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Abstract
After being ingested and entering the human stomach, Helicobacter pylori (H. 
pylori) adopts several effective strategies to adhere to and colonize the gastric 
mucosa and move to different regions of the stomach to obtain more nutrients and 
escape from the harsher environments of the stomach, leading to acute infection 
and chronic gastritis, which is the basis of malignant gastric tumors. The 
endoscopic manifestations and pathological features of H. pylori infection are 
diverse and vary with the duration of infection. In this review, we describe the 
endoscopic manifestations of each stage of H. pylori gastritis and then reveal the 
potential mechanisms of bacterial intragastric colonization and migration from the 
perspective of endoscopists to provide direction for future research on the 
effective therapy and management of H. pylori infection.
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Core Tip: Helicobacter pylori (H. pylori) adopts several effective strategies to adhere to and colonize the gastric mucosa and 
move to different regions of the stomach, leading to acute infection and chronic gastritis that can be observed through 
endoscopy. Herein, we describe the endoscopic manifestations of each stage of H. pylori gastritis and then discuss the 
potential mechanisms of bacterial intragastric colonization and migration from the perspective of endoscopists to provide 
direction for future research on the effective therapy and management of H. pylori infection.
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INTRODUCTION
More than half of the world’s population is estimated to be infected by the gram-negative, flagellated, spiral-shaped 
bacterium Helicobacter pylori (H. pylori)[1]. The bacterium has received intensive attention because H. pylori infection is 
closely associated with the development of peptic ulcers, mucosa-associated lymphoid tissue lymphoma and gastric 
cancer (GC), resulting in at least 500000 deaths per year[2-4]. The slow carcinogenic process is known as Correa’s cascade
[5]: At first, gastritis occurs in all infected individuals[2], and then a series of intermediate stages (characterized by 
precancerous lesions), including atrophy, intestinal metaplasia (IM) and dysplasia, may slowly develop, and eventually, 
1%-3% of infected patients develop gastric malignant tumors[6].

All gastric mucosal lesions that occur after H. pylori infection can be observed by skilled endoscopists through upper 
gastrointestinal endoscopy. Based on the Kyoto classification of gastritis, endoscopic features, such as nodularity, diffuse 
redness, spotty redness, mucosal swelling, enlarged folds, xanthoma, atrophy and IM, are helpful in diagnosing H. pylori 
gastritis[7]. Atrophy can be endoscopically identified with high confidence by applying the Kimura-Takemoto classi-
fication[8], while IM and dysplasia can be diagnosed more accurately with advanced image-enhanced endoscopy (IEE)
[9].

The highly motile pathogen H. pylori usually infects young children[3] and initiates acute infection that lasts for only a 
few weeks[10,11] and chronic inflammation that can last for the lifetime of the host[12]. Its ability to swim in the gastric 
mucus and colonize the stomach enables it to survive in the hostile gastric environment[13] and leads to various 
endoscopic and histological features as gastric mucosal lesions progress[14]. Many articles and reviews have reported the 
underlying mechanisms, but few have linked endoscopic features to mechanisms. Therefore, in the following sections, we 
describe the endoscopic manifestations of each stage of H. pylori gastritis and summarize the process and potential 
mechanisms of intragastric colonization by H. pylori and its migration.

ACUTE INFECTION
Acute H. pylori infection only lasts for a few weeks[10,11] and has been rarely observed or reported in recent decades. The 
endoscopic manifestation of gastric erythema and a gaping pylorus[10,11] is always featureless. Although the gastric 
mucosa does not appear damaged at this stage, initial colonization of the mucosa is the basis of a series of lesions, such as 
atrophic gastritis, peptic ulcer and even gastric carcinoma.

The prevalence of H. pylori infection is high, but colonization by this microbe is not easy. Multiple spontaneous 
eradication events may occur before colonization, leading to acute infection[15]. Sophisticated strategies have been 
adopted by H. pylori that have enabled it to adapt to and survive in the hostile gastric environment.

