
WJG https://www.wjgnet.com 5435 October 21, 2023 Volume 29 Issue 39

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2023 October 21; 29(39): 5435-5451

DOI: 10.3748/wjg.v29.i39.5435 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

REVIEW

Function and biomedical implications of exosomal microRNAs 
delivered by parenchymal and nonparenchymal cells in 
hepatocellular carcinoma

Hai-Chen Wang, Wen-Xuan Yin, Meng Jiang, Jia-Yi Han, Xing-Wang Kuai, Rui Sun, Yu-Feng Sun, Ju-Ling Ji

Specialty type: Gastroenterology 
and hepatology

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): A 
Grade B (Very good): B, B, B, B, B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Ghazy A, Egypt; 
Granito A, Italy; Haque N, 
Bangladesh; Tsai HW, Taiwan; 
Wang YG, China

Received: May 26, 2023 
Peer-review started: May 26, 2023 
First decision: July 23, 2023 
Revised: August 13, 2023 
Accepted: October 16, 2023 
Article in press: October 16, 2023 
Published online: October 21, 2023

Hai-Chen Wang, Wen-Xuan Yin, Meng Jiang, Jia-Yi Han, Xing-Wang Kuai, Rui Sun, Yu-Feng Sun, 
Ju-Ling Ji, Department of Pathology, Medical School of Nantong University, Nantong 226001, 
Jiangsu Province, China

Meng Jiang, Jia-Yi Han, Xing-Wang Kuai, Rui Sun, Yu-Feng Sun, Ju-Ling Ji, Key Laboratory of 
Microenvironment and Translational Cancer Research, Science and Technology Bureau of 
Nantong City, Nantong 226001, Jiangsu Province, China

Ju-Ling Ji, Department of Pathology, The Affiliated Hospital of Nantong University, Nantong 
226001, Jiangsu Province, China

Corresponding author: Ju-Ling Ji, MD, PhD, Professor, Department of Pathology, Medical 
School of Nantong University, No. 19 Qixiu Road, Nantong 226001, Jiangsu Province, China. 
jijuling@ntu.edu.cn

Abstract
Small extracellular vesicles (exosomes) are important components of the tumor 
microenvironment. They are small membrane-bound vesicles derived from almost 
all cell types and play an important role in intercellular communication. 
Exosomes transmit biological molecules obtained from parent cells, such as 
proteins, lipids, and nucleic acids, and are involved in cancer development. 
MicroRNAs (miRNAs), the most abundant contents in exosomes, are selectively 
packaged into exosomes to carry out their biological functions. Recent studies 
have revealed that exosome-delivered miRNAs play crucial roles in the tumori-
genesis, progression, and drug resistance of hepatocellular carcinoma (HCC). In 
addition, exosomes have great industrial prospects in the diagnosis, treatment, 
and prognosis of patients with HCC. This review summarized the composition 
and function of exosomal miRNAs of different cell origins in HCC and 
highlighted the association between exosomal miRNAs from stromal cells and 
immune cells in the tumor microenvironment and the progression of HCC. 
Finally, we described the potential applicability of exosomal miRNAs derived 
from mesenchymal stem cells in the treatment of HCC.
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Core Tip: Hepatocellular carcinoma (HCC) is one of the most serious cancers in adults, and microRNAs (miRNAs) in small 
extracellular vesicles (exosomes) play a vital role in the pathological processes of HCC. Recent studies on exosomal 
miRNAs in HCC mainly focus on miRNA profiling but place little emphasis on where miRNAs come from and what target 
cells they act on. This review focused on the origin of exosomal miRNAs according to their parent cells in the tumor 
microenvironment and their role in HCC pathogenesis, contributing to a better understanding of exosomal miRNAs in the 
tumor microenvironment.
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INTRODUCTION
In 2020, liver cancer was ranked the sixth most frequent malignant solid cancer globally. It was also the third-leading 
cause of cancer-related deaths in the world[1]. Hepatocellular carcinoma (HCC) is the primary histological type of liver 
cancer, comprising 80% of primary liver cancer cases[2]. It is characterized by the high degree of malignancy and poor 
prognosis. It is a threat to the health of humans. The symptoms of incipient-stage HCC are strong concealment, and it is 
challenging to diagnose HCC early. In addition, approximately 70% of patients undergo recurrence and experience 
metastasis within 5 years after surgical resection[3].

The tumor microenvironment (TME) is important in the development of HCC[3] and primarily comprises host cells, 
both resident and recruited, along with the secreted molecules and extracellular matrix (ECM) proteins[4]. Nonparen-
chymal cells in the liver, such as sinusoidal endothelial cells, hepatic stellate cells (HSCs), and macrophages, have a 
critical role in establishing the TME and mediating tumorigenesis by paracrine communication via cytokines and/or 
angiocrine factors[5]. Accumulating investigations on the TME have revealed novel perceptions of tumor growth as well 
as metastasis therein exosomes play a crucial function[6-8].

Small extracellular vesicles, also known as exosomes, refer to a specific type of extracellular vesicles with a size of 40-
160 nm that originate from multivesicular bodies (MVBs), which act as carriers for biological information exchange to 
shape the cellular microenvironment[9]. To maintain consistency in nomenclature across studies published at different 
stages, we will use the name exosome for the rest of this review. Studies have shown that exosomes contain various 
cargoes including DNA, lipids, proteins, and RNA such as microRNAs (miRNAs), circular RNAs (circRNAs), long 
noncoding RNAs, and messenger RNAs, which are involved in intercellular communication[10,11].

More and more molecules of different classes carried by exosomes have been reported. Based on data retrieved from 
the ExoCarta database (http://www.exocarta.org), the identified components within exosomes consist of 9769 unique 
proteins, 3408 distinct messenger RNAs, 2838 different miRNAs, and 1116 lipids. Initially, exosomes were considered 
carriers of cellular waste, and their functions were underestimated[12]. Over the past few decades, the crucial functions of 
exosomes in facilitating intercellular communication in both physiological and pathological processes have been 
extensively studied and validated[13].

