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Abstract
BACKGROUND 
Di (2-ethylhexyl) phthalate (DEHP) is a common plasticizer known to cause liver 
injury. Green tea is reported to exert therapeutic effects on heavy metal exposure-
induced organ damage. However, limited studies have examined the therapeutic 
effects of green tea polyphenols (GTPs) on DEHP-induced liver damage.

AIM 
To evaluate the molecular mechanism underlying the therapeutic effects of GTPs 
on DEHP-induced liver damage.

METHODS 
C57BL/6J mice were divided into the following five groups: Control, model 
[DEHP (1500 mg/kg bodyweight)], treatment [DEHP (1500 mg/kg bodyweight) + 
GTP (70 mg/kg bodyweight), oil, and GTP (70 mg/kg bodyweight)] groups. After 
8 wk, the liver function, blood lipid profile, and liver histopathology were 
examined. Differentially expressed micro RNAs (miRNAs) and mRNAs in the 
liver tissues were examined using high-throughput sequencing. Additionally, 
functional enrichment analysis and immune infiltration prediction were 
performed. The miRNA-mRNA regulatory axis was elucidated using the starBase 
database. Protein expression was evaluated using immunohistochemistry.

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v29.i34.5054
mailto:shengyunsun2020@163.com


Shi H et al. GTPs alleviate DEHP-induced liver injury in mice

WJG https://www.wjgnet.com 5055 September 14, 2023 Volume 29 Issue 34

RESULTS 
GTPs alleviated DHEP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, liver fibrosis, and 
mitochondrial and endoplasmic reticulum lesions in mice. The infiltration of macrophages, mast cells, and natural 
killer cells varied between the model and treatment groups. mmu-miR-141-3p (a differentially expressed miRNA), 
Zcchc24 (a differentially expressed mRNA), and Zcchc24 (a differentially expressed protein) constituted the 
miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced 
liver damage in mice.

CONCLUSION 
This study demonstrated that GTPs mitigate DEHP-induced liver dysfunction, blood lipid dysregulation, fatty liver 
disease, and partial liver fibrosis, and regulate immune cell infiltration. Additionally, an important miRNA-
mRNA-protein molecular regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced 
liver damage was elucidated.

Key Words: Green tea polyphenols; Di(2-ethylhexyl) phthalate; Liver fibrosis; Fatty liver disease; Mitochondria; Immune
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Core Tip: Green tea polyphenols (GTPs) alleviated Di (2-ethylhexyl) phthalate (DEHP)-induced liver dysfunction, blood 
lipid dysregulation, fatty liver disease, liver fibrosis, and mitochondrial and endoplasmic reticulum lesions in mice. The 
infiltration of macrophages, mast cell, and natural killer cells varied between the model and treatment groups. mmu-miR-
141-3p (a differentially expressed miRNA), Zcchc24 (a differentially expressed mRNA), and Zcchc24 (a differentially 
expressed protein) constituted the miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of 
GTPs on DEHP-induced liver damage in mice.
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INTRODUCTION
Di (2-ethylhexyl) phthalate (DEHP), which is the most widely used representative phthalic acid ester, can non-covalently 
bind to polyolefin plastics and predominantly serves as a plasticizer, increasing the flexibility, transparency, durability, 
and longevity of plastics. Additionally, DEHP is extensively detected in various daily-life products (including baby toys, 
food packaging, and cosmetics) and several surgical and medical devices[1]. Furthermore, DEHP can be continuously 
released into the environment (air, soil, water, food, etc.), enter living organisms via ingestion, inhalation, or skin contact, 
and subsequently exert toxic effects on health[2]. A previous study reported that DEHP and its metabolites were detected 
in 100% of tested human urine samples, indicating persistent exposure to DEHP[3]. The DEHP exposure range of the 
general population is estimated to be 5.8-19 μg/kg/d, while DEHP exposure in medical environments may exceed 167.9 
mg/d[4]. The development of modern chemical agriculture has increased the severity of DEHP pollution. DEHP 
exposure in the Pearl River Delta region of Guangdong Province, China, can reach up to 61 μg/kg/d, which is higher 
than the tolerable intake of DEHP[5]. Additionally, DEHP undergoes rapid degradation upon ingestion in humans. 
According to the United States Environmental Protection Agency, the average half-life of DEHP in the human body is 12 
h. DEHP and its active metabolite mono-(2-ethylhexyl) phthalate have been detected in various human tissues, including 
the liver, blood, placenta, amniotic fluid, and early-pregnancy chorionic villus sample[6]. Therefore, evaluating the effect 
of DEHP on the environment and human health has piqued the interest of the scientific community.

