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Abstract
Many studies point to an association between Helicobacter pylori (H. pylori) 
infection and inflammatory bowel diseases (IBD). Although controversial, this 
association indicates that the presence of the bacterium somehow affects the 
course of IBD. It appears that H. pylori infection influences IBD through changes in 
the diversity of the gut microbiota, and hence in local chemical characteristics, and 
alteration in the pattern of gut immune response. The gut immune response 
appears to be modulated by H. pylori infection towards a less aggressive inflam-
matory response and the establishment of a targeted response to tissue repair. 
Therefore, a T helper 2 (Th2)/macrophage M2 response is stimulated, while the 
Th1/macrophage M1 response is suppressed. The immunomodulation appears to 
be associated with intrinsic factors of the bacteria, such as virulence factors - such 
oncogenic protein cytotoxin-associated antigen A, proteins such H. pylori 
neutrophil-activating protein, but also with microenvironmental changes that 
favor permanence of H. pylori in the stomach. These changes include the increase 
of gastric mucosal pH by urease activity, and suppression of the stomach immune 
response promoted by evasion mechanisms of the bacterium. Furthermore, there 
is a causal relationship between H. pylori infection and components of the innate 
immunity such as the NLR family pyrin domain containing 3 inflammasome that 
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directs IBD toward a better prognosis.
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Core Tip: Helicobacter pylori (H. pylori) infection seems to modulate the immune response triggered by inflammatory bowel 
disease in a way that makes it less aggressive. The virulence factors of H. pylori, as well as the mechanisms that allow it to 
remain in the stomach environment, appear to change the intestinal microenvironment and modulate the local immune 
response, contributing to a disease with milder symptoms and less tissue damage.
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INTRODUCTION
Inflammatory bowel diseases (IBD) are a group of chronic conditions affecting the gastrointestinal tract, characterized by 
episodes of abdominal pain, diarrhea, bloody stools, and weight loss. The two main types of IBD are Crohn’s disease 
(CD) and ulcerative colitis (UC)[1]. In CD any area of the gastrointestinal tract can be affected, but the most affected 
regions are the terminal ileum, the cecum, the perianal region, and the colon, while in UC the inflammation is restricted 
to the colon and rectum[1]. Regarding histology, in CD the intestine presents thickened submucosa, transmural inflam-
mation, ulceration and non-caseating granulomas, while in UC the inflammation is limited to the mucosa, with crypts 
and abscesses[2].

The pathogenesis of IBD is complex and involves a combination of genetic, environmental, and immunological factors. 
The gut microbiota is critical to homeostasis in this organ and contributes to the tolerance process, to the development 
and differentiation of the local and systemic immune system, and may protect the host from pathogenic enteric infections. 
However, in IBD, luminal bacteria trigger deregulated immune responses, acting as the main environmental factor for the 
development of these pathologies[3,4].

The loss of tolerance to the commensal microbiota seems to be related to the genetic susceptibility of the individual and 
to an imbalance in the composition of the microbiota[5]. IBD patients have changes in stool composition, with less 
bacterial quantity and diversity[6,7].

Genome wide association studies of IBD have identified 99 non-overlapping genetic risk loci including 28 that are 
shared between CD and UC[8]. These genetic alterations seem to implicate several important pathways, such as intestinal 
barrier function, regulation of innate and adaptive immunity, reactive oxygen species formation, autophagy, and 
endoplasmic reticulum stress[9]; associations were identified between polymorphisms in the genes for interleukin (IL)-10, 
IL-10 receptor alpha, and components of this signaling pathway - signal transducer and activator of transcription 3, 
tyrosine kinase 2, and JAK2, with the early development of IBD[10].

Dysregulation of the immune component in IBD is marked by abnormal mucus production, failure to repair the 
epithelial barrier, and excessive and persistent activation of T lymphocytes, B cells, dendritic cells, macrophages, and 
natural killer cells[11,12].