In 1996, exosomes derived from murine and human B lymphocytes were proven to execute a crucial function in 
transporting MHC molecules and eliciting MHC-II restricted T-cell responses[14]. Later, cancer cells and non-tumor cells 
in the TME were also found to be able to deliver exosomes and thereby participate in the malignant progression of 
tumors through molecular exchanges mediated by them[15,16]. Exosomes, hence, are recognized as important 
contributors to cancer initiation and progression[17-19].

MiRNAs represent an extensive collection of post-transcriptional gene expression regulators in eukaryotes. These 
regulatory molecules typically consist of 20-24 nucleotides and exert their function over various developmental and 
cellular processes[20]. Due to their essential role in gene expression, exosomal miRNAs have also been widely studied. In 
2007, Valadi et al[21] reported that exosomes contained miRNAs, which could be delivered to other cells and exert their 
functions. Studies have demonstrated that exosomes are loaded with a high abundance of miRNAs, which play a crucial 
role in immune modulation, resistance to chemotherapy, and metastasis in diverse malignancies[22]. These miRNAs can 
promote tumor development in a paracrine manner in the surrounding microenvironment[23-25]. Furthering the compre-
hension of cancer mechanisms will require the identification of exosomal miRNAs, which are abnormally expressed in 
pathological states.

Numerous scientific studies have demonstrated that exosomes play a critical role in the genesis and malignant 
progression of tumors by transmitting signals between cells and regulating the TME[26]. This paper summarizes the 
studies of exosomal miRNAs released from nonparenchymal cells in the TME of HCC and discusses the association 
between these exosomal miRNAs and HCC. This study will help researchers in the field to better understand the role of 
exosomal miRNAs from stromal cells and immune cells in HCC and develop innovative strategies for HCC prevention 
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and treatment.

FORMATION, COMPOSITION, AND FUNCTION OF EXOSOMES
Unlike other types of vesicles, exosomes have a different formation mechanism. First, the plasma membrane germinates 
inwards to form early endosomes (membrane-bound vacuoles)[27,28]. By further inwards budding of early endosomes 
encompassing miRNAs, proteins, and other selected substances, late endosomes called MVBs are formed[29]. Following 
this, the MVBs undergo fusion with the cell membrane, and the intraluminal endosomal vesicles are released into the 
extracellular area. These vesicles subsequently form exosomes[30] or fuse with the lysosome to decompose the biological 
information[31].

Studies revealed that the essential system involved in the biogenesis of exosomes is the endosomal sorting complex 
required for transport[32]. The endosomal sorting complex required for transport- identifies the ubiquitin-labeled “cargo” 
protein, guides it to MVBs, and subsequently separates the MVB from the peripheral membrane in a highly conserved 
process similar to the process of cytokinesis and virus budding[33].

Exosomes can be produced by any cell under normal or pathological conditions and might be taken up by other cells, 
hereby executing their designated tasks[34,35]. Exosomes transport multiple biologically active substances, such as 
proteins, RNA, DNA, and cholesterol[36-38]. The sucrose gradient density range in which exosomes float is 1.13-1.19 g/
mL[39]. Of note, the composition of exosomes varies depending on their cellular origin[40], and different cell-derived 
exosomes or even the same cell-derived exosomes contain different components in different physiological or pathological 
states[41]. The amount of exosomal miRNAs secreted by hepatoma cells could also vary under different stimuli[42]. 
Research has shown that 55 miRNAs in Heb3B cell-derived exosomes were expressed at levels that were four times 
higher than those in donor cells, while 30 miRNAs were expressed at lower levels, and 11 miRNAs were expressed only 
in exosomes[43]. These changes may be a potential mechanism for disease progression.

EXOSOMAL MIRNAS AND LIVER CANCER
In the past few years, exosomes have been shown to be crucial mediators of intercellular material and information 
exchange that can modulate the TME by transmitting nucleic acids and proteins between cells; hence, they are involved in 
tumor cell proliferation and migration, immune regulation, and drug resistance[44,45]. As an essential component of 
exosomes, exosomal miRNAs exert crucial functions in HCC tumorigenesis and progression.

First, we will review the function of exosomal miRNAs derived from HCC cells. MiR-122, which proved to be the most 
enriched miRNA in the human liver, is found to be decreased in the liver of HCC patients[46-48]. It is expressed and 
delivered by Huh7 cells (human HCC cell line) and can be transferred into HepG2 cells (human HCC cell line, of which 
the basal expression of miR-122 is low) in the form of exosomes, reducing the growth and proliferation of recipient 
HepG2 cells. The restoration of miR-122 inhibits HCC growth and enhances HCC sensitivity to chemotherapeutic drugs
[49]. In addition, exosomes delivered by liver cancer cells can affect nonparenchymal cells in the microenvironment, 
promoting the malignant progression of tumors, which will be discussed in subsequent sections.

On the other hand, exosomal miRNAs secreted by tumor cells other than liver cancer cells can also promote the 
formation of premetastatic niches in the liver. Colon cancer cell-derived exosomes are able to deliver miR-21, miR-192, 
and miR-221 to hepatoma cells[50]. Exosomal miR-25-3p delivered by colon cancer cells promotes premetastatic niche 
formation in the liver by improving vascular permeability and angiogenesis[51]. Exosomes from colorectal cancer highly 
expressed miR-135a-5p, which could be transmitted to hepatic Kupffer cells to regulate the LATS2-YAP1/TEAD1-matrix 
metalloproteinase (MMP) 7 pathway and promote cell adhesion, forming premetastatic niches[52]. These results showed 
that exosomes could communicate between different types of cancers, even remodeling the microenvironment to boost 
liver metastasis[53].

Exosomal miRNAs might also be linked to different etiology of liver disease related to HCC. The connection between 
miRNAs and different liver diseases covering hepatitis B virus (HBV) infection, hepatitis C virus (HCV) infection, 
alcohol-associated liver disease (ALD), nonalcoholic steatohepatitis (NASH), nonalcoholic fatty liver disease, 
autoimmune hepatitis, and drug-induced liver injury has been discussed in-depth in previous high-quality reviews[54-
56]. In the liver of ALD, NASH, and HCC patients, the level of hepatocyte-specific miR-122 exhibits a remarkable 
decrease. This specific miRNA directly targets distinct regions at the 5′-UTR of the HCV RNA genome, thereby 
facilitating the replication of HCV RNA[57]. When it comes to HBV replication, miR-122 functions oppositely. It acts as an 
inhibitor by downregulating the cyclin G1-p53 complex and preventing the specific interaction between p53 and HBV 
enhancers[58].