When H. pylori is ingested by adults, it is almost completely destroyed in the gastric acid, while it is easier to survive in 
the stomach of children younger than the age of five, both in developing and developed countries[3]. Bucker et al[3] 
simulated the pH changes of the postprandial stage in babies, young children and adults and suggested that the bacteria 
were easiest to reach the mucus layer in young children, whose feature of postprandial gastric condition is moderate 
food-induced pH elevation and slow reacidification.

During the process of slow reacidification, the urease enzyme is believed to play a key role in bacterial survival and 
adhesion. Urea is degraded by the urease enzyme, which buffers the cytoplasm and periplasm[16]. This confers many 
benefits. First, H. pylori prefers to live in an environment with elevated pH. A recent study[17] showed that H. pylori does 
not escape from phosphate buffer solutions of pH 6.6 and 7.0. Second, intracellular urease could also increase membrane 
potential, thereby allowing protein synthesis at a low pH[18]. Third, mucosal viscosity highly depends on acidity[19]. At 
a less acidic pH, the mucus is less gel-like, which enables H. pylori to more easily move through the mucus layer[20]. 
Fourth, trefoil factor 1 (TFF1) is a member of the trefoil peptide family of proteins and is coexpressed with Mucin-5AC 
(MUC5AC), a gel-forming mucin that is predominantly secreted and expressed by gastric surface epithelial cells in the 
stomach[21]. The optimum pH for bacterial binding to TFF1, which thereby promotes colonization, was found to be 5.0-
6.0[22]. In addition, urea and bicarbonate were considered to have a chemotactic effect on H. pylori in vitro[23], but 
research by Schreiber et al[13] shows that neither the urea/ammonium gradient nor the bicarbonate/CO2 gradient are 
essential for the orientation of H. pylori in vivo.
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However, this does not mean that a neutral or alkaline environment is suitable for H. pylori. Previous studies have 
shown that H. pylori is sensitive to alkaline conditions[24], and its growth is limited at neutral pH[25]. To prevent lethal 
alkalinization of the cytoplasm, H. pylori utilizes a proton-gated channel, UreI, which regulates the uptake of urea[26] and 
only functions in conditions of an acidic pH; thus, the transport of urea into the bacterial cell does not occur at a neutral 
pH[24]. Therefore, H. pylori prefers a weakly acidic environment.

The epithelial surface of the stomach is covered with an approximately 300 μm thick layer of secreted mucus, which 
mainly consists of mucins Mucin 6 (MUC6) and MUC5AC[27]. MUC6 exists in each layer of the mucus gel, while 
MUC5AC is mainly present on the surface and bottom. The increase in the viscosity of gastric mucus gel is due to this 
natural stratification of mucins[28]. While protecting gastric epithelial cells, the mucus layer also plays an important role 
in the colonization process. The pH is approximately neutral at the epithelium and very acidic (pH 1-2) close to the lumen
[21], resulting in a mucus pH gradient that can be used by H. pylori for precise spatial orientation[13]. The membrane-
bound chemoreceptor TlpA of H. pylori detects and mediates repulsion from environments with a lower pH, and the 
cytoplasmic chemoreceptor TlpD mediates both attraction to higher pH environments and repulsion from lower pH 
environments[17,29]. Under this chemotactic effect, H. pylori penetrates the gastric mucus quickly and reaches the narrow 
region within 25 μm of the gastric epithelial surface with the help of its two to six sheathed unipolar flagella and helical 
shape[30,31].

After approaching the lower mucus layer, the majority of H. pylori swim in gastric mucus, while others directly adhere 
to epithelial cells[13,31]. Although it is considered a noninvasive gastric pathogen to date[19], H. pylori can indeed bind 
to, invade, be internalized into and proliferate in gastric epithelial cells[27,32]. The invasiveness of H. pylori may partially 
depend on the strain. Research by Camorlinga-Ponce et al[33] showed that CagA-negative bacteria adhered to the surface 
of the apical epithelium, while CagA-positive bacteria were identified in the intercellular spaces or the immediate vicinity 
of epithelial cells. Sigal et al[34] found a subgroup of H. pylori associated with cells deep in the antral glands. These 
microbes can promote gland hyperplasia by inducing stem cell proliferation and expansion and altering gene expression 
of stem cells[34].