The liver, an important organ involved in the synthesis, metabolism, and detoxification processes, is highly susceptible 
to acute or chronic damage induced by various drugs[7]. Recent studies have demonstrated that DEHP adversely affects 
multiple systems in the body. In particular, epidemiological and animal studies have demonstrated the hepatoxicity of 
DEHP[8]. The mechanism underlying the hepatotoxic effects of DEHP mainly involves oxidative stress, cell apoptosis, 
and signaling pathway activation. DEHP induces apoptosis in healthy human liver cells through the mitochondrial 
signaling pathway and/or the caspase-mediated death receptor pathway[9]. Additionally, DEHP may adversely affect 
gap junctional intercellular communication, peroxisome beta-oxidation activity, and DNA replication synthesis, leading 
to the formation of liver tumors[10]. Currently, the most extensively studied mechanism of DEHP-induced liver damage 
is oxidative stress in which the regulation of reactive oxygen species (ROS) production plays a critical role[11]. Excessive 
ROS production leads to peroxidation of the polyunsaturated fatty acids in the cell membrane. DEHP promotes lipid 
peroxidation in the liver, primarily through the downregulation of superoxide dismutase and catalase activity and the 
upregulation of malondialdehyde (MDA) concentrations[12]. Additionally, DEHP mediates the pathogenesis of non-
alcoholic fatty liver disease in a high-fat diet-fed animal model by promoting lipid peroxidation[8].

https://www.wjgnet.com/1007-9327/full/v29/i34/5054.htm
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Green tea is the second most widely consumed beverage worldwide after water[13]. The harvested tea leaves are 
steamed at high temperatures to inactivate the polyphenol oxidase in green tea, preserving most of the vitamins in tea 
leaves. Thus, green tea exhibits enhanced antioxidant activity. Epidemiological and clinical studies have reported that 
phenol compounds in tea extracts, such as green tea polyphenols (GTPs), exert a wide range of beneficial effects on 
human health, including anti-aging, neuroprotective[14], and therapeutic or preventive effects on various diseases, such 
as cancer[15], cardiovascular disease[16], and obesity[17]. Moreover, GTPs mitigate the adverse effects of poisoning with 
various heavy metals[18]. However, limited studies have examined the therapeutic effects of GTPs on DEHP-induced 
liver diseases.

Micro RNAs (miRNAs), a class of endogenous non-coding small RNAs encoded by mRNA, regulate gene expression 
by modulating mRNA stability. Several miRNAs are reported to play important roles in the pathogenesis of liver fibrosis
[19], cirrhosis[20], and hepatocellular carcinoma[21]. Some miRNAs are diagnostic markers for drug-induced liver injury
[22]. This study aimed to identify key protein nodes that may affect the expression level of miRNAs in the regulatory 
network of miRNA and target genes by analyzing the miRNA regulation network. Hence, this study will provide a 
theoretical basis for future studies on the functions and regulatory mechanisms underlying the therapeutic effects of 
GTPs on DEHP exposure-induced liver damage.

MATERIALS AND METHODS
Regents
DEHP was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). GTPs were 
purchased from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China). Corn oil was purchased from Hebei Pin 
Research Biotechnology Co., Ltd. (Baoding, China). Anti-ZCCHC24 antibodies were purchased from Biorbyt Ltd. 
(Cambridge, United Kingdom).

Animal experiments
Animal experiments were performed at the specific pathogen-free grade animal laboratory of the Medical College of 
Jinan University. C57BL/6J mice (n = 50) were purchased from Guangdong Yaokang Biotechnology Co., Ltd. And 
allowed to acclimatize to the laboratory environment for 1 wk. The animals were maintained under the following 
conditions: Room temperature, 20 ℃-24 ℃; relative humidity, 50%-65%; circadian cycle, 12-h light-dark cycle; access to 
food and water, ad libitum; diet, regular mouse chow. This study was approved by the Institutional Animal Care and Use 
Committee of Jinan University (ethics approval number: IACUC-20210630-15). All experimental procedures were 
performed according to the regulations established by the ethical committee.

Previous studies[23,24] have reported that DEHP is soluble in corn oil. Hence, this study used corn oil as the solvent 
for DEHP. After 1 wk of acclimatization, 50 mice were randomly assigned into the following five groups (10 mice/
group): Control group, administered with 0.2 mL distilled water; model group, administered with 0.2 mL corn oil and 
DEHP (1500 mg/kg bodyweight); treatment group, administered with 0.2 mL corn oil and DEHP (1500 mg/kg 
bodyweight), followed by administration of 0.2 mL GTPs (70 mg/kg bodyweight) after 1 h; oil group, administered with 
0.2 mL corn oil; GTP group, administered with 0.2 mL GTP (70 mg/kg bodyweight). Based on our previous study, DEHP
[25] and GTPs[26] were gavaged. The doses were adjusted weekly based on the bodyweight of the mice. The mice were 
subjected to daily gavage for 8 wk. At the end of the experimental period, the blood and liver samples were obtained 
under anesthesia after the mice were allowed to fast overnight. Liver index = (liver weight/bodyweight) × 100%.

Evaluation of liver function and blood lipid profile
The blood from mice was collected using the retro-orbital venous plexus method. Next, the whole blood was placed in a 
1.5-mL centrifuge tube and left undisturbed at room temperature for 2 h. The sample was centrifuged at 5 °C and 3000 
rpm for 15 min using a high-speed refrigerated centrifuge to obtain the serum. The serum levels of liver function markers 
[aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TBIL)] and lipids [low-density 
lipoprotein (LDL), total cholesterol, and triglycerides (TGs)] were analyzed using a fully automated biochemical analyzer.

Hematoxylin and eosin staining
The tissue sections were fixed in 4% neutral buffered formalin, embedded in paraffin, and sectioned into 4 μm-thick 
sections. The sections were deparaffinized using xylene, rehydrated using a series of graded ethanol solutions, stained 
with hematoxylin for 5–10 min, washed with distilled water, and stained with eosin for 2-7 min. Next, the sections were 
dehydrated using a series of graded ethanol solutions, cleared with xylene, mounted with mounting medium, and 
covered with a cover slip.