In simple steatosis, the liver shows an increase in the expression of miR-192, which is enriched in hepatocytes. 
However, this elevation is not observed in NASH[59]. On the other hand, the expression of miR-192 is decreased in HCC
[60]. It is the most significantly downregulated miRNA in hepatic cancer stem cells and plays a role in the activation of 
cancer stem cells. Due to the anti-tumor property of miR-192, administering miR-192 to individuals with HCC can be a 
potential strategy for HCC therapy[60].

The expression of miR-155, a highly abundant miRNA in immune cells, including macrophages, is elevated in the liver 
tissues of patients with ALD, autoimmune hepatitis, and HCC. It is an oncogenic miRNA that links inflammation with 
tumorigenesis[61,62]. The activation of NF-κB signaling was reported to induce an upregulation in miR-155 levels in 
hepatocytes and liver cancer when mice were fed a choline-deficient and amino acid-defined diet[61] or in HCV infection 
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in patients[62]. However, few studies have focused on the etiology of HCC and miRNAs delivered by exosomes.
According to a recent investigation, extracellular vesicles derived from neutrophils have the capability to transfer miR-

223 to macrophages, stimulating the resolution of liver fibrosis[63]. Neutrophil/myeloid-specific miR-223 has been 
extensively studied for its anti-inflammatory properties. Its function involves the suppression of IL-6 expression, 
effectively reducing the activation of the IL-6-p47phox-ROS pathway within neutrophils[64]. The upregulation of miR-
223 is observed in the serum and/or liver of patients or mouse models experiencing ALD or NASH, both diseases charac-
terized by significant hepatic neutrophil infiltration. Consequently, the compensatory increase in miR-223 expression is a 
protective mechanism against ALD[64] and NASH[65]. At the same time, the reduction of miR-223 in HCC might be a 
causal factor in promoting HCC progression[66]. Therefore, the administration of miR-223 is thought to be a potent 
treatment in murine models of acute hepatitis and NASH[67]. Future studies of the above-reported miRNAs associated 
with different etiologies of liver diseases underlying HCC could be extended to the area of exosomes.

THE INTERACTIONS BETWEEN TME AND TUMOR CELLS VIA EXOSOMAL MIRNAS IN HCC
Since Stephen Paget proposed the “seed-soil” theory of tumor metastasis in 1889 to explain the organ specificity of tumor 
metastasis, there has been increasing evidence that tumor metastasis requires coordination between tumor cells and the 
TME, which has been identified as an evolutionary and ecological process characterized by constant, dynamic, and 
reciprocal action upon each other. Nonparenchymal cells in the liver cancer TME, such as HSCs, cancer-associated 
fibroblasts (CAFs), immune cells [T lymphocytes, B lymphocytes, natural killer (NK) cells, NK T cells, and tumor-
associated macrophages (TAMs)], and endothelial cells, are pivotal in mediating tumor-stromal communications, thus 
regulating the biological processes of HCC[68]. Noncellular components are composed of growth factors like 
transforming growth factor-β (TGF-β), insulin-like growth factor, fibroblast growth factor, hepatocyte growth factor, 
vascular endothelial growth factor, proteolytic enzymes, ECM, and inflammatory cytokines. These components create a 
beneficial environment for the formation and proliferation of HCCs. Exosomal miRNAs, a crucial element of the TME, 
play a significant role in transmitting signals between cells and contribute to the development and advancement of 
tumors. In the next section, the role of the exosomal miRNAs from different nonparenchymal cells in HCC formation and 
metastasis is thoroughly discussed. The related investigations are paving the way for novel strategies in clinical diagnosis 
and treatments aimed at HCC (Figure 1).

Exosome-mediated cell-cell communication between activated HSCs and HCC cells
HSCs can be observed in the space of Disse, located between liver sinusoidal endothelial cells and hepatocytes. These 
cells are responsible for storing lipid droplets containing vitamin A[69,70]. When there is damage to the liver, quiescent 
HSCs transform to activated HSCs, which resemble myofibroblasts and produce excessive fibrotic ECM[70]. The 
migration and accumulation of myofibroblasts are thought to be the key events that initiate liver fibrosis. Although many 
cell types, such as HSCs[71-73], portal fibroblasts[71,72], mesenchymal stem cell (MSC)-like cells[74], mesothelial cells[75] 
and bone marrow-derived cells[76], have been reported to contribute to the myofibroblast pool, recently researchers have 
evidence that 82%-96% of myofibroblasts in models with toxic, cholestatic, and fatty liver diseases are generated from 
activated HSCs[73].

The initiation and promotion of liver cancer are significantly correlated to the existence of liver fibrosis[70]. Activated 
HSC is a major factor mediating liver fibrosis and promotes liver cancer progression. Activated HSCs cocultured with 
HCC cells promoted tumor growth and invasiveness in nude mice[77]. In 2022, Zhang et al[78] reported that reducing 
activated HSC-delivered exosomal miR-148a-3p inhibited HCC initiation through the ITGA5/PI3K/Akt pathway. 
Another group found that HSC-HCC cell coculture reduced intracellular miR-335-5p expression in both types of cells. 
Additionally, in vitro and in vivo experiments showed that miR-335-5p-loaded HSC exosomes inhibited cancer growth 
and invasion[79]. In summary, activated HSCs can promote the development of HCC via various miRNAs delivered by 
exosomes, and targeting activated HSC-exosome miRNAs represents an innovative therapeutic strategy in HCC. At the 
same time, exosomes derived from HCC cells also promote the activation of HSCs. The HCC cell-derived exosome-
miRNA-21, which targets the PTEN gene in HSCs, activates the PDK1/AKT pathway and converts HSCs to CAFs[80]. 
The progression of cancer was further accelerated by the activation of CAFs, which release angiogenic cytokines such as 
vascular endothelial growth factor, basic fibroblast growth factor, TGF-β, MMP2, and MMP9[80]. Another study 
suggested that a high level of serum exosomal miRNA-21 is associated with increased activation of CAFs and a higher 
vessel density in patients with HCC[80].