Naive TCD4+ cells can differentiate into T helper 1 (Th1), Th2, Th9, Th17 and regulatory T (Treg) subpopulations; the 
main stimulus for differentiation into Th1 cells - secreting interferon (IFN)-γ, tumor necrosis factor (TNF) and IL-2, is the 
expression of IL-12, while IL-4 leads to differentiation into Th2 cells, whose cytokine pattern is marked by the expression 
of IL-4, IL-5, IL-13 and IL-25[13]. Classically, CD and UC are described as diseases with a Th1 and Th2 immune pattern, 
respectively[14-16], since typically CD patients have higher IFN-γ and IL-2 expression than UC patients[17,18], that 
express more IL-5 and IL-13[19,20]. However, some studies contradict this information, since lower levels of IL-13 were 
seen in UC patients compared to CD patients[21], and high levels of IFN-γ were found in carriers of both diseases[22]. In 
line with this, Bernardo et al[23] found a mixed cytokine pattern in biopsies from UC patients, associated with low IL-13 
levels.

A Th17 pattern response prevails in the gut. The differentiation into Th17 cells leads to the expression of IL-17, IL- 21, 
IL- 22, and IL-23, which are found in large quantities in the intestine of IBD patients[24]. A study using IL-17 receptor (IL-
17R) knockout mice showed that IL-17R deficiency protected the animals from developing trinitrobenzene sulfonic acid 
(TNBS)-induced colitis[25-27].
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Although not conclusive, there is evidence to indicate that two members of this cytokine family have different effects; 
IL-17A appears to have a protective effect through inhibition of the Th1 response[28], furthermore, other studies indicate 
that deficiency of this cytokine causes exacerbation of colitis, while IL-17F contributes to and aggravates the inflammatory 
process[29]. Despite the prevalence of Th17 cells in the gut in the absence of IBD, this response pattern appears to be 
exacerbated with disease onset leading to increased production of pattern marker cytokines. Perhaps this increase occurs 
relatively disproportionately, prioritizing the increase in cytokines that induce an inflammatory response, such as IL-17F.

Treg cells which is characterized by constitutive expression of forkhead/winged helix transcriptional factor P3 (FoxP3), 
CD25 and cytotoxic T lymphocyte-associated protein 4, play a major role in the pathogenesis of IBD[30]. In these diseases, 
there is a significant dysfunction in the activity of these cells, either by being in low numbers or by having their function 
suppressed. It has been observed that effector cells from IBD patients exhibit relative resistance to Treg-mediated 
suppression by expressing high levels of Smad7, an inhibitor of the transforming growth factor (TGF)-β signaling 
pathway[31,32]. The unbalanced and uncontrolled local immune response against the bacterial microbiota in the IBD 
occurs when it is poorly controlled by endogenous counter regulatory mechanisms, such as the immunosuppressive 
cytokine TGF-β. Studies show that the inefficiency in control occurs due to a blockade of TGF-β signaling, caused by a 
blockade in the phosphorylation of the signaling molecule associated with the TGF-β activated receptor, Smad3. The 
blockade of Smad3 activity is caused by the upregulation of the Smad7[33].

Individuals with a mutation in the FOXP3 gene often suffer from intestinal inflammation[34]. Treg cells are able to 
convert to Th17 cells under inflammatory conditions, and the cytokine IL-1β is key in this process[35]. The balance 
between the Th17 and Treg response is important, especially in places such as the gut, where there is a commensal 
microbiota, to prevent deregulated immune responses. IBD patients have a reduced Treg/Th17 ratio in peripheral blood 
compared to healthy individuals. The installation of the inflammatory process in IBD seems to be fueled by an 
unbalanced increase in the production of Th17 cytokines, which promote the Th1 pattern. Pro-inflammatory cytokines 
produced by Th1 cells, such as IL-1β, potentiate the inflammatory process by decreasing the Treg/Th17 ratio, both by 
proportionally increasing the Th17 response and by reducing the suppression of the inflammatory response by Treg cells. 
Regarding Th9 cells - capable of exacerbating inflammatory processes by increasing epithelial permeability[36], are at 
high levels in CD and UC[37,38].