H. pylori adheres to epithelial cells mainly by outer membrane proteins (OMPs). Blood group antigen-binding adhesion 
(BabA) and sialic acid-binding adhesion (SabA) are important OMPs[19,27]. Lewis antigens are common in normal, 
infected and inflamed gastric mucosa[35,36]. BabA can identify and bind to Lewis b antigen[35], while SabA can bind to 
the antigens Lewis a and Lewis X[36], and its expression can quickly respond to the changes in the stomach or different 
areas of the stomach, enabling the bacteria to adapt to host’s immune responses and varied microenvironments to 
maintain long-term colonization and infection[37]. In addition to BabA and SabA, other surface proteins, such as AlpA, 
AlpB, DupA, outer inflammatory protein A (OipA) and HopZ, are considered related to adhesion, but none of them has 
been shown to be essential to adhesive mechanisms[38]. After H. pylori adheres to epithelial cells, the Cag type IV 
secretion system (T4SS) promotes CagA translocation into host cells, resulting in changes in cell shape, disruption of 
cell cell junctions, altered cell polarity and cell adhesion, increased cell motility and cell migration, increased cell prolif-
eration, β-catenin activation, and epithelial-mesenchymal transition[39]. Some bacteria are internalized into the cytoplasm 
of gastric epithelial cells through endocytosis within 45 minutes of bacterial attachment to the cell surface[32]. H. pylori 
can replicate and proliferate in epithelial cells[40], escape the immune response, and exit cells to colonize and infect cells 
again when the external environment is suitable for survival[27].

In an artificial ingestion study[10], histological examination during the acute phase of H. pylori infection showed many 
polymorphonuclear neutrophil leucocytes (PMNs) in the lamina propria and on the surface of the mucosa and an absence 
of intracellular mucus. Spiral bacilli adhered to the surface and glandular epithelium as well as among PMNs in the 
mucus[10]. Zhao et al[41] proposed a novel staging strategy according to the depth and degree of gastric mucosal injury 
induced by H. pylori infection and the progression of lesions. Stage I means the bacteria were present in the mucus layer, 
stage IIA refers to the specific adhesion to and selective destruction of gastric epithelial cells, and stage IIB refers to the 
degeneration and shedding of surface mucus cells[41]. It seems that stages I and II are consistent with the pathological 
characteristics of acute H. pylori infection.

CHRONIC GASTRITIS
Cases of H. pylori gastritis that are observed by doctors usually involve chronic gastritis that has lasted for years[42]. 
Chronic gastritis has various endoscopic findings, among which nodularity, diffuse redness, spotty redness, xanthoma, 
mucosal swelling, enlarged folds, atrophy, and IM are common in H. pylori-infected gastric mucosa[43,44] (Figure 1). 
Considering the severity and progression of chronic H. pylori gastritis, we discuss endoscopic manifestations and 
potential mechanisms from the following three aspects: (1) Early stage of H. pylori infection; (2) corpus inflammation; and 
(3) atrophy and intestinal metaplasia, which are summarized in Table 1.

Early stage of H. pylori infection
Nodular gastritis is considered a feature of an early stage of H. pylori infection in adults and is more common in children, 
with an incidence of 32.9% to 85%[45,46]. It appears more frequently in the antral mucosa than in the corpus mucosa[47]. 
Nodularity is characterized by a miliary pattern resembling “gooseflesh” in the gastric mucosa on endoscopy[46] and 
follicular lymphoid hyperplasia with intraepithelial lymphocytosis on histological examination[47]. Okamura et al[48] 
further demonstrated that superficially located, enlarged hyperplastic lymphoid follicles corresponded to nodular and/or 
granular lesions, and the percentage of MECA-79 high endothelial venule (HEV)-like vessels was greater in areas with 
gooseflesh-like lesions in nodules than in normal gastric mucosa. The pathogenesis of nodular gastritis may involve a Th2 
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Table 1 The mechanisms of common endoscopic features