Exosome-mediated cell-cell communication between CAFs and HCC cells
CAFs are an important component of the TME[81]. However, the concepts of HSCs and CAFs in early literature 
sometimes need to be clarified. Researchers used to believe that in the HCC microenvironment, HSCs frequently differen-
tiated into CAFs, which have been extensively reported to influence HCC progression[81-84]. In the latest study, Zhu et al
[85] successfully identified five CAF subtypes within HCC tumors through single-cell RNA sequencing data obtained 
from both mouse and human HCC tumors. The subtypes include vascular CAFs, matrix CAFs, lipid processing-matrix 
CAFs (also known as CD36+ CAFs), lipid-processing CAFs, and antigen-presenting CAFs. In these cells, CD36+ CAFs are 
derived from HSCs[85]. Another group also showed that Tcf21 was explicitly expressed in HSCs in mouse and human 
livers. Tcf21-positive HSCs, representing approximately 10% of all HSCs, can transdifferentiate into the majority of 
myofibroblasts in fibrotic liver and CAFs in HCC[86].
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As crucial contributors to the alterations of the ECM that contribute to the development of HCC, CAFs have the 
potential to stimulate the progression of HCC through communication mediated by exosomes. A recent study found that 
the miR-320a level was remarkably decreased in CAF-derived exosomes compared with corresponding para-neoplastic 
fibroblast-derived exosomes in HCC patients. In vitro and in vivo experiments showed the anti-tumor effects of miR-320a 
when it was delivered to malignant cells through exosomes. The anti-tumor effect of miR-320a might be achieved by 
effectively targeting PBX3, thereby impeding the activation of the MAPK pathway[87]. Another study confirmed that 
miR-150-3p was lost in exosomes released by CAFs. CAF-delivered exosomes potently accelerate the malignant 
progression of HCC due to the absence of anti-tumoral miR-150-3p. Restoring the expression level of miR-150-3p by 
delivering miR-150-3p-loaded exosomes to HCC cells can effectively suppress their migration and invasiveness. 
Therefore, exosomal miR-150-3p can serve as a prognostic biomarker for HCC, and a supplement with exosomal miR-150-
3p might be a potential treatment option[88].

Apart from those underexpressed anti-tumor miRNAs found in CAF-derived exosomes, the oncogenic miR-20a-5p was 
enriched in CAFs compared to HCC cells. MiR-20a-5p can be transferred from CAFs to HCC cells through exosomes and 
thereby suppress the expression of the tumor suppressor LIM domain and actin binding 1, which in turn inhibits the 
Wnt/β-catenin signaling pathway in HCC[89]. Thus, the distinct expression of exosomal miRNAs in CAFs plays a crucial 
part in the malignant progression of HCC. Therefore, potential therapeutic implications can be expected from anti-CAF 
medications that aim at certain exosomal miRNAs.

However, exosomal noncoding RNAs other than miRNAs also participate in the CAF-tumor cell communication. 
Chemoresistance in HCC can be influenced by CAF-exosomal circRNAs. Circular RNA ZFR is highly expressed in CAFs 
and CAF exosomes. CAF-exosomes transfer circular RNA ZFR to tumor cells, suppress the STAT3/NF-κB signaling 
pathway, and consequently enhance the growth of HCC cells as well as stimulate chemoresistance to cisplatin[90]. In 
addition, the migration, invasion, and glycolytic abilities of HCC cells were enhanced by long noncoding RNA TUG1 
loaded in CAF-exosomes by targeting the miR-524-5p/SIX1 axis[91].

Exosome-mediated cell-cell communication between adipocytes and HCC cells
The involvement of adipose tissue in tumor progression has long been recognized[92]. Adipocytes play a crucial role in 
the hepatic microenvironment of nonalcoholic fatty liver disease, which is also a proven risk factor for HCC[44]. There is 
a close association between the adipocyte-HCC cell interaction and the risk of HCC development and progression[93]. 
Adipocyte-derived exosomes can affect the gene expression of liver cancer cells. In 2014, Koeck et al[94] found that 
exosomes from obese donors’ visceral adipose tissues caused dysregulation of genes involved in the TGF-β pathway in 
HepG2 cells. Recently, Liu et al[95] found that the levels of miR-23a/b in serum exosomes and tumor tissues were 
significantly elevated in high-body fat ratio (BFR) HCC patients compared to their low-BFR counterparts. In tumor 
tissues, it is highly probable that miR-23a/b can be transported from adipocytes into cancer cells via exosomes, thus 
promoting the malignant progression of HCC[95]. Moreover, exosomal miR-23a/b affects the von Hippel-Lindau/
hypoxia-inducible factor pathway, thus promoting chemoresistance[95]. Exosomal circRNAs also play a role. Adipocyte 
exosomal circDB can suppress miR-34a expression in HCC cells and subsequently activate the deubiquitination-related 
USP7/cyclin A2 signaling pathway and promote tumor growth of HCC[96]. These studies provided evidence that high 
BFR-related exosomal miRNA could be valuable therapeutic targets for HCC.

On the other hand, HCC cell-derived exosomes can educate adjacent adipocytes and generate a microenvironment that 
promotes tumor formation and progression. HepG2-exosomes induced an inflammatory phenotype in adipocytes by 
activating several phosphorylated kinases (p-AKT, p-Erk1/2, p-GSKb, p-stat5a, and p-p38) and the NF-kB signaling 
pathway[44]. Adipocytes treated by tumor-derived exosomes enhance tumor development, angiogenesis, and 
macrophage recruitment in a mouse xenograft model[44]. The specific exosomal miRNAs that play a role in the process 
remain to be revealed.

