate using DNP has been addressed with the MINERVA protocol, which has greatly facilitated the 
clinical translation of HP MR[89]. Additionally, quantification bias resulting from the use of surface transmit/receive coils 
has been addressed by Lee et al[90] through the development of a dedicated HP 13C EPSI post-processing pipeline. This 
method has significantly improved the accuracy of measuring the pyruvate to lactate conversion rate in tumors and 
adjacent regions, with the average signal-to-noise ratio of pyruvate, lactate, and alanine increased by 37.4, 34.0, and 20.1 
times, respectively.

MRI radiomics
The concept of radiomics was introduced by Lambin et al[91] in 2012. This method involves extracting features from 
conventional imaging at the tumor’s overall level, providing a non-invasive, comprehensive, and quantitative observation 
of the tumor’s temporal and spatial heterogeneity. Presently, MRI-based radiomics research in the liver primarily focuses 
on classification of liver fibrosis and hepatitis, liver cancer diagnosis, differentiation degree and immunohistochemistry 
prediction, and MVI evaluation.

MRI-based radiomics has shown promise in diagnosing and predicting hepatitis and liver fibrosis. While conventional 
MRI images can detect severe cases by observing changes in water content and distribution caused by inflammation, 
subtle tissue changes can prove challenging to diagnose. Radiomics technology can capture these tiny changes, allowing 
for more accurate diagnosis. Wei et al[92] proposed a grading system that simultaneously stages fibrosis and inflam-
mation activity, with an AUC of 0.932 and 0.910 for diagnosing early-stage hepatitis and fibrosis, respectively. This study 
demonstrates the potential for radiomics to improve diagnosis and prediction of liver diseases. A novel technique, known 
as the dynamic image radiomics model, has been developed using deep learning technology to evaluate liver fibrosis. 
This method combines imaging features from multi-phase dynamic contrast-enhanced images with temporal features. It 
utilizes time-varying curves of contrast enhancement and imaging features during enhancement and eliminates manual 
selection bias by using an automated region of interest extraction method. Overall, compared with traditional radiomics 
methods and clinical serum parameters, the dynamic radiomics model has stronger predictive performance for various 
stages of liver fibrosis. The proposed liver fibrosis classification model is highly automated, saving time and effort. This 
model is significant in predicting new cases and training additional datasets[93].

Research has shown that MRI-based radiomics models are highly effective in distinguishing between HCC and non-
HCC, with better discrimination efficiency than visual assessment by novice radiologists (P < 0.05)[94]. These models also 
have significant value in identifying high- and low-grade HCC. In a study by Ameli et al[95], radiomics features 
demonstrated strong differentiation ability in a multi-classification model, with an AUC of 0.83. This outperformed classi-
fication based solely on ADC or arterial-phase enhancement value, which had an AUC of only 0.75.

Moreover, research has shown that MRI radiomics features have good predictive efficacy for immunohistochemistry 
and molecular expression in HCC. For example, CK19+ HCC has higher invasiveness, higher lymph node metastasis 
rates, higher resistance to radiotherapy and chemotherapy, and poorer prognosis. Researchers have successfully 
constructed and validated a multi-sequence radiomics model for accurately identifying the CK19 status of HCC patients 
using multi-center MRI imaging data[96]. GPC3 is also associated with poor prognosis in HCC patients. Gu et al[97] 
developed a useful method for predicting GPC3 positive HCC patients without invasive procedures by combining AFP 
and radiomics features in a column chart. The tool showed significant predictive performance in both training and 
validation cohorts, with AUC values of 0.926 and 0.914, respectively. Additionally, radiomics features were found to be 
correlated with the protein level of the immunotherapy target programmed cell death ligand 1 (r = 0.41-0.47, P < 0.029) 
and the mRNA expression levels of programmed cell death 1 and cytotoxic T-lymphocyte-associated protein 4 (r = -0.48 
to 0.47, P < 0.037)[98]. The findings of these studies indicate that utilizing a combination of multi-sequence MRI radiomics 
features can lead to precise classification of immunohistochemistry and molecular expression in liver cancer. This non-
invasive approach can facilitate personalized management strategies for patients.