IMMUNOMODULATION OF THE INFLAMMATORY PROCESS AND PATHOGENESIS OF IBD BY  
HELICOBACTER PYLORI
Influence of Helicobacter pylori cytotoxin-associated antigen A+ infection on IBD prognosis
Cytotoxin-associated antigen A (CagA) is a gene found in the final portion of the Cag pathogenicity island of the Helico-
bacter pylori (H. pylori) genome and encodes the oncogenic protein CagA. Its presence is more frequent in East Asian 
populations than in those from the West, and determines a number of interactions between the bacterium and the host
[39]. Although there is a causal relationship between H. pylori CagA+ and the incidence of cancers of the gastrointestinal 
tract[39,40], when it comes to IBD, especially CD and UC, the presence of the CagA gene may positively influence the 
prognosis of patients[41].

In a first analysis, age, genetic and environmental factors associated with innate and adaptive immunity are key factors 
in the development of IBD[42,43], thus the presence of H. pylori infection becomes yet another variable. Some studies 
point to several hypotheses for the improved prognosis of IBD in the presence of the H. pylori CagA gene, such as the 
conversion of the M1 macrophage lineage into M2 through modulation of the Th17/Treg immune response, in which 
there is a decrease in the levels of IL-17F and IL-21 with concomitant increase in the expression of IL-10 and Treg cells[44] 
due to increased plasma IL-13[45].

Also contributing to the process are increased anti-inflammatory responses through increased expression of CD163 and 
IL-10, suppression of toll like receptors (TLR) mediated signaling pathways[46], and control of the immune response 
through activation of pathways mediated by the basic leucine zipper transcription factor ATF-like 2 (BATF2)[47-49] 
(Figure 1).

The CD163 is a macrophage/monocyte scavenger receptor whose expression is positively regulated by IL-10. The 
upregulated expression of this receptor is one of the most marked changes in the M2/M1 phenotype switch; therefore, 
high expression of CD163 is characteristic in inflammatory processes[50,51]. According to studies, the number of CD163- 
M1 monocytes, as well as CD163+ and CD163+/IL-10+ M2 monocytes are significantly increased in individuals infected 
with H. pylori, in addition to having higher levels of IL-10. IL-10 production is significantly higher by M2 cells from 
individuals with H. pylori infection. In addition, individuals infected with CagA-positive H. pylori strains had a 
significantly higher number of CD163+ and CD163+/IL-10+ monocytes compared to those infected with CagA-negative 
strains[52].

The TLRs are expressed by cells of the intestinal epithelium, and by cells of the immune system present in the gut, such 
as leukocytes, dendritic cells, and various polymorphisms of these receptors have been associated with susceptibility to 
IBD[53,54] and they are involved in signaling pathways leading to the expression of several inflammatory genes[55,56]. 
BATF2 has unique functions in the regulation of cytokine gene expression by TLR signaling in macrophages[57].

H. pylori has metabolic adaptations for gastric colonization that, in the background, participate in modulating the 
inflammatory process of IBD. The urease enzyme that confers H. pylori resistance to stomach acidity, participates in 
immunomodulation as it alters particle opsonization, facilitates apoptosis, and by being presented by MHC II increases 
the expression of pro-inflammatory cytokines[58].
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Figure 1 Mechanisms of Helicobacter pylori cytotoxin-associated antigen A+ on favorable prognosis of inflammatory bowel diseases. The 
presence of the cytotoxin-associated antigen A gene at the Cag pathogenicity island induces the modulation of T helper 17/Treg immunological response (1), which 
reduces levels of interleukin (IL)-17F, IL-17A, and IL-21 and increases the expression of IL-13, IL-10, and Treg (2). These two factors are synergists in the conversion 
process of the M1 to M2 macrophage lineage (3). Then, M2 macrophages suppress signaling mediated by toll-like receptors (4) and activate metabolic pathways 
mediated by basic leucine zipper transcription factor ATF-like 2, increasing CD163, a macrophage/monocyte scavenger receptor (5). Finally, the levels of IL-10 
expression also increase (6), leading to anti-inflammatory effects (7) and, therefore, to a better prognosis on inflammatory bowel diseases. H. pylori: Helicobacter 
pylori; IL: Interleukin; TLR: Toll-like receptor; IBD: Inflammatory bowel disease; CagA: Cytotoxin-associated antigen A; Treg: Regulatory T.