In addition, it was observed in experimental models and human studies that the exposure to the adipocyte exosome 
increased the expression of various profibrotic molecules in HSCs, including tissue inhibitor of metal protease 1 and 4, 
Smad-3, integrins ανβ-5 and ανβ-8, and MMP-9[94].

Exosome-mediated cell-cell communication between vascular endothelial cells and HCC cells
It is widely acknowledged that angiogenic factors from tumor cells activate vascular endothelial cells, promote their 
proliferation and migration, and contribute to aberrant tumor angiogenesis[97]. HCC is a typical hypervascular tumor, 
and understanding the mechanisms of angiogenesis in HCC is very important[98]. In an early study, Shih et al[99] 
discovered that the decrease of miR-214 in HCC cells contributed to the upregulation of hepatoma-derived growth factor, 
stimulating vascular endothelial cells to promote angiogenesis and tumor growth. Therefore, miR-214 is a potent 
suppressor of angiogenesis. It was also shown that exosomes derived from HCC cells are able to induce the formation of 
lumens of human umbilical vein endothelial cells[98].

Recently, several HCC cell-derived exosomal miRNAs were found to be vital to angiogenesis. Fang et al[100] reported 
that hepatoma cell-derived exosomal miR-103 can be internalized by endothelial cells and damage the integrity of 
endothelial junctions and a subsequent elevation in vascular permeability that facilitates tumor metastasis. The 
underlying mechanism involves the specific targeting of crucial endothelial junction proteins, such as vascular 
endothelial-cadherin and p120-catenin, by exosomal miR-103[100]. Exosomal miR-210, derived from HCC cells, can be 
delivered to endothelial cells and lead to the promotion of tumor angiogenesis. This effect is mediated by the specific 
targeting of SMAD4 and STAT6, key regulators involved in modulating angiogenic processes[101]. Exosomal miRNAs 
(miR-638, miR-663a, miR-3648, and miR-4258) from HuH-7M (which is established from luciferase-expressing human 
hepatoma Huh-7 and deemed as a new, highly intrahepatic metastatic cell line) are able to attenuate the integrity of 
endothelial junctions, thus enhancing permeability by reducing vascular endothelial cadherin and zonula occludens-1 
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expression[102]. These findings revealed that HCC-exosomal miRNAs could be delivered to endothelial cells to promote 
HCC progression.

On the other hand, the exosomes released by endothelial cells might also affect tumor cells. A recent study showed that 
engineered human cerebral endothelial cell-derived exosomes containing increased miR-214 (hCEC-Exo-214) could 
enhance the sensitivity of HCC cells to anticancer drugs, such as oxaliplatin and sorafenib[103]. However, how 
endothelial cell-derived exosomes and exosomal miRNAs act on HCC cells is poorly studied. It is worth paying attention 
to in the follow-up studies.

Exosome-mediated cell-cell communication between immune cells and HCC cells
The tumor immune microenvironment (TIME) is an important part of the TME[104]. The complicated interactions 
between cancer cells and host immune cells significantly influence TIME[105]. In HCC, the poor overall survival outcome 
arises as a result of immune surveillance disruption, which is strongly associated with the suppression of host immune 
reactions[105-107]. The growing evidence shows that the intricate interplay of exosome exchange-based cancer immunity 
shapes the tumor microenvironment, causing immune suppression and immune tolerance.

TAM presents the major leukocyte component infiltrating the HCC TIME[107]. Hepatic macrophages, also known as 
Kupffer cells, are the most abundant immune cells in the liver[108]. During the early stages of carcinogenesis, proinflam-
matory activation of Kupffer cells is important in tumor development. Once the primary tumor is established, the liver-
infiltrating macrophages play a more critical role than Kupffer cells in HCC progression[109]. M2-polarized TAMs 
promote HCC progression by preventing T cells from recognizing and killing cancer cells, promoting tumor growth, 
angiogenesis, invasion, metastasis, and evasion of immune attack[110,111].

The role of TAM-derived exosomes is now attracting more and more attention. Liu et al[112] found a role of exosomal 
miR-92a-2-5p derived from M2 macrophages in promoting HCC cell invasion. This process is mediated through the 
regulation of the AR/PHLPP/p-AKT/β-catenin signaling pathway by miR-92a-2-5p. Increased expression of miR-27a-3p 
and miR-660-5p in M2 macrophage-derived exosomes facilitates HCC development by downregulating thioredoxin-
interacting protein and KLF Transcription Factor 3 (KLF3)[113,114]. Exosomes derived from TAMs exhibit a reduction of 
miR-125a and miR-125b expression, which have been proven to promote HCC cell proliferation, sphere cell formation, 
and metastasis. MiR-125a/b exerts inhibitory effects on the HCC proliferation and attenuates their stem cell-like charac-
teristics by specifically targeting CD90, a recognized stem cell marker in HCC[115].

Modulating TAM exosomal miRNAs provides a new way to suppress HCC. A tumor suppressor miRNA, miR-375, 
which is enriched in exosomes from IL-2 modulated TAMs, can ameliorate HCC development[116]. Moreover, propofol 
can stimulate TAMs to secrete exosomes overexpressing miR-142-3p. When miR-142-3p exosomes are transferred to HCC 
cells, they can inhibit HCC cell invasion[117]. Conversely, M1 macrophages contribute to proinflammatory and anti-
tumor effects. M1 macrophage-derived exosomal miR-628-5p suppresses HCC development by restraining the m6A 
modification of circFUT8[118]. Peripheral blood monocyte-derived exosomal miR-142 and miR-223 can directly inhibit 
the proliferation of HCC[119].

The exosomes from other immune cells are also involved in HCC. In mice, NK-exosomes rich in miR-223 inhibited 
carbon tetrachloride-induced liver fibrosis by inhibiting TGF-β1 induced HSC activation by directly targeting ATG7. 
Therefore, the overexpression of ATG7 in HSCs abolished the HSC activation-suppressive effect of NK cell exosomes
[120]. Hepatitis C virus E2 envelope glycoprotein can stimulate mast cells, which in turn secrete a considerable amount of 
miR-490 enriched exosomes. When these exosomes are transferred into HCC cells, they inhibit tumor cell metastasis 
through the ERK1/2 pathway[121]. In addition, miR-150-5p and miR-142-3p can be transferred from regulatory T cells 
(Tregs) to dendritic cells via exosomes, resulting in the induction of a tolerant phenotype in these cells, characterized by 
elevated IL-10 production and decreased IL-6 production upon lipopolysaccharide stimulation[122].