Oil red O staining
The frozen sections were fixed in 4% neutral buffered formalin, rinsed with 60% isopropanol, and allowed to dry. The 
sections were then stained with oil red O for 15-30 min, rinsed with 60% isopropanol, counterstained with hematoxylin 
for 1-2 min, washed with distilled water, dehydrated, mounted with a mounting medium, and covered with a coverslip.

Periodic acid-Schiff staining
The tissue sections were deparaffinized using xylene, rehydrated using a series of graded ethanol solutions, and oxidized 
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with a periodic acid solution for 10-15 min. Next, the sections were rinsed with distilled water, stained with Schiff reagent 
for 30-60 min in the dark, counterstained with hematoxylin, washed with distilled water, dehydrated, mounted using a 
mounting medium, and covered with a cover slip.

Masson’s trichrome staining
The tissue sections were deparaffinized using xylene, rehydrated using a series of graded ethanol solutions, stained with 
Weigert’s iron hematoxylin for 10 min, rinsed with distilled water, stained with Biebrich scarlet-acid fuchsin solution for 
5-10 min, washed with distilled water, and incubated with phosphotungstic-phosphomolybdic acid solution for 5-10 min. 
Next, the sections were counterstained with aniline blue for 5-10 min, washed with distilled water, dehydrated, mounted 
with a mounting medium, and covered with a cover slip.

Sirius red staining
The tissue sections were deparaffinized using xylene, rehydrated using a series of graded ethanol solutions, stained with 
Sirius red solution for 1 h, washed with distilled water, dehydrated, and cleared with xylene. Finally, the sections were 
mounted with a mounting medium and covered with a cover slip.

Transmission electron microscopy
One mouse from the control, treatment, and model groups was randomly selected for electron microscopy. Liver sections 
with a size of approximately 1 mm were treated with 2.5% glutaraldehyde (Scientific Phygene, Fuzhou, China) and rinsed 
thrice with phosphate-buffered saline (PBS) (PH = 7.4). The samples were fixed with 1% osmium tetroxide (Ted Pella, 
Redding, United States) for 2 h, rinsed thrice with PBS, and dehydrated using alcohol and acetone gradients as follows: 
50% ethanol for 30 min, 70% ethanol for 30 h, 80% acetone for 30 min, and 90% acetone for 30 h. Next, the samples were 
washed thrice with 100% acetone and embedded in epoxy resin (Ted Pella, Redding, United States). Ultrathin sections (7 
nm) were prepared using a microtome (LKB, Bromma, Sweden). The sections were stained with uranyl acetate (EMS, 
Hatfield, United States) for 30 min and 3% lead citrate (Ted Pella, Redding, United States) for 15 min. The target 
structures were observed using a transmission electron microscope (JEM-1400, Japan Electron Optics Laboratory Co., Ltd. 
Tokyo, Japan).

High-throughput sequencing
Liver samples (n = 3 per group) from the control, treatment, and model groups stored in liquid nitrogen were randomly 
selected and sent to Huada Genomics (Wuhan, China, http://www.genomics.cn) for high-throughput sequencing. For 
specific sequencing steps, refer to the Supplementary material.

Differentially expressed mRNAs and miRNAs
The mRNA and miRNA expression levels were measured using fragments per kilobase of transcript per million mapped 
reads (FPKM) values. Sequencing data were subjected to quality control. Differential expression between groups was 
estimated using the Limma R package (version: 3.52.2) based on the generalized linear model. To comparatively analyze 
the expression levels between multiple groups, the control-model and model-treatment expression profiles were 
regressed using the Limma package in R software (version: 4.2.1, https://posit.co/). A loose threshold was set to avoid 
excessive filtering of differentially expressed mRNAs and miRNAs (log fold-change > 1; P < 0.05). Differentially 
expressed mRNAs and miRNAs were identified.

Enrichment analysis
The mRNA expression data were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses to identify the enrichment of mRNAs in the GO terms biological process (BP), cellular 
component (CC), and molecular function (MF) and the KEGG signaling pathways. The clusterprofiler R package (version: 
4.4.4) was used for enrichment analyses with the reference files based on the org.Mm.eg.db R package (version 3.1.0) for 
mouse enrichment analysis. Enrichment was considered significant at P < 0.05.

Immune infiltration analysis
CIBERSORT is a gene expression-based algorithm for the accurate detection of immune cell infiltration. The 
“CIBERSORT” R package (CIBERSORTR script v1.03; http://cibersort.stanford.edu/) developed by Newman et al[27] 
was used to successfully quantify 22 types of immune cells, including B cells, regulatory T cells, CD4+ T, CD8+ T, natural 
killer (NK) cells, mast cells, plasma cells, dendritic cells, neutrophils, eosinophils, and macrophages. The reference dataset 
of mouse immune cells was obtained from Chen et al[28]. The mRNA expression data of the control, model, and 
treatment groups were examined using the CIBERSORT algorithm with a perm of the deconvolution algorithm set to 
1000.