The flagella of H. pylori, besides the fundamental importance in its motility for gastric colonization, also induces an 
inflammatory response. FlaA and FlaB flagellins can promote a humoral response by stimulating the production of 
specific antibodies[59,60]. Furthermore, studies report that bacteria with increased motility increase IL-8 release and 
suggest that genes which regulate flagellin production may alter adhesin expression[61-63] facilitating colonization. The 
chemoattractant effect of IL-8 is all too well known, however, data on the association of IL-8 with H. pylori infection are 
still scarce[64].

Superoxide dismutase from H. pylori has also been shown to have a potential immune suppressive effect by inhibiting 
the production of pro-inflammatory cytokines, through inhibition of pathways activated by the transcription factor 
nuclear factor kappa B (NF-кB), as well as macrophage inflammatory protein 1-α[65].

Modification of bacterial gut microbiota by H. pylori
The alteration in the pattern of gastric secretion by H. pylori is closely related to the modification of the microbiota of the 
gastrointestinal tract[66]. Hypochlorhydria enables colonization of the distal intestine by acidic pH-sensitive bacteria; this 
causes people infected with H. pylori to have a more diverse alpha intestinal microbiota compared to uninfected people
[66-68]. These changes reflect higher percentages of acidophilic bacteria, proteobacteria, bacteria of the genera Lactoba-
cillus, Haemophilus, Streptococcus and Gemella; in contrast, there is a decrease in the percentage of pathogenic anaerobic 
bacteria such as Clostridium[69-72].

In addition to the variation in intestinal pH being one of the factors that alter the diversity of the gut bacterial 
microbiota, it can also be influenced by the virulence factors CagA and VacA of H. pylori, which alter the immune 
response of the infected individual[73-75]. Hormonal factors, influenced by H. pylori infection such as an increase of 
gastrin secretion alter gut metabolism, in addition, leptin has been directly related to an increase of the amount of the 
probiotic bacteria Bifidobacterium and Lactobacillus[76].

Indeed, there is an altered composition of the local microbiota of IBD patients[77]. In these diseases an exacerbated 
immune response against the commensal microbiota occurs in genetically predisposed individuals and, studies suggest 
that the balance between pathogenic and beneficial bacterial species is altered in these ones[78]. Therefore, the dysbiosis 
promoted by H. pylori infection may help explain the inverse relationship between bacterial infection and IBD in 
individuals with the two conditions concomitantly, although the underlying molecular mechanisms are not fully 
understood[79].



Feilstrecker Balani G et al. H. pylori immunomodulates IBD

WJG https://www.wjgnet.com 4608 August 14, 2023 Volume 29 Issue 30

CO-IMMUNOMODULATION OF IBD BY NLR FAMILY PYRIN DOMAIN CONTAINING 3 INFLAMMASOME  
AND H. PYLORI INFECTION
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is a multiprotein complex that plays a crucial role in 
the innate immune response. The complex is formed by the NLRP3 receptor, the adaptor protein caspase-recruitment 
domain (ASC) and the enzyme caspase-1 and, appears to play a role in the negative association between IBD and H. pylori 
infection by the IL-1β and IL-18 activity. NLRP3 recognizes a wide variety of stimuli linked to pathogen-associated 
molecular patterns and damage-associated molecular patterns through pattern recognition receptors such as TLRs and 
nucleotide-binding oligomerization domain 2. Activation of NLRP3 includes a priming process which components are 
expressed in greater quantities and depends on several upstream signals such as potassium and chloride efflux, calcium 
mobilization, lysosomal disruption, and mitochondrial dysfunction with increased reactive oxygen species[80].