On the other hand, tumor-derived exosomal miRNAs also affect the distribution and function of immune cells. Tregs 
constitute the most prominent subset of suppressor cells in the TME and release immunosuppressive factors, including 
IL-10 and TGF-β, contributing to tumor progression. Tregs also present various chemokine receptors and surface 
molecules like CTLA4 and PD-1, which make them susceptible to immune checkpoint inhibitor immunotherapy. The 
development of immune-related adverse events may partly be attributed to Treg destabilization[123]. Tumor cell-
delivered miR-214 has the potential to augment the population of CD4+CD25highFoxp3+ Treg by reducing the 
expression of PTEN in CD4+ T cells, which results in the suppression of the host immune response and accelerates tumor 
development[124]. Indeed, the expansion of Treg populations through tumor-secreted miR-214 is believed to be a shared 
mechanism employed by various cancer cells to establish an immune-tolerant environment. This miRNA is crucial in 
modulating immune responses and promoting immune tolerance within the tumor microenvironment. Consequently, the 
inhibition of tumor-secreted miR-214 transportation to immune cells shows potential as an innovative approach to 
counteract tumor-induced immune tolerance[124].

In summary, exosome-delivered miRNAs from immune cells were intensely involved in the biological processes of 
HCC, and HCC-derived exosomal miRNAs also affect the distribution and function of immune cells.

CLINICAL APPLICATIONS OF EXOSOME-DELIVERED MIRNAS IN HCC
Radical resection and transarterial chemoembolization remain the most efficacious therapeutic approaches for patients 
with early-stage liver cancer. Still, the treatment efficacy remains unsatisfactory due to the compensatory effect of 
vascular proliferation after hypoxia[125,126]. For patients with advanced liver cancer, targeted therapy and traditional 
chemotherapy can only prolong the survival of these patients to a certain extent. Innovative and alternative therapies are 
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Figure 1 Schematic of exosomal microRNAs in the tumor microenvironment of hepatocellular carcinoma. Orange represents the promoting 
effect of microRNA (miR) on hepatocellular carcinoma (HCC) proliferation, and blue represents the inhibitory effect of miR on HCC proliferation. CAF: Cancer-
associated fibroblast; HSC: Hepatic stellate cell; MSC: Mesenchymal stem cell; NK: Natural killer; TAM: Tumor-associated macrophage.

continuously needed to improve the prognosis of HCC patients.
Studies have recently confirmed that specific miRNAs can be transported through exosomes, thereby controlling tumor 

growth and achieving therapeutic effects[127]. Since exosomes exhibit distinct characteristics as a vehicle for drug 
transport, encompassing diminished immunogenicity, enhanced biocompatibility, reduced toxicity, and the capacity to 
traverse the blood-brain barrier, exosomes have garnered considerable attention as an innate delivery vector for 
conveying miRNA molecules[128]. Among the various cell types recognized for their ability to produce exosomes, MSCs 
are a promising choice for the large-scale production of exosomes for drug delivery. It has been shown in regenerative 
medicine and tumor treatment studies that MSC-derived exosomes can serve as effective vehicles for drug delivery[129,
130]. Based on the above findings, engineered MSC-derived exosomes loaded with specific miRNAs present a novel 
therapeutic approach for HCC treatment.

Exosomal miRNAs have been utilized to enhance the chemosensitivity of tumor cells[131,132]. Recent research 
demonstrated that miR-122 overexpression could sensitize the response of HCC cells to chemotherapy drugs by 
suppressing multidrug resistance-associated genes, the anti-apoptotic gene Bcl-w, and the cell cycle-related gene cyclin B1
[47]. The miR-122 overexpression amniotic membrane MSCs (AMSCs) can effectively encapsulate miR-122 to secreted 
exosomes, which are in turn delivered to HCC cells and further increase the sensitivity of HCC cells to sorafenib[133]. The 
miR-199a loaded AMSC exosomes produced through miR-199a overexpression lentivirus infection and subsequent 
puromycin selection are able to potently transport miR-199a and enhance the sensitivity of HCC cells towards 
doxorubicin by specifically targeting the mTOR pathway. Furthermore, tumor tissue can be effectively targeted by AMSC 
exosomal miRNA-199a through intravenous injection, thereby enhancing the therapeutic effect of Dox on HCC in vivo
[134].

Liver fibrosis is the precursor stage of cirrhosis and liver cancer. MSC-derived exosomes alleviated carbon 
tetrachloride-induced liver fibrosis in mice through the expression of miR-148a. MiR-148a directly targets KLF 
transcription factor 6 and successfully converts the M1 macrophages to M2 macrophages in vitro and liver fibrosis models
[135]. In vitro studies have shown that transplanted human chorionic plate-derived MSCs reduce lung and liver fibrosis in 
murine models[136,137]. One study supported that chorionic plate-derived MSCs released exosomes containing miRNA-
125b into hedgehog-responsive HSCs and restrained the activation of hedgehog signaling by blocking the expression of 
smoothened receptors, consequently reducing the severity of hepatic fibrosis[138]. As a new candidate therapeutic 
strategy, MSC exosomes have excellent application prospects for HCC.