Endoscopic 
features Mechanisms

Nodularity Follicular lymphoid hyperplasia with intraepithelial lymphocytosis[47]; Superficially located, enlarged hyperplastic lymphoid follicles
[48]; Increased numbers of MECA-79 HEV-like vessels[48]; Th2 immune response[49]

Diffuse redness Infiltration of neutrophils and monocytes[44,58]

Spotty redness Unclear

Mucosal 
swelling

Infiltration by neutrophils and monocytes[44]

Enlarged folds Tumor necrosis factor-alpha gene polymorphism[64]; Genome wide hypomethylation and regional hypermethylation[65,66]; 
Stimulation of epithelial cell proliferation and inhibition of acid secretion induced by interleukin 1 beta and hepatocyte growth factor
[61,62]; Inhibition of acid secretion caused by morphological changes in parietal cells[63]

Xanthoma Unclear

Atrophy Cellular injury inflicted by Helicobacter pylori or mediated by inflammation or apoptosis[77]; Th1 immune response[78]; C-X-C motif 
chemokine receptor 2-mediated cellular senescence[79]

Intestinal 
metaplasia

Death of parietal cells and reprograming of chief cells[82]

immune response, which is more likely to occur in children[49,50].
Early colonization usually occurs in the gastric antrum, and early inflammation is always more serious in the gastric 

antrum, which is consistent with endoscopic findings. Animal research suggested that the wild-type H. pylori strain 
mostly colonized the antrum and the transition zone between the antrum and corpus rather than the corpus[31,34]. Rolig 
et al[51] demonstrated that inflammation was worse in the antrum than in the corpus in mice infected with wild-type H. 
pylori strains. This may be associated with the particularity of antral glands and chemotaxis of the bacterium.

It is well known that the corpus is populated by oxyntic glands containing many acid-secreting parietal cells that 
promote acidic conditions in the stomach. In contrast, the antrum, which is defined by the presence of gastrin-expressing 
G cells, mainly comprises the pyloric or antral glands containing MUC6-expressing deep mucous cells, G cells, D cells, 
enterochromaffin cells and foveolar surface mucous cells[52]. Interestingly, oxyntic glands also exist in the human gastric 
antrum, but the proportion of parietal cells and chief parietal cells is significantly less than that in corpus glands[53]. The 
effects of parietal cells in the antrum on H. pylori colonization remains unclear. However, generally, the weaker acidic 
environment of the antrum provides the bacteria with more opportunities to survive and colonize.

The chemotaxis system of H. pylori includes three membrane-bound chemoreceptors, including TlpA, TlpB, and TlpC; 
one cytoplasmic chemoreceptor, TlpD[29]; three core signaling complex proteins, including CheW, CheA and CheY[54,
55]; and auxiliary chemotaxis proteins containing CheV-type coupling proteins (CheV1, CheV2, and CheV3), CheZ 
phosphatase and ChePep[56]. The role of pH sensing in chemotaxis has been mentioned above. In addition, a study by 
Rolig et al[51] shows that chemotaxis is required for H. pylori to swim to and achieve normal bacterial loads in the antrum 
and transition zone. The number of nonchemotactic mutant (Che-) H. pylori strains at this site was found to increase more 
slowly than that of the wild-type strains. TlpD plays a major role in this process. Therefore, chemotaxis may be necessary 
for H. pylori to locate or to maintain colonization of the antrum.