Activation of the inflammasome culminates i4n expression of NF-кB and cleavage/activation of caspase-1, responsible 
for processing pro-IL-1β and pro-IL-18, which are cleaved into their active forms[81,82]. Furthermore, activation of 
NLRP3 leads to proptosis, a form of programmed cell death mediated by gasdermin D protein. Caspase-1 cleaves 
gasdermin D, removing its carboxy-terminal portion, which allows its insertion and polymerization into the plasma 
membrane forming pores. Proptosis also appears to induce the secretion of IL-1β and IL-18[83].

Caspase-1 is highly expressed in the mucosa of the patients infected with H. pylori. However, it is observed that 
together, IL-1β and IL-18 seem to play different roles in controlling the infection and the pathogenicity of the bacterium. 
While IL-1β presents itself as a potent pro-inflammatory agent, IL-18 has regulatory properties and controls responses 
mediated by TCD4+ cells. Studies have shown that mice that failed to process IL-18 in the absence of caspase-1 had less 
bacterial colonization, more robust Th17 responses, and more evident immune pathogenicity compared to control 
animals[84]. Furthermore, mesenchymal stem cells stimulated by this cytokine promote differentiation of Treg cells into 
virgin TCD4+ cells, limiting the Th17 response[85], promoting a tolerogenic activity and adjusting chronic inflammation 
in the gastric mucosa (Figure 2).

The absence of caspase-1 results in an inefficient protective immune response, with a less pronounced Th1 and Th17 
pattern[86,87]. There is strong evidence of an association between IL-18 and the prevention and control of allergic 
diseases such as asthma and rhinitis, through pulmonary infiltration of large amounts of Treg and tolerogenic dendritic 
cells. This association seems especially beneficial in relation to infection with H. pylori CagA+ strains, as observed in a 
study wherein mice infected with the bacteria in the neonatal period developed specific immunological tolerance and 
protection against gastric immunopathology resulting from H. pylori CagA+ infection[88].

Studies with animal models have shown that NLRP3 activation induced by H. pylori infection appears to improve the 
prognosis of IBD. Engler et al[89] observed that mice exposed to the bacterium developed less severe forms of dextran 
sulfate sodium (DSS)-induced colitis, with significantly milder inflammation and epithelial changes. These positive effects 
were also observed in animals treated with H. pylori extracts. Such beneficial effects are accompanied by positive 
regulation of TGF-β and the transcription factor caudal-related homeobox transcription factor 2, which regulates the 
expression of mucins such as mucin 2, a fact that was associated with signaling by NLRP3 and IL-18 production by 
caspase-1.

Zaki et al[90] demonstrated that NLRP3 -/- or ASC -/- mice are more susceptible to DSS-induced colitis and caspase-1 -
/- mice are more susceptible to weight loss, diarrhea, rectal bleeding and mortality during the chronic and acute phases 
of DSS- or TNBS-induced colitis. These findings are related to IL-18 production and its mucosal barrier repair function. 
Furthermore, IL-18 -/- and IL-18R -/- mice exhibit greater susceptibility to DSS-induced colitis, associated with higher 
mortality and more severe histopathological changes[91]. Previous studies have reported that the absence of the adaptor 
protein myeloid differentiation primary response 88 (MyD88), which is involved in the production of IL-18 and IL-1β, 
increases the severity of inflammatory disease, indicating the importance of MyD88-dependent signaling pathways, such 
as the TLR4-MyD88 pathway, in blocking the onset and progression of IBD[92-94]. MyD88 is the main signaling adaptor 
protein of the TLR family. Studies using MyD88-deficient mice suggest a dominant role for TLR/MyD88 signal 
transduction in preventing intestinal inflammation after acute epithelial injury by promoting epithelial repair[94,95].