In addition, human liver stem cell-derived exosomes are loaded with multiple antitumor miRNAs (miR451, miR223, 
miR24, miR31, miR214, and miR122), which can downregulate multi-drug resistance 1, migration inhibitory factor, ras-
associated protein 14, and E2F transcription factor 1. These exosomes have been proven to be able to inhibit the growth of 
hepatoma cells both in vitro and in vivo[139].
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Table 1 Function of exosomal microRNAs from interstitial cells in the liver

miRNA 
species in 
exosomes

Exosome secreting 
cells

Exosome isolation 
methods Target cells miRNA expression of 

exosome Downstream targets Functions of 
miRNA Additional information Ref. Year

miR-148a-3p Primary fibroblasts (the 
HSC cell line LX-2)

The ExoQuick-TC kit Human HCC cell 
lines PLC, 
HCCLM3, and 
SMMC-7721

Reduced in the 
exosomes of HSCs after 
cocultivation with 
primary liver cancer-
associated fibroblasts

ITGA5/PI3K/Akt axis Inhibited HCC 
cell malignancy

Primary fibroblasts were isolated from 
primary HCC tumor and paired peritumor 
tissues in 17 primary HCC patient samples

[78] 2022

miR-335-5p The HSC cell line LX-2 Ultracentrifugation Human HCC cell 
lines MHCC97H, 
MHCC97L, HepG2, 
and Huh7

Reduced in the 
exosomes of fibroblasts 
as well as in HCC cells 
after cocultivation

CDC42? CDK2? Inhibited 
neighboring 
cancer cell prolif-
eration, invasion, 
and motility

- [79] 2019

miR-320a CAFs Life Technology 
exosome precipitation 
solution

Human HCC cell 
lines MHCC97-H, 
SMMC-7721, Huh7, 
and the human 
normal liver cell 
line 7702

Reduced in the 
exosomes of CAFs 
derived from human 
HCC patients

PBX3 Inhibited HCC 
cell proliferation 
and metastasis 
ability

PAFs and CAFs derived from 6 pairs of 
matched primary hepatocarcinoma and 
adjacent tumor-free tissues (5 cm from the cut 
edge of the tumor edge)

[87] 2017

miR-150-3p CAFs 0.22-µm PVDF filter 
and Total Exosome 
Isolation Reagent

Human HCC cell 
lines Huh7 and 
Hep3B

Decreased in CAF-
derived exosomes

- Inhibited HCC 
proliferation and 
metastasis

Stromal fibroblasts isolated from tumor tissue 
and adjacent (> 5 cm from the tumor edge) 
tissues from 6 HCC patients

[88] 2021

miR-20a-5p CAFs Centrifuged and 
filtered through a 0.22-
µm PVDF membrane

Human HCC cell 
lines SMMC7721, 
Huh7, YY8103, 
Hep3B, Focus, 
HepG2, and 
HCCLM3 and a 
normal liver cell 
line MIHA, WRL68

Higher in exosomes 
from cancer tissues than 
in matched adjacent 
para-tumoral tissues

LIMA1 Contributed to 
HCC cell prolif-
eration, 
metastasis, and 
EMT

CAFs were from the HCC tissues and NFs in 
paired adjacent normal tissues from 92 HCC 
patients

[89] 2022

miR-214 hCECs Centrifuged and 
filtered through a 0.22-
µm PVDF membrane 
and ultracentrifu-
gation

Human HCC cell 
lines HepG2, 
Hep3B, the human 
liver epithelial cell 
line THLE-2

Lower levels in HCC 
cells than in normal 
human liver epithelial 
cells

P-gp/SF3B3 Reduced cancer 
cell viability and 
invasion 
compared with 
monotherapy 
with oxaliplatin 
or sorafenib

- [103] 2021

miR-23a/b Adipose cell mouse 
preadipocyte 3T3-L1 
cells

Differential centrifu-
gation

The human HCC 
cell lines BEL-7402 
and BEL-7402/5-Fu 
murine hepatoma 
cell line Hepa1-6

High in exosomes from 
HCC patients with high 
BFR

VHL/HIF-1α Promoted HCC 
cell growth and 
migration

Adipose cells were isolated from human 
tumor tissues from obese and nonobese 
patients

[95] 2019

miR-142, Monocyte-derived Microfiltration and The human HCC High when cocultured Inhibited HCC PBMCs were isolated from lymphocyte cones STMN-1 [119] 2013
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miR-223 macrophages; human 
acute monocytic 
leukemia THP-1, B-
lymphoblastoid 
721.221, and murine 
lymphoblast-like 
mastocytoma P815 cell 
lines

ultracentrifugation cell lines Huh7 and 
HepG2

with HCC cells proliferation or fresh blood by density gradient centrifu-
gation and were incubated for 2 h in plastic 
plates before the flask was washed intensively 
to remove any nonadherent cells. After 4 d of 
incubation in serum-free medium supple-
mented with 1% autologous serum, adherent 
cells were washed with PBS and cultured in 
standard DMEM-based medium for 3-6 extra 
days to generate monocyte-derived 
macrophages phenotyped to be CD14+, 
CD11a+, CD3−, CD56−, and CD19−

miR-490 Human MC line HMC-
1 (treated with HCV-
E2)

Total exosome 
separation reagent 
from Invitrogen

The human HCC 
cell lines HepG2 
and HepG3b

High when HCV-E2-
stimulated MC-derived 
exosomes were 
incubated with the two 
types of HCC cells for 
24 h compared with the 
incubation with normal 
MC-derived exosomes

ERK1/2 Inhibited HCC 
proliferation

[121] 2017

miR-223 Human NK cell line 
NK92-MI

Differential centrifu-
gation

The human HSC 
line LX-2

Higher in exosomes 
derived from NK cells 
than in parental NK-
92MI cells

AGT7 Attenuated TGF-β
1-induced HSC 
activation and 
inhibited liver 
fibrosis

LX-2 cells were treated with TGF-β1 (5 
ng/mL) for 24 h to stimulate HSC activation. 
LX-2 cells in the exosomes derived from NK 
cells-treated groups were pretreated with 
exosomes derived from NK cells (10 μg/mL) 
before TGF-β1 treatment. LX-2 cells in the 
rapamycin-treated groups were pretreated 
with the autophagy activator rapamycin (2 
mM) in DMSO for 12 h before TGF-β1 
treatment

[120] 2020

miR-125a/b TAMs ExoQuick exosome 
precipitation solution

The human HCC 
cell lines Huh7, 
HepG2, and BEL-
7404

Downregulated in 
exosomes from HCC-
associated macrophages

CD90 Suppressed HCC 
cell growth and 
sphere formation

TAMs and nontumor macrophages were 
isolated from primary human HCC, adjacent 
nontumor liver tissues from 6 patients with 
HCC