Corpus inflammation
Previous clinical studies focused on the relationship between endoscopic findings and H. pylori infection and 
demonstrated that diffuse redness, spotty redness, mucosal swelling and enlarged folds under endoscopy are associated 
with H. pylori infection[14,46]. Diffuse redness, defined as uniform redness with continuous expansion involving the 
nonatrophic mucosa in the region of fundic gland, and mucosal swelling, defined as swollen gastric mucosa in the region 
of fundic gland or thick, uneven mucosa in the region of pyloric gland, correlate predominantly with the degree of 
neutrophilic and mononuclear cell infiltration caused by H. pylori infection[44,57-59]. Spotty redness comprises multiple 
spotted small flat erythema, commonly observed in the upper corpus and fornix[44], but its mechanism remains unclear. 
An enlarged fold is defined as a fold with a width of 5 mm or more in the gastric greater curvature, which is not or only 
partially flattened by air insufflation[60]. Stimulation of epithelial cell proliferation, inhibition of acid secretion, tumor 
necrosis factor-alpha gene polymorphism, genome-wide hypomethylation and regional hypermethylation may play a 
role in the generation of enlarged folds caused by bacterial infection[61-66]. We describe another perspective: these 
endoscopic features that are mainly observed in the corpus indicate the existence of corpus inflammation, the 
development of gastric mucosal lesions, and a later stage of H. pylori infection that differs from the early stage and mainly 
manifests as antral inflammation.

H. pylori can survive in and colonize the harsh conditions of the corpus that are promoted by oxyntic glands. This has 
been indicated by previous studies. H. pylori was identified in the corpus in 83% of patients with a previous diagnosis of 
intestinal metaplasia and known H. pylori infection[67]. Biopsies taken from the corpus are conducive to an accurate 
histologic diagnosis and assessment of H. pylori infection[68,69]. Combined antrum and corpus biopsies can lead to a 
significantly better success rate of H. pylori culture than single antrum biopsy[4].
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Figure 1 Endoscopic features without and with Helicobacter pylori infection. A: Antrum without Helicobacter pylori infection; B: Corpus without 
Helicobacter pylori infection; C: Nodularity; D: Diffuse redness; E: Spotty redness; F: Mucosal swelling; G: Enlarged folds; H: Xanthoma; I: Atrophy; J: Intestinal 
metaplasia; K: Light-blue crest; L: White opaque substance.

H. pylori also reaches the corpus under the guidance of chemotaxis, but afterward, chemotaxis is not needed for H. 
pylori populations to increase[51]. It is likely that the spontaneous eradication of the bacteria is almost impossible at this 
stage. However, to live, proliferate and induce chronic infection, bacteria need to acquire nutrients and escape immune 
reactions in addition to adapting to acidic environments, as mentioned above. Due to the low permeability of the mucosal 
layer, essential nutrients (for example, Fe3+) for ingested microorganisms are scarce in the stomach[70]. Following the 
successful colonization of gastric epithelial cells, H. pylori induces immune cells that cause cell damage to shed nutrients 
onto the surface of the gastric mucosa for survival[71]. However, H. pylori needs to take measures to protect itself from 
host immunity. Sophisticated mechanisms participate in the response to innate immunity; these mechanisms include: (1) 
The induction of mitochondrial-dependent apoptosis in macrophages; (2) the defense against NO products available in 
the gastric microniche through production of peroxiredoxin by the AhpC gene; and (3) the reduction of NO or O2

- radicals 
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by arginase due to substrate competition; responses to adaptive immunity, which have been elaborated in a previous 
review, include: (1) The binding of the VacA toxin to an unknown surface ligand in T cells, which results in actin 
rearrangement and then inhibition of cell proliferation; (2) The promotion of vacuoles in host cells, which leads to 
apoptosis by an anion-selective channel formed by the VacA toxin; and (3) VacA binding to mitochondria, which 
activates the associated apoptotic pathway[19]. In addition, H. pylori can be internalized into epithelial cells through 
endocytosis[32]. Long-term exposure to VacA during chronic infection causes the formation of immature autopha-
gosomes, resulting in a failure to clear the bacteria[72].

In the novel pathological staging strategy mentioned above[41], stage III, the laminar lesion stage, may be consistent 
with the early stage of gastric antrum and corpus inflammation. Stage III is subdivided into: (1) Stage IIIA: Infiltration of 
inflammatory cells and vacuolar-like degeneration; (2) stage IIIB: The development of mucous neck cell hyperplasia, 
glandular hyperplasia and heteroplasia, and serrated structures; (3) stage IIIC: Mucosal ulcers develop; and (4) stage IIID: 
Histologically diffuse lymphocyte proliferation occurs, and many lymphatic follicles of varying sizes are present.