Yao et al[96] conducted a study with NLRP3R258W mutant mice, a mutation homologous to NLRP3R260W in humans, 
which causes increased inflammasome activity. The mutant mice developed DSS-induced colitis with milder symptoms 
compared to wild-type animals, in addition to lower expression of inflammatory mediators, higher expression of IL-18 
and IL-1β, and fewer colon tumors. These positive effects were associated with higher activity of Treg cells, positively 
regulated by IL-1β and fundamental in controlling inflammation. In this study no evidence was found that directly points 
to IL-18 as an effector molecule in the activation of the inflammasome, but it is believed that this cytokine may be 
indirectly affected by NLRP3 through secondary effects. However, IL-18 deficiency was shown to override the protective 
effect of the NLRP3R258W mutation.

IMMUNOMODULATION OF IBD BY NEUTROPHIL-ACTIVATING PROTEIN OF H. PYLORI
H. pylori neutrophil-activating protein (HP-NAP) is a virulence factor that plays an important role in immunomodulation. 
HP-NAP refers to H. pylori mini-ferritin, a protein with the ability to activate the production of oxygen radicals by 
neutrophils promoting their adhesion to the vascular endothelium[97]. Neutrophil adhesion occurs by the positive 
regulation of β-2-integrin (CD18) expression in a high-affinity state[98,99].
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Figure 2 Immunomodulation of the NLR family pyrin domain containing 3 inflammasome and protection against inflammatory bowel 
diseases. Pathogen-associated molecular patterns from Helicobacter pylori are recognized by the NLR family pyrin domain containing 3 (NLRP3) inflammasome 
toll-like receptors leading to responses that appear to be associated with improved prognosis and an anti-inflammatory effect. Activated NLRP3 is able to increase the 
expression of caspase-1 which activates the cytokines interleukin (IL)-18 and IL-1β. The positive regulation of these cytokines leads to extragastric 
immunomodulation by suppressing the T helper 17 subpopulation and increasing regulatory T, transforming growth factor-β and mucins. H. pylori: Helicobacter pylori; 
IL: Interleukin; PAMPs: Pathogen-associated molecular patterns; TLR: Toll-like receptor; TGF: Transforming growth factor; NLRP3: NLR family pyrin domain 
containing 3; Treg: Regulatory T.

The mini-ferritins have the ability to influence host immune cells in addition to protecting bacterial DNA from 
oxidizing radicals[100]. HP-NAP is released by H. pylori near the gastric epithelial monolayer, thus activating 
macrophages/monocytes and mast cells, with the release of pro-inflammatory cytokines TNF-α, IL-6, IL-12 and IL-23[101,
102]. Similar to the chemokine CXCL8, HP-NAP directly promotes leukocyte recruitment; after HP-NAP transcytosis by 
endothelial cells, part of these proteins remain bound to the luminal portion of the endothelium, increasing the expression 
of β-2-integrin and changing the local spatial conformation, a fact that culminates in the extravasation of immune cells[99,
103].

The IL-8 secretion by neutrophils present at the site of inflammation enables the recruitment of more neutrophils and 
other immune cells. IL-8 secretion is promoted by HP-NAP and mediated through interactions with TLR2 receptors and 
pertussis toxin-sensitive G proteins[104]. HP-NAP also induces mast cells and basophils to secrete TNF-α, IL-6, IL-8, IL-12 
and IL-23, and stimulates mast cells to release histamine and IL-6[101,102,105]. Besides influencing innate immunity, HP-
NAP modulates adaptive immunity by promoting the release of IL-12 and IL-23 by neutrophils and monocytes, thereby 
causing a Th1 polarization, and directing the maturation of monocytes to mature dendritic cells[102].