The use of MRI radiomics analysis can also provide a distinct advantage in preoperative diagnosis of MVI in liver 
cancer, as current diagnosis of MVI can only be made through postoperative histological examination. Feng et al[99] 
developed an MRI radiomics model for predicting preoperative MVI by extracting radiomics features from Gd-EOB-
DTPA-enhanced MRI. The model’s AUC, sensitivity, and specificity were 0.83, 90%, and 75%, respectively, which outper-
formed radiologists in predicting MVI. According to Liang et al[100]’s meta-analysis of 15 studies and 981 patients, MRI 
radiomics has a high accuracy in diagnosing MVI with an AUC of 0.87, sensitivity of 79%, and specificity of 81%. Based 
on our analysis, it can be concluded that the use of MRI radiomics for predicting MVI has a high level of accuracy. This 
non-invasive method can be considered as an alternative approach for evaluating MVI.
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Table 1 Advanced magnetic resonance imaging techniques for liver diagnosis: Comparison of clinical applications, advantages, 
limitations, and developments

Technique(s) Applications Advantages Limitations Developments

DWI and IVIM Assessment of liver tumors, 
diffuse liver lesions, and liver 
function. Assessment of liver or 
tumor blood perfusion

Evaluate liver or tumor 
blood perfusion without the 
use of contrast agents

Poor reproducibility of 
IVIM and DWI

2D b-M1 acquisition improves reprodu-
cibility. The new parameter PDR 
improves DWI performance

MRE Diagnosis and staging of liver 
fibrosis and cirrhosis. Prediction 
of the recurrence of HCC

Diagnosis of liver fibrosis is 
not affected by obesity, 
ascites, inflammation, and 
etiology

The diagnostic threshold 
for fibrosis is variable 
and conflicting

The two-step strategy can screen for liver 
fibrosis. LS and TS can predict HCC 
recurrence

CEST Assessment of tumor metabolism 
and microenvironment. 
Monitoring of tumor treatment 
response

An FDG substitute that does 
not involve ionizing 
radiation

Easily affected by other 
factors. Long scan time

The new reagent 3OMG has unique 
advantages. Realization of image-guided 
drug delivery and integration of tumor 
diagnosis and treatment

CE-MRI Diagnosis and staging of liver 
tumors. Detection of liver 
metastases and diffuse liver 
lesions

Provides more information 
about lesions compared to 
plain MRI. Specific probes 
enable visualization at the 
molecular level

Gd chelates can cause 
allergic reactions and 
nephrotoxicity

Multi-target probes have the potential to 
overcome tumor heterogeneity. Potential 
applications of Mn-based contrast agents 
in targeted tumor therapy

MRS Diagnosis and grading of fatty 
liver and liver fibrosis. Metabolic 
evaluation of liver and 
intrahepatic tumors

Provides quantitative data 
on liver metabolism non-
invasively without the use of 
contrast agents

Low sensitivity of 13C. 
Accuracy is affected by 
liver tissue heterogeneity 
and motion

Cho peak can provide more information. 
31P-MRS can differentiate liver cirrhosis 
etiology and evaluate IRI

HP MR Providing metabolic, perfusion, 
and enzymatic information on 
HCC

DNP improves MR signal by 
10000 times. [1-13C] pyruvate 
has particular value in 
evaluating tumor 
metabolism

Current measurement 
methods still produce 
inevitable quantitative 
deviations

HyperPET is expected to elucidate 
complete glucose metabolism. More 
hyperpolarized probes are being used. 
Double-probe HP MR can simultaneously 
obtain metabolic and perfusion 
information

MRI radiomics Diagnosis and prediction of 
immunohistochemistry features, 
MVI, liver fibrosis, and hepatitis.