Regulatory network of miRNA-mRNA
miRNA, a type of non-coding RNA, negatively regulates gene expression at the posttranscriptional level. To generate a 
preliminary regulatory network of miRNA-mRNA in the model and treatment groups, the upregulated miRNAs or 
mRNAs and downregulated mRNAs or miRNAs were selected and analyzed using Cytoscape software (version: 3.7.1, 
https://cytoscape.org/).

http://www.genomics.cn
https://f6publishing.blob.core.windows.net/1f57418c-ac46-481c-8faa-42492632044e/WJG-29-5054-supplementary-material.pdf
https://posit.co/
http://cibersort.stanford.edu/
https://cytoscape.org/
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The Sun Yat-sen University research team developed the starBase database (https://starbase.sysu.edu.cn/starbase2/) 
to analyze interaction networks between long non-coding RNA, miRNA, competitive endogenous RNAs, RNA-binding 
proteins, and mRNAs using cross-linked immunoprecipitation sequencing (CLIP-seq) (high-throughput sequencing of 
RNA using CLIP, photoactivable ribonucleoside-enhanced CLIP, individual nucleotide resolution ultraviolet CLIP, and 
cross-linking ligation and sequencing of hybrids) data. To obtain the final miRNA-mRNA regulatory network, the 
initially selected network was intersected with the mouse interaction network obtained from the starBase database. Gene 
expression was verified using immunohistochemical analyses. This study aimed to establish the miRNA-mRNA-protein 
regulatory axis.

Immunohistochemistry
The paraffin sections (4 μm) of mouse liver tissue were deparaffinized, rehydrated, and subjected to antigen retrieval in a 
buffer solution (pH 9.0). After blocking endogenous peroxidase activity and non-specific binding, the sections were 
incubated with anti-ZCCHC24 antibodies (1:100) at 4 °C overnight. The sections were then washed and incubated with 
horseradish peroxidase-conjugated secondary antibodies at room temperature for 1 h. Immunoreactive signals were 
developed using diaminobenzidine. The sections were counterstained with hematoxylin and observed under a 
microscope.

Statistical analyses
The average optical density (AOD) (integrated optical density/area) of positive reactions was calculated using Image-Pro 
Plus 6.0 software. Data were analyzed using the dplyr R package (v. 1.0.10) and visualized using the ggplot2 R package 
(v. 3.3.6). Categorical variables were analyzed using the Chi-squared test. Continuous variables were represented as mean 
± SD. Continuous variables between two groups were compared using the Wilcoxon signed-rank test, while those 
between more than two groups were compared using the Kruskal-Wallis test. Differences were considered significant at P 
< 0.05.

RESULTS
Effect of GTPs on bodyweight and liver index
The flowchart of the study is shown in Figure 1. Mice in all groups survived during the experiment and did not exhibit 
aberrant behaviors in urination, defecation, food intake, or water consumption. As shown in Supplementary Table 1 and 
Figure 2A, the bodyweight of mice in all groups increased with time and was not significantly different between the 
groups. The liver index (Supplementary Table 2 and Figure 2B) values in the model group were significantly higher than 
those in the control group (P = 0.016) but were not significantly different between the treatment and model groups (P = 
0.51). Additionally, the liver index values in the oil and GTP groups were not significantly different from those in the 
control group (P > 0.05).

Effect of GTPs on the serum levels of liver function markers and lipids
The serum levels of ALT, AST, TBIL, LDL, and TGs were analyzed. As shown in Figure 2C-G, the serum levels of ALT, 
AST, TBIL, LDL, and TGs in the model group were significantly higher than those in the control group (P < 0.001). 
Compared with those in the model group, the serum levels of liver function markers and lipids were significantly 
downregulated in the treatment group (P < 0.001). The ALT, AST, and LDL levels were not significantly different 
between the oil, control, and GTP groups (P > 0.05).

Effect of GTPs on hepatic histological characteristics
The results of liver hematoxylin and eosin staining are shown in Figure 3A. Mice in the model group exhibited significant 
hepatocyte ballooning degeneration, whereas those in the control, oil, and GTP groups did not exhibit hepatocyte 
ballooning degeneration.

Effect of GTPs on fat deposition
Oil red O staining was performed to further analyze the severity of fatty liver in different groups. As shown in Figure 3A, 
the model group exhibited the highest red color staining intensity in the liver, followed by the oil and control groups. 
Meanwhile, the liver of the treatment and GTP groups exhibited the lowest red staining intensity. Five positive staining 
sites in the liver of the model and treatment groups were selected to calculate the AOD. As shown in Figure 3B, the AOD 
in the model group (7.270 ± 1.120%) was significantly higher than that in the treatment (0.185 ± 0.061%) (P = 0.037) and 
control groups (5.760 ± 0.586%) (P < 0.001).

Effect of GTPs on polysaccharide accumulation
The results of Periodic acid-Schiff staining (Figure 3A) revealed the lack of red-stained areas in the liver of the model 
group, while the red-stained areas were upregulated in the control, oil, treatment, and GTP groups. Five positive staining 
sites in the liver of the model and treatment groups were selected to calculate the AOD. As shown in Figure 3C, the AOD 
in the model group (0.431 ± 0.083%) was significantly lower than that in the treatment (1.170 ± 0.099%) and control groups 
(1.360 ± 0.148%) (P < 0.001).

https://starbase.sysu.edu.cn/starbase2/
https://f6publishing.blob.core.windows.net/1f57418c-ac46-481c-8faa-42492632044e/WJG-29-5054-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1f57418c-ac46-481c-8faa-42492632044e/WJG-29-5054-supplementary-material.pdf
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Figure 1 Flowchart of the study. DEG: Differentially expressed gene; DEM: Differentially expressed microRNA (miRNA).
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Figure 2 Mouse bodyweight and liver index and serum levels of liver function markers and lipids. A: Bodyweight changes in different groups within 
8 wk; B-G: Comparative analysis of organ indices (B) and serum levels of alanine aminotransferase (C), glutamate aminotransferase (D), total bilirubin (E), low-density 
lipoprotein (F), and triglyceride (G) in different groups. aP < 0.05 and bP < 0.01 (compared to the Control group); cP < 0.05 and dP < 0.01 (compared to Di (2-ethylhexyl) 
phthalate group); eP < 0.05 and fP < 0.01 (compared to Oil group). ALT: Alanine aminotransferase; AST: Glutamate aminotransferase; TBIL: Total bilirubin; LDL: Low-
density lipoprotein; TG: Triglyceride; DEHP: Di (2-ethylhexyl) phthalate.