Atrophy and intestinal metaplasia
In the absence of treatment, the inflammation and immune response caused by H. pylori infection may lead to atrophic 
gastritis[73], which is defined as the loss of gastric glands, with or without metaplasia[74]. This process takes several 
years in humans[75]. Early H. pylori eradication should be considered for preventing GC development prior to the 
appearance of atrophy or metaplasia because the benefits of H. pylori eradication diminish after the gastric IM stage is 
reached, which is referred to as the “point of no return”[76].

Gastric gland replacement by connective tissue or inflammatory cells is referred to as atrophy[73,74]. Previous studies 
have reported that atrophy may be related to the Th1 immune response and cellular injury, which is directly inflicted by 
the bacteria or mediated by inflammation or apoptosis[77,78]. A recent study showed a new mechanism of H. pylori
–induced atrophy through C-X-C motif chemokine receptor 2 (CXCR2)-mediated cellular senescence[79]. However, in 
general, the pathogenetic mechanisms that trigger atrophy are still debated.

Color changes (yellowish pale) in the mucosa, mucosal thinning and visible vascular patterns are typical endoscopic 
atrophic features[80]. In 1966, Kimura and Takemoto described the appearance of an “atrophic transitional zone” in 
patients with gastritis for the first time, which was subsequently known as the endoscopic atrophic border[8]. The 
differences in mucosal color and the visibility of capillary networks are remarkable between the two sides of the 
endoscopic atrophic border[81]. The degree of atrophy can be divided into 6 types based on the location of the endoscopic 
atrophic border. Endoscopic atrophic findings that are only visible in the antrum are referred to as closed type C-1. In 
closed types C-2 and C-3, atrophy can be observed in the angulus and the lesser curvature of the corpus. In open type O-
1, the atrophic border lies between the lesser curvature and the anterior wall; in type O-2, it lies within the anterior wall; 
and in type O-3, the endoscopic atrophic area is widely spread within the border between the anterior wall and the 
greater curvature[81].

When deep damage to the gastric mucosa occurs, acid-secreting parietal cells die, and pepsin-secreting chief cells are 
reprogrammed into mucin-secreting, wound-healing cells to reduce endogenous production of caustic substances; this 
response to injury is known as metaplasia[82]. Pathologically, metaplasia refers to gland replacement by a different type 
of epithelium in a tissue where it is not normally found[74,83]. The characteristics of mucus secretion were used to 
discriminate metaplastic lineages[83]. Pseudopyloric metaplasia is defined as the presence of MUC6- and trefoil factor 2 
(TFF2)-expressing cells at the base of corpus glands with a morphology more characteristic of mucus-producing deep 
antral glands[84]. IM refers to the presence of Mucin2 (MUC2)/trefoil factor 3 (TFF3)-expressing intestinal-type goblet 
cells in the stomach[85]. IM can be divided into two types: (1) Incomplete IM, which may be found in either the 
superficial or foveolar epithelium and in the glands and is characterized by secretive columnar cells that secrete mucin 
into the apical cytoplasm and the presence of goblet cells; and (2) complete IM, which is characterized by columnar 
absorptive cells without mucin secretion and the presence of goblet cells[86]. Both incomplete and complete IM can be 
subdivided into small intestinal type and colonic type (Table 2).

An ash-colored flat nodular change has been considered a typical endoscopic finding of IM since the last century[80]. 
With the development of endoscopic technology, advanced IEE, including narrow band imaging (NBI) endoscopy, has 
been used as a more accurate IM diagnostic tool than traditional white light endoscopy[9]. Various markers are related to 
gastric IM[87]. Light-blue crest (LBC) (Figure 1K), a light blue line observed on the surface of gastric mucosal epithelium, 
is the earliest mentioned IEE finding[88]. Combining the findings of white opaque substance (WOS) (Figure 1L), white 
mucosal epithelium observed under IEE, and LBC improves the sensitivity of diagnosing IM[89]. Through systematic 
review and meta-analysis, the diagnostic sensitivity and specificity of LBC were found to be 0.79 [95% confidence interval 
(CI): 0.76-0.81] and 0.95 (95%CI: 0.94-0.96), respectively. The sensitivities of the groove type (GT) and marginal turbid 
band (MTB) were 0.49 (95%CI: 0.43-0.54) and 0.47 (95%CI: 0.40-0.53), respectively, and the specificities were 0.92 (95%CI, 
0.89-0.94) and 0.92 (95%CI: 0.89-0.95)[87], respectively. In addition, researchers derived a classification for endoscopic 
grading of gastric IM (EGGIM) using IEE, which permits immediate grading of intestinal metaplasia without biopsies and 
is beneficial for GC risk stratification[90].