Comprehensive, non-
invasive, and quantitative 
observation of the 
spatiotemporal hetero-
geneity of tumors

Poor reproducibility of 
MRI features. MVI 
features are variable and 
conflicting in different 
studies

Good application value in the differential 
diagnosis, immunohistochemical feature 
prediction, and MVI prediction of HCC

CEST: Chemical exchange saturation transfer; CE-MRI: Contrast-enhanced magnetic resonance imaging; Cho: Choline; DNP: Dynamic nuclear 
polarization; DWI: Diffusion weighted imaging; HCC: Hepatocellular carcinoma; HP: Hyperpolarized; IRI: Ischemia-reperfusion injury; IVIM: Intravoxel 
incoherent motion; LS: Liver stiffness; MRE: Magnetic resonance elastography; MRI: Magnetic resonance imaging; MRS: Magnetic resonance spectroscopy; 
MVI: Microvascular invasion; PDR: Perfusion-diffusion ratio; TS: Tumor stiffness; PET: Positron emission tomography; FDG: Fluorodeoxyglucose; 2D: 
Two-dimensional.

The current limitation of MRI radiomics is the lack of reproducibility in extracting radiomics features. While previous 
studies have shown good interobserver reproducibility of HCC radiomics features from specific MRI systems, caution is 
needed when interpreting data in multi-platform radiomics studies as reproducibility can vary greatly between different 
platforms[101].

Additionally, there is variability and inconsistency in using MRI features to predict MVI in different studies. To combat 
this, Hong et al[102] conducted a meta-analysis of data from 36 studies involving 4410 participants. They identified seven 
MRI features, namely, large tumor volume, arterial edge enhancement, arterial tumor surrounding enhancement, hypo-
intensity around the tumor in the hepatobiliary phase, irregular margins, multifocality, and low T1 signal, as important 
predictors of MVI in HCC. These MRI radiomics features are valuable references for future research and of great 
significance for developing more reliable MVI prediction strategies. Table 1 summarizes various novel MRI technologies’ 
clinical applications, advantages, limitations, and latest developments discussed in this review for the diagnosis of liver 
diseases. Table 2 lists the diagnostic performance of some MR techniques for the diagnosis of liver diseases.

CONCLUSION
MRI is a promising technology for diagnosing liver diseases due to its non-invasive and radiation-free nature. The 
development of new technologies such as DWI, IVIM, MRE, CEST, MRS, HP MR, CE-MRI, and radiomics has expanded 
the capabilities of MRI, allowing for more comprehensive and accurate diagnostic results. Although these technologies 
have limitations, their role in liver disease diagnosis will continue to improve as they are updated and enhanced. It is 
important for researchers and clinical doctors to thoroughly study the application value of these new technologies in 
clinical practice to better guide the diagnosis, treatment, and rehabilitation of liver diseases and ultimately improve 
patient prognosis.
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Table 2 Comparison of performance indicators of new magnetic resonance techniques in diagnosis of liver disease

Technique Disease Subjects Sensitivity (%) Specificity (%) NPV (%) PPV (%) Ref.

DWI HCC 34 54.8 90.9 34.5 95.8 [103]

DWI LF 40 85 82 85 83 [104]

PDR MT 83 81 77 NA NA [18]

MRE LF 59 69.0 88.2 53.6 93.5 [105]

MRS Liver steatosis 4715 72.7-88.5 92.0-95.7 NA NA [106]

Gd-EOB-DTPA MRI HCC 77 88.2 96.7 90.6 95.7 [107]

SPIO MRI HCC 30 66.0 98.0 91.4 90.0 [108]

MRI-PDFF NAFLD 60 96 100 92.6 89.5 [70]

Radiomics MVI 50 90 75 NA NA [99]

Radiomics MVI 981 79 81 NA NA [100]

DWI: Diffusion weighted imaging; HCC: Hepatocellular carcinoma; LF: Liver fibrosis; MRE: Magnetic resonance elastography; MRI: Magnetic resonance 
imaging; MRI-PDFF: Magnetic resonance imaging proton density fat fraction; MRS: Magnetic resonance spectroscopy; MT: Malignant tumor; MVI: 
Microvascular invasion; NA: Not available; NAFLD: Non-alcoholic fatty liver disease; NPV: Negative predictive value; PDR: Perfusion-diffusion ratio; 
PPV: Positive predictive value; SPIO: Superparamagnetic iron oxide.
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