Effect of GTPs on collagen fibers
The results of Masson’s trichrome staining (Figure 4A) revealed blue-stained fibrous tissue around the liver blood vessels 
in the model group. In contrast, the area of blue-stained fibrous tissue around the liver blood vessels in the treatment 
group was lower than that in the model group. Fibrous tissue was not detected around the liver blood vessels in the 
control, oil, and GTP groups. Five positive staining sites in the liver of the model and treatment groups were selected to 
calculate the AOD. As shown in Figure 4B, the AOD in the model group (0.337 ± 0.113%) was significantly higher than 
that in the treatment group (0.183 ± 0.014%) (P = 0.02).

Effect of GTPs on collagen network
In Sirius red staining, type I collagen fibers exhibit strong orange-yellow or bright red colors under a polarized light 
microscope, whereas type III collagen fibers exhibit green color. In this study, the results of Sirius red staining (Figure 4A) 
revealed red-stained fibrous tissue around the blood vessels in the model group. The red-stained area around the blood 
vessels in the treatment group was significantly lower than that in the model group. Red-stained fibrous tissue was not 
detected around the blood vessels of the control, oil, and GTP groups. Next, semiquantitative analysis was performed by 
selecting five positive staining sites in the liver of the model and treatment groups to calculate the AOD. The AOD in the 
model group (1.240 ± 0.125%) was significantly higher than that in the treatment group (0.080 ± 0.025%) (P = 0.012) 
(Figure 4C).
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Figure 3 Hematoxylin and eosin, oil red O, and periodic acid-Schaff staining of liver sections and semiquantitative analysis of liver 
pathologies in mice from different groups. A: Hematoxylin and eosin-stained, oil red O-stained, and periodic acid-Schaff (PAS)-stained liver sections of 
different groups; B and C: Comparative analysis of average optical density of oil red O staining (B) and PAS staining (C) intensities between different groups. aP < 
0.05 and bP < 0.01 (compared to the Control group); dP < 0.01 (compared to Di (2-ethylhexyl) phthalate group); eP < 0.05 and fP < 0.01 (compared to Oil group). 
DEHP: Di (2-ethylhexyl) phthalate; HE: Hematoxylin and eosin; PAS: Periodic acid-Schaff.

Effect of GTPs on the liver microstructures
The liver tissues of the control, model, and treatment groups were subjected to transmission electron microscopy. The 
number and size of lipid droplets in the liver were upregulated and the capillary bile ducts were significantly dilated in 
the model group (Figure 5A). Additionally, the mitochondria were slightly swollen, and the arrangement of the rough 
endoplasmic reticulum was disordered. In contrast, the number of lipid droplets in the liver was downregulated in the 
treatment group, while the capillary bile ducts exhibited physiological structure. Additionally, the swelling of the 
mitochondria was alleviated. The results of quantitative analysis of the diameter of small bile ducts (Figure 5B) were 
consistent with the observations in Figure 5A. However, these findings must be carefully interpreted. Additionally, 
further studies with large sample sizes are needed to confirm and generalize the results.
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Figure 4 Masson’s trichrome and Sirius red staining and semiquantitative analysis of hepatic pathologies in mice from different groups. 
A: Masson’s trichrome and Sirius red staining of liver samples from different groups; B and C: Comparative analysis of average optical density of Masson’s trichrome 
staining (B) and Sirius red staining (C) intensities between the model and treatment groups. cP < 0.05 (compared to Di (2-ethylhexyl) phthalate group). DEHP: Di (2-
ethylhexyl) phthalate.

Effect of GTPs on mRNA and miRNA expression levels
The liver samples from the control, treatment, and model groups were subjected to high-throughput screening with 3 
replicate samples for each group. The mRNA and miRNA expression data were subjected to quality control analysis. The 
differences in the expression levels of miRNA and mRNA were minimal between the groups (Supplementary Figure 1A 
and B). Next, principal component analysis was performed (Supplementary Figure 1C and D). The mRNA and miRNA 
profiles of the control, model, and treatment groups exhibited distinct separation. Differential analysis revealed that 
compared with those in the model group, the number of upregulated mRNAs and miRNAs was 377 and 33, respectively, 
while the number of downregulated mRNAs and miRNAs was 583 and 7, respectively (Figure 6A and B). The expression 
levels of the significantly upregulated and downregulated mRNAs and miRNAs are shown in Figure 6C and D.