The mature dendritic cells are stimulated by HP-NAP to express MHCII and release Th1 pattern cytokines such as IL-
12[102,106]. The increased secretion of IL-12 in the gastrointestinal microenvironment, promoted by HP-NAP, causes 
gastric specific T lymphocyte subpopulations to be able to produce large amounts of IFN-γ and TNF-α and, to exhibit 
cytotoxic activity[102]. Increased Th1 pattern and cytotoxic response, induced by H. pylori infection, may be beneficial in 
pathologies which the Th2 response is the detrimental mechanism (Figure 3). The ability of HP-NAP to reduce Th2 
activity due to the polarization towards Th1 was proven in experiments using mice with atopic dermatitis[107]. 
Therefore, HP-NAP may have a therapeutic effect in situations which there is a predominance of Th2 response, as was 
observed in HP-NAP inoculation assays in mice with allergic asthma, which significantly reduced serum immuno-
globulin E levels with concomitant increase in IL-2, thus decreasing eosinophil infiltration[108].

Thus, the Th1-directed polarization promoted by HP-NAP, may be a possible explanation for the improvement of IBD 
symptoms, whose pathogenesis may be the result of a dysregulated Th2 response, as occurs in UC, in which there is a 
predominance of a Th2 response and inhibition of the Th1 response, in individuals infected with H. pylori[109-112].

CONCLUSION
Although significant progress has been made over the last few years in defining the mechanisms that H. pylori use to 
influence on IBD evolution, there is clearly much that remains to be elucidated and many questions persist. In this review 
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Figure 3 Hypothesis on correlation between concomitant infection with Helicobacter pylori and the presence of ulcerative colitis 
(inflammatory bowel disease), which has a pathological pattern of exacerbated T helper 2 response. The schematic shows HP-NAP being 
secreted into the gastric mucosa by Helicobacter pylori (H. pylori). Then, HP-NAP undergoes a process of transcytosis by endothelial cells, binding to the luminal side 
of the blood vessel. With this, there is an alteration in the expression of β-2-integrin, with the recruitment of neutrophils and monocytes, which carry out diapedesis. 
The recruited leukocytes secrete cytokines [interleukin (IL)-12 and IL-23], which promote a polarization of the circulating lymphocytes to a T helper 1 (Th1) pattern. 
The Th1 polarization causes a reduction in the Th2 response, this could explain the improvement of ulcerative colitis symptoms in patients infected with H. pylori. H. 
pylori: Helicobacter pylori; IL: Interleukin; Th: T helper; HP-NAP: Helicobacter pylori neutrophil-activating protein.

we emphasize the role of H. pylori CagA+ and HP-NAP on favorable prognosis of IBD. The pathogenesis of IBD is 
complex and involves a combination of genetic, environmental, and immunological factors. Classically, CD and UC are 
described as diseases with a Th1 and Th2 immune pattern, but the prevalence of type response remains under study.

Regarding the cellular pattern, Th17 cells have been demonstrated at the site of inflammation, but the levels of total 
cytokine markers of these patterns remain variable on models’ diversity. Treg cells play a major role in the pathogenesis 
of IBD by suppression of Smad3 and consequently overexpression Smad7, an inhibitor of the TGF-β signaling pathway. 
Moreover, Th9 cells - capable of exacerbating inflammatory processes by increasing epithelial permeability, are at high 
levels in CD and UC.

In summary, targeting NLRP3 inflammasome by H. pylori infection allows the exacerbation of IL-1β and IL-18 that 
culminates in high levels of TGF-β and low levels of IL-17 and IL-22 on IBD. The patients with CagA gene can induce the 
Treg cells which contributes to the polarization of the M1 macrophage into M2 macrophage lineage through concomitant 
increase of the expression of IL-10 and more Treg cells. At the same time, HP-NAP has an important role in immunomod-
ulation by reactive oxygen species production neutrophil-induced. The ability of HP-NAP to reduce Th2 activity due to 
the polarization towards Th1 response may be a possible explanation for the improvement of IBD symptoms, in which 
there is a predominance of a Th2 response and inhibition of the Th1 response like occurs in individuals infected with H. 
pylori.

Regarding the capacity of CagA+ and HP-NAP to control inflammation and autoimmunity, and their implication in 
preventing IBD evolution, it seems probable that a clear understanding of how CagA+ and HP-NAP work on Treg cells, 
cytokines and macrophages-induced will present definitive opportunities for therapeutic intervention.
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