In addition, gastric xanthoma is a common endoscopic finding in patients with H. pylori infection and may serve as a 
warning endoscopic sign for advanced atrophic gastritis, intestinal metaplasia and GC[91-93]. It is a small yellowish or 
yellowish-white plaque-like or nodular lesion characterized by the accumulation of lipids, containing cholesterol, low-
density oxidized lipoprotein, low-density lipoprotein and neutral fat, in histiocytic foam cells[93,94]. However, the 
etiopathogenesis is also unclear.
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Table 2 Intestinal metaplasia with different mucin secretion

Incomplete intestinal metaplasia Complete intestinal metaplasia
Cells

Small intestinal type Colonic type Small intestinal type Colonic type

Columnar cells Neutral and scanty sialomucins Sulpho- and scanty sialomucins No mucin secretion No mucin secretion

Goblet cells Sialomucins sialomucins Neutral and sialomucins Sulpho- and sialomucins

INTRAGASTRIC MIGRATION
H. pylori has shared a coevolutionary history with humans for more than 60000 years[41,95]. Human migration has led to 
the global distribution of the bacterium from East Africa to other continents[19]. In addition to geographical migration, H. 
pylori has the ability to move between different regions of the stomach.

The motility of H. pylori provided by its flagella and helical shape is the basis of intragastric migration. The bacterium 
possesses two to six sheathed unipolar flagella[96]. The sheath, which consists of both proteins and lipopolysaccharide, 
protects the flagellar filaments from gastric acid[97]. Expression of the two major flagellar proteins, FlaA and FlaB, is 
required for full motility of the bacteria[21]. An efficient screw-like movement resulting from the characteristic helical 
shape of H. pylori also provides an advantage for penetrating the gastric mucus layer[98]. Any mutation in the genes 
associated with bacterial morphology, such as Ccrp89, Ccrp58, Ccrp1142 and Ccrp1143, can lead to a deficiency in 
bacterial shape and motility[99].

The chemotaxis system of H. pylori is necessary for intragastric migration. Chemotactic signals sensed by chemore-
ceptors are transmitted to the histidine kinase CheA through the coupling protein CheW or CheV1[100]. Repellents 
activate CheA autophosphorylation, and CheY is subsequently phosphorylated via histidine-to-aspartate phosphorelay
[101]. Phosphorylated CheY interacts with the flagellar motor, causing it to rotate clockwise and the bacteria to reverse or 
change direction[56]. Alternatively, the bacteria swim straight because chemicals perceived as attractants squelch CheA 
autophosphorylation[56]. As described above, the ability of chemoreceptors to sense pH guides the bacteria to the surface 
of the gastric epithelium. It has been suggested that different regions of the stomach contain unique chemotactic signals
[51]. The gastric antrum is usually the first colonized area because of its weaker acidic environment but not due to 
chemotaxis. The chemotactic signals produced by the antrum or transition zone play an important role in the increase in 
H. pylori numbers that occurs from 14 h to 1 wk after colonization[51]. Chemotaxis is also required when H. pylori 
migrates to the corpus from the antrum but is not needed for the increase in bacterial populations after the initial 
colonization of the corpus[27]. In addition, H. pylori can swim toward injured epithelia[102].