Enrichment analyses
Compared with those in the control group, the differentially expressed mRNAs in the model group were enriched in the 
following GO terms: BP term: Fatty acid metabolic process, small molecule catabolic process, organic acid catabolic 
process, and carboxylic acid catabolic process (Figure 7A); CC term: Mitochondrial protein-containing complex, 
mitochondrial inner membrane, ribosome subunit, and ribosome (Figure 7B); MF term: Ribosome structure, electron 
transfer activity, oxidoreductase activity, and ubiquitin protein ligase binding (Figure 7C). Additionally, the differentially 
expressed mRNAs in the model group were enriched in the following KEGG pathways: Fatty acid metabolism, 
ferroptosis, glutathione metabolism, and PPAR signaling pathway (Figure 7D). Compared with those in the model group, 
the differentially expressed mRNAs in the treatment group were enriched in the following GO terms: BP term: 

https://f6publishing.blob.core.windows.net/1f57418c-ac46-481c-8faa-42492632044e/WJG-29-5054-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1f57418c-ac46-481c-8faa-42492632044e/WJG-29-5054-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1f57418c-ac46-481c-8faa-42492632044e/WJG-29-5054-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1f57418c-ac46-481c-8faa-42492632044e/WJG-29-5054-supplementary-material.pdf
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Figure 5 Comparative quantitative analysis of transmission electron microscopy results between the control, model, and treatment 
groups. A: Comparison of transmission electron microscopy results between the control, model, and treatment groups. In the model and control groups, increased 
numbers of fat droplets with enhanced size were visible. Expanded capillary bile ducts (indicated with orange circles), mildly swollen mitochondria (indicated with 
orange arrows), and disordered rough endoplasmic reticulum (indicated with yellow arrows) were observed in the model group. In the treatment group, the number of 
fat droplets decreased, capillary bile ducts appeared mostly healthy (indicated with orange circles), and mitochondrial swelling was reduced (indicated with orange 
arrows); B: Quantitative analysis of small bile duct diameter in mice from the control, model, and treatment groups. bP < 0.01 (compared to the Control group); dP < 
0.01 (compared to Di (2-ethylhexyl) phthalate group). DEHP: Di (2-ethylhexyl) phthalate.

Mitochondrial organization, proteasome protein catabolic process, and oxidative phosphorylation (Figure 8A); CC term: 
Ribosome, ribosomal subunit, and large ribosomal subunit (Figure 8B); MF term: Structural constituent of ribosome and 
molecular carrier activity (Figure 8C). Additionally, the differentially expressed mRNAs in the treatment group were 
enriched in the following KEGG pathways: Mitochondrial autophagy, glutathione metabolism, oxidative 
phosphorylation, and drug metabolism (Figure 8D).
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Figure 6 Differential expression of mRNAs and microRNAs between the treatment and model groups. A: The volcano plot of differentially 
expressed mRNAs between the treatment and model groups. The upper left quadrant and the upper right quadrant in the figure represent downregulated and 
upregulated mRNAs, respectively; B: The volcano plot of differentially expressed microRNAs (miRNAs) between the treatment and model groups. The upper left 
quadrant and the upper right quadrant in the figure represent downregulated and upregulated miRNAs, respectively; C: Heatmap shows the 50 mRNAs that exhibited 
the highest upregulation and downregulation in the treatment group relative to the model group; D: Heatmap shows the miRNAs that exhibited the highest upregulation 
and downregulation in the treatment group relative to the model group.

Immune infiltration analysis
The proportions and infiltration levels of immune cells in the control, model, and treatment groups are shown in 
Figure 9A and B. Compared with those in the control group, the infiltration levels of monocytes and immature CD8+ T 
cells were significantly upregulated and the infiltration levels of immature CD4+ T cells were significantly downreg-
ulated in the model group (Figure 9C). Meanwhile, compared with those in the model group, the infiltration levels of 
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Figure 7 The differentially expressed mRNAs between the model and control groups were enriched in different Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. A: Biological 
processes; B: Cellular components; C: Molecular function; D: Kyoto Encyclopedia of Genes and Genomes pathways.

mast cells and active NK cells were significantly upregulated and the infiltration levels of M2 macrophages were 
significantly downregulated in the treatment group (Figure 9D). The correlation analysis results of various immune cells 
are shown in Figure 9E.
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Figure 8 The differentially expressed mRNAs between the treatment and model groups were enriched in different Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. A: Biological 
processes; B: Cellular components; C: Molecular function; D: Kyoto Encyclopedia of Genes and Genomes pathways.

Construction of miRNA-mRNA-protein regulatory axis
Network diagrams (Figure 10A) of upregulated miRNAs and downregulated mRNAs, as well as that of downregulated 
miRNAs and upregulated mRNAs, in the treatment group were constructed. The data were matched with the miRNA-
mRNA regulatory axis in the starBase database to obtain the mmu-miR-141-3p/Zcchc24 and mmu-miR-9-5p/Zbtb7a axes 
(Figure 10B). Correlation analysis (Figure 10C and D) revealed that the correlation coefficients of mmu-miR-141-3p/
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Figure 9 Immune infiltration analyses. A and B: Histograms (A) and heatmaps (B) of the proportions of immune cells in the control, model, and treatment 
groups; C and D: Analyses of differential immune cell infiltration between the model and control groups (C), as well as between the treatment and model groups (D); E: 
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Correlation analyses of immune cells in different groups. dP < 0.01 (compared to Di (2-ethylhexyl) phthalate group); eP < 0.05 (compared to Oil group). DEHP: Di (2-
ethylhexyl) phthalate.

Zcchc24 and mmu-miR-9-5p/Zbtb7a axes were -0.44 and -0.87, respectively. To validate these regulatory axes, the liver 
tissues of the control, model, and treatment groups were subjected to western blotting (Figure 10E). Compared with that 
in the model group, the average gray value of Zcchc24 protein was significantly downregulated in the treatment group 
(Figure 10F), indicating that protein expression changes were consistent with mRNA expression changes. However, 
Zbtb7a protein expression could not be validated using western blotting or immunohistochemical analysis due to low 
expression levels. These findings indicate that the mmu-miR-141-3p/Zcchc24 (mRNA)/Zcchc24 (protein) regulatory axis 
plays an important role in the protective effects of GTPs on DEHP-induced liver injury in mice (Figure 10G).

DISCUSSION
This study aimed to investigate the therapeutic mechanism of GTPs in alleviating DEHP-induced liver dysfunction, blood 
lipid dysregulation, non-alcoholic fatty liver, and liver fibrosis. Additionally, the role of a miRNA-mRNA-protein 
regulatory axis in the therapeutic effects of GTPs on DEHP-induced liver damage was elucidated (Figure 11). Thus, the 
findings of this study provide valuable insights into the potential therapeutic application of GTPs in DEHP-induced liver 
damage.

Histopathological analysis revealed that GTPs are effective in mitigating DEHP-induced non-alcoholic fatty liver 
disease and liver fibrosis in mice. This finding is consistent with that of previous studies, which reported the beneficial 
effects of GTP on liver health. For example, a meta-analysis[29] of 20 randomized controlled trials with 1536 participants 
revealed that green tea decreases the levels of total cholesterol and LDL. Zhao et al[30] reported that DEHP exposure 
significantly promotes inflammation, necrosis, and fibrosis in the liver and upregulates the expression of proteins 
associated with the development of liver inflammation and fibrosis. Kim et al[31] suggested that GTPs downregulate the 
expression of collagen content and type 1 collagen, and consequently alleviate liver fibrosis. Additionally, animal studies
[32] have indicated that supplementation of green tea effectively prevented excessive accumulation of visceral and liver 
lipids, elevated blood glucose levels, and alleviated aberrant blood lipid levels, liver dysfunction, and hepatic steatosis in 
male C57BL/6 mice fed on a high-fat diet for six weeks as evidenced by the analysis of serum biochemical parameters, 
histological changes, lipid accumulation, inflammatory cytokines, and related indices. These findings further indicated 
the therapeutic potential of GTPs in liver-related conditions.

In this study, GTPs were found to ameliorate the DEHP-induced pathological damage to the liver microstructures, 
including the mitochondria, endoplasmic reticulum, and capillary bile ducts. These findings are consistent with those of 
previous studies, which reported the adverse effects of DEHP on liver microstructures. For instance, an animal study[33] 
indicated that DEHP induced mitochondrial and endoplasmic reticulum ultrastructural damages, characterized by 
increased fission and decreased fusion. Furthermore, Sun et al[34] suggested that DEHP promoted mitochondrial-
associated endoplasmic reticulum membrane disruption, potentially through endoplasmic reticulum unfolded protein 
response, to induce endoplasmic reticulum stress. Consistent with the results of this study, in vitro and in vivo experi-
mental studies[35] have demonstrated that GTPs effectively alleviate acetaminophen-induced liver damage and 
mitochondrial dysfunction. These studies have shown that GTPs possess antioxidant capacity and can prevent liver 
mitochondrial damage. Specifically, GTPs have been found to enhance the membrane potential and activity of liver 
mitochondrial respiratory chain complexes, thereby protecting against mitochondrial dysfunction. However, further 
research is needed to fully elucidate the underlying mechanisms and to explore the clinical applications of GTPs in 
protecting liver microstructures from DEHP-induced damage.

In this study, we aimed to analyze the signaling pathways involved in DEHP-induced liver damage and the hepato-
protective effects of GTPs using high-throughput sequencing. Ferroptosis, a recently discovered non-apoptotic cell death 
process, is induced by intracellular iron-dependent lipid peroxidation damage. Consistent with the findings of this study, 
Yin et al[36] investigated the acute toxicity of DEHP exposure in marine medaka. They conducted transcriptome analysis 
on the liver of DEHP-exposed medaka and reported that females were more sensitive to the immune response than males 
under acute DEHP exposure conditions. Furthermore, they found that DEHP exposure promoted iron depletion, leading 
to iron overload, increased levels of MDA and lipid peroxidation, and decreased levels of glutathione. These findings 
suggest that DEHP can rapidly alter certain molecular regulatory patterns and induce cell death through ferroptosis. In 
addition, we discussed the PPAR signaling pathway, which is a classic pathway associated with hyperlipidemia, 
regulates lipid metabolism and blood lipid levels by mediating various biological functions, such as the synthesis and 
decomposition of cholesterol and the oxidation of fatty acids[37]. Previous studies[38,39] have revealed that DEHP 
exposure dysregulates blood lipid levels and hepatic lipid metabolism in mice through the PPAR signaling pathway.