H. pylori can simultaneously survive in the antrum and the corpus in general. However, when atrophy occurs, an 
environment that is unfavorable to the growth of H. pylori develops, and the bacteria can only be found in a small 
percentage of endoscopic biopsy specimens[103]. Research has revealed that atrophy in the corpus manifests as a 
continuous sheet of pseudopyloric metaplasia and forms an advancing histologically atrophic front, the presence of 
which is similar to the spread of antral mucosa toward the corpus and is faster in the lesser curvature[104]. This pattern is 
the same as the endoscopic atrophic border described by Kimura and Takemoto[8]. This may indicate that the suitable 
region in which H. pylori survives shrinks as the atrophic front advances and is well discriminated by the endoscopic 
atrophic border.

In addition, H. pylori can migrate to the duodenum and colonize the duodenal gastric metaplasia (DGM) with a 
bacterial density 100-fold lower than that in the antrum[105,106]. DGM is characterized by the metaplastic replacement of 
normal duodenal epithelial cells with cells displaying a phenotype similar to that of mucus-secreting cells of the gastric 
mucosa[107]. It is frequently found in patients with duodenal ulcers with a prevalence of 72 to 90% and is associated with 
the chronicity and recurrence of duodenal ulcer disease[108-110]. The exact pathogenesis of DGM remains unclear. It is 
speculated that a high acid burden in the duodenum caused by increased gastrin secretion and the inflammatory damage 
to duodenal mucosa induced by bacterial cytotoxin may lead to the development of DGM in patients with H. pylori 
infection[109]. Liu and Wright[111] considered that metaplastic cells originate from Brunner's gland duct epithelium or 
basal buds growing out of the crypts of Lieberkühn and migrate in straight lines. However, Shaoul et al[112] suggested 
that DGM develops from goblet cells that simultaneously express gastric antigens, MUC5AC and TFF1, and intestinal 
antigen, MUC2 core antigen, migrate upward and transform to foveolar-like cells at the site of early metaplastic patches. 
Published results about the association between H. pylori infection and DGM are also conflicting. Some studies reported 
that H. pylori infection was one of the independent risk factors for DGM[113], the amount of H. pylori in the duodenal 
bulb might be related to the extent of gastric metaplasia in the duodenal bulb[114], and the presence of DGM significantly 
decreased after H. pylori eradication[109]. However, some researchers have suggested that DGM is associated with high 
acid output in the stomach rather than gastric H. pylori infection[115-117].

CARDIA
The endoscopic characteristics of the cardia have received little attention in previous studies. In recent years, cardiac 
nodularity, which involves the appearance of miliary nodules or scattered small whitish circular colorations within 2 cm 
of the esophagogastric junction, has been proposed by researchers[46,118].
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Cardia glands lack chief cells and parietal cells, and have similar characteristics to the pyloric glands[53]. The cardiac 
and pyloric glands secrete mucus and bicarbonate and are involved in the defense of the gastric epithelium[46]. In 
addition, both of them secrete MUC6 and pepsinogen II rather than pepsinogen I[46]. Unlike the fundic glands, the 
similarity of the cardiac and pyloric glands may lead to the appearance of cardiac nodularity.

Nodularity can be observed more frequently in the stomach of children and improves gradually with age[119,120]. 
Reportedly, the eradication of H. pylori in patients with antral nodularity could effectively prevent diffuse-type GC[119]. 
A study by Nishikawa et al[119] suggested that compared with patients without cardiac nodularity, patients with cardiac 
nodularity were significantly younger and had lower IM scores. Therefore, cardiac nodularity may also be a feature of the 
early stage of H. pylori infection, but further research is needed to analyze its clinicopathological importance.

CONCLUSION
H. pylori infection has received worldwide attention for decades. In this review, we described the process of intragastric 
colonization by H. pylori and its migration and tried to identify a link between endoscopic manifestations and potential 
mechanisms. Upper gastrointestinal endoscopy and pathological examination of biopsy specimens are useful tools for 
diagnosing H. pylori-induced gastritis and estimating the risk of H. pylori-induced GC. In addition to animal models, 
exploring the mechanisms of H. pylori infection requires biopsy sampling. However, extensive study is needed to evaluate 
the association between endoscopic manifestations and mechanisms.
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