In this study, we utilized the CIBERSORT algorithm to identify specific alterations in immune cells. Consistent with the 
findings of this study, Yang et al[40] investigated the effect of DEHP on the immune system of male C57Bl/6 mice and 
reported significant atrophy of the thymus and spleen with the proportions of immature CD4+ and CD8+ populations 
exhibiting the highest downregulation. Additionally, they found a downregulation in the number of T and B cells in the 
spleen. A previous study[41] reported that green tea extract promotes macrophage phagocytic activity at a dosage of 5 
mg/kg bodyweight and enhances NK cell activity and T cell proliferation at a dosage of 40 mg/kg bodyweight, 
supporting the potential immunomodulatory effects of GTPs demonstrated in this study.
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Figure 10  Construction of the microRNA-mRNA-protein regulatory axis. A: The network diagram was constructed using differentially expressed 
mRNAs and microRNAs (miRNAs); B: Wayne diagram indicating the intersection of the miRNA-mRNA regulatory axis and mouse interaction network from the 
starBase database; C: Correlation analyses of mmu-miR-141-3p and Zcchc24; D: Correlation analyses of mmu-miR-9-5p and Zbtb7a; E: Western blotting validation 
of Zcchc24 protein expression in the control, model, and treatment groups; F: Semiquantitative analysis of Zcchc24 protein levels in the control, model, and treatment 
groups; G: The Sankey plot of the miRNA-mRNA-protein regulatory axes mediating the suppressive effects of green tea polyphenols (GTPs) on di-(2-ethylhexyl) 
phthalate (DEHP)-induced liver damage in mice. Red and blue fonts indicate upregulated and downregulated expression, respectively. dP < 0.01 (compared to DEHP 
group). DEHP: Di (2-ethylhexyl) phthalate; GTPs: Green tea polyphenols.

This study identified the mmu-miR-141-3p/Zcchc24 (mRNA)/Zcchc24 (protein) regulatory axis, which exerted its 
function through Zcchc24. Zcchc24 is reported to be involved in cell differentiation in mice. Previous studies[42] have 
suggested that Zcchc24 can serve as a key gene in liver cancer prediction models, which are used to predict patient 
survival time. Additionally, Zcchc24 is one of the major selective splicing factors that plays a critical role in cell fate 
transition, development, and disease progression.

This study has several limitations. In this study, three samples per group were analyzed using high-throughput 
sequencing, which may have yielded biased results. Additionally, the levels of immune cells in each group were 
determined using the CIBERSORT algorithm. However, immune cell infiltration was not verified using alternate 
methods, such as single-cell sequencing. Furthermore, the importance of Zcchc24 was not verified using knockdown or 
overexpression experiments.

CONCLUSION
In conclusion, this study demonstrated that GTPs can alleviate the DEHP-induced changes in liver function and lipid 
profiles, improve fatty liver disease and partial liver fibrosis, and regulate immune cell infiltration. Additionally, an 
important miRNA-mRNA-protein molecular regulation axis that plays a crucial role in the therapeutic effects of GTPs on 
DEHP-induced liver damage was validated.
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Figure 11  Mechanisms underlying di-(2-ethylhexyl) phthalate exposure-induced liver injury and the therapeutic effects of green tea 
polyphenols on Di (2-ethylhexyl) phthalate-indued liver injury. DEHP: Di (2-ethylhexyl) phthalate; GTPs: Green tea polyphenols.

ARTICLE HIGHLIGHTS
Research background
Di (2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that has been shown to cause liver injury. Previous 
studies have reported the therapeutic effects of green tea on organ damage caused by heavy metal exposure. However, 
there is limited research on the therapeutic effects of green tea polyphenols (GTPs) specifically on DEHP-induced liver 
damage.

Research motivation
Despite the known therapeutic effects of green tea on heavy metal exposure-induced organ damage, there is a lack of 
studies investigating the specific therapeutic effects of GTPs on DEHP-induced liver damage.

Research objectives
The research objectives of this study were to evaluate the molecular mechanism underlying the therapeutic effects of 
GTPs on DEHP-induced liver damage.

Research methods
In this study, C57BL/6J mice were divided into different groups and treated with DEHP and GTPs. After 8 wk, various 
assessments were conducted, including examination of liver function, blood lipid profile, and liver histopathology. High-
throughput sequencing was used to analyze differentially expressed miRNAs and mRNAs in the liver tissues. Functional 
enrichment analysis and immune infiltration prediction were performed, and the miRNA-mRNA regulatory axis was 
elucidated using the starBase database. Protein expression was evaluated using immunohistochemistry.

Research results
The results of this study showed that GTPs had beneficial effects on DEHP-induced liver damage in mice. GTPs alleviated 
liver dysfunction, blood lipid dysregulation, fatty liver disease, liver fibrosis, and mitochondrial and endoplasmic 
reticulum lesions. The infiltration of immune cells, such as macrophages, mast cells, and natural killer cells, varied 
between the model and treatment groups. Furthermore, the study identified specific miRNAs, mRNAs, and proteins that 
constituted a regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage.

Research conclusions
The findings of this study indicate that GTPs have a therapeutic effect on DEHP-induced liver damage. GTPs were shown 
to alleviate liver dysfunction, blood lipid dysregulation, fatty liver disease, and partial liver fibrosis. Additionally, GTPs 
were found to regulate immune cell infiltration. The study also identified a significant miRNA-mRNA-protein regulatory 
axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage.
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Research perspectives
Further studies are needed to investigate the long-term effects of GTPs on DEHP-induced liver damage and to explore the 
potential mechanisms underlying the regulation of immune cell infiltration. Additionally, future research should focus on 
optimizing the dosage and administration of GTPs to maximize their therapeutic effects and minimize potential side 
effects. Furthermore, clinical trials are warranted to evaluate the efficacy and safety of GTPs as a potential therapeutic 
intervention for DEHP-induced liver damage in humans.
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