[115] 2019

miR-628-5p M1 macrophage - The human HCC 
cell lines Huh7, 
HCCLM3, Hep3B, 
and MHCC97H, 
immortalized 
human liver 
epithelial THLE-3 
cell line

High in M1-exosomes METTL14/circFUT4/CHMP14B Inhibited HCC 
cell progression

THP-1 cells were differentiated into M0 
macrophages by a 24 h incubation with 150 
nM phorbol 12-myristate 13-acetate followed 
by a 24 h incubation in RPMI medium. M0 
macrophages were polarized to M1 
macrophages by incubation with 20 ng/mL 
IFN-γ and 10 pg/mL lipopolysaccharide

[118] 2022

miR-92a-2-
5p

M2 macrophage 
(monocytic leukemia 
cell line THP-1)

Centrifuged and 
filtered through a 0.22-
µm PVDF membrane 
and ultracentrifu-
gation

Human liver cancer 
SK-HEP-1 and 
HepG2 cell lines, 
HA22T cell line, 
and murine HCC 
Hepa 1-6 cell line

Increased after coculture 
with liver cancer cells

AR/PHLPP/p-AKT/β-catenin 
signaling

Promoted HCC 
growth and 
invasiveness

To induce differentiation into macrophages, 
THP-1 cells were cultured with 100 ng/mL 
PMA (Sigma) for 48 h, and the macrophage 
was cultured with the addition of DMSO to 
promote M2 polarization

[112] 2020

M2 macrophage Differential centrifu- Human HCC cell Augmented the THP-1 monocytes were stimulated by 100 ng miR-660-5p High KLF3 [114] 2021
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(monocytic leukemia 
cell line THP-1)

gation lines HepG2 and 
Bel-7402

tumorigenic 
ability of HCC 
cells

of phorbol 12-myristate 13-acetate (Sigma-
Aldrich, MO, United States) for 48 h, thus 
differentiating into M0 macrophages. Then, 
M0 macrophages were treated with 20 ng/mL 
interleukin 4 (AF-200–04-5, PeproTech, NJ, 
United States) for 72 h to polarize into M2 
macrophages

miR-27a-3p M2 macrophage 
(monocytic leukemia 
cell line THP-1)

SBI ExoQuick-TC Kit Human HCC cell 
lines Huh7, 97H, 
HepG2, LM3, and 
SMMC-7721

- TXNIP Induced the 
cancer stemness 
of HCC

Differentiation of THP-1 cells to macrophages 
was performed using 200 ng/mL phorbol 
myristic acetate, and the cells were then 
cultured with 20 ng/mL interleukin-4 for 72 h 
to induce M2-type polarization

[113] 2021

miR-142-3p TAMs treated by 
propofol (the murine 
macrophage cell line 
Raw 264.7 cells)

Differential centrifu-
gation

The murine HCC 
cell line Hepa1-6

Dose-dependent 
increase when treated 
with propofol

RAC1 Enhanced the 
antitumor activity 
of propofol

Raw 264.7 cells were cultured in complete 
RPMI 1640 with 10% FBS and treated with 
propofol (dissolved in RPMI 1640) in 
complete medium. TAMs were isolated from 
tumor-bearing mice treated with 0 mg/kg, 20 
mg/kg, and 50 mg/kg propofol by i.p. 
injection

[117] 2014

miR-375 TAMs (IL-2 induced) Total exosome 
isolation reagent

The human HCC 
cell lines HepG2 
and QJY–7703

High - Ameliorated HCC 
development and 
progression

Primary human HCC specimens were 
collected from patients who suffered from 
hepatectomy. The macrophages were isolated 
and cultured by Percoll (GE Healthcare) 
density gradient centrifugation. TAMs were 
treated with IL-2 for 24 h before the 
supernatants were collected. The treatment 
concentration was 20 ng/mL

[116] 2022

AGT7: Autophagy-related 7; AR: Androgen receptor; BFR: Body fat ratio; CAFs: Cancer-associated fibroblasts; CDC42: Cell division cycle 42; CDK2: Cyclin dependent kinase 2; EMT: Epithelial-mesenchymal transition; ERK1/2: 
Extracellular regulated protein kinases 1/2; Exos: Exosomes; HCC: Hepatocellular carcinoma; hCECs: Human cerebral endothelial cells; HCV-E2: Hepatitis C virus E2 envelope glycoprotein; HIF-1α: Hypoxia-inducible factor 1α; HSCs: 
Hepatic stellate cells; i.p.: Intraperitoneal; ITGA5: Integrin α5; KLF3: Kruppel-like factor 3; LIMA1: LIM domain and actin binding 1; MCs: Mast cells; METTL14: Methyltransferase-like 14; miR: MicroRNA; NK: Natural killer; PAFs: Para-
neoplastic fibroblasts; PBMCs: Peripheral blood mononuclear cells; PBX3: Pre-B-cell leukemia homeobox 3; P-gp: P-glycoprotein; PI3K: Phosphoinositide 3-kinase; RAC1: Rac family small GTPase 1; SF3B3: Splicing factor 3b subunit 3; 
STMN1: Stathmin-1; TAMs: Tumor-associated macrophages; TXNIP: thioredoxin-interacting protein; VHL: Von Hippel-Lindau.

CONCLUSION
Despite significant advances in diagnosis and therapeutics, HCC remains exceedingly fatal. In most cases, HCC develops 
from chronic liver inflammation, which provides a tumor-promoting microenvironment composed of immune and 
stromal cells. As a novel cellular communicator in TME, exosomes mediate the intricate interaction of nonparenchymal 
cells (including immune and stromal cells) with cancer cells. They are involved in the etiology of HCC and multiple 
processes related to tumor initiation, development, metastasis, and drug resistance. Exosome cargoes, especially miRNAs, 
are key communication factors in the complicated cross-talk, indicating that they are promising prognostic markers and 
therapeutic targets for HCC. In this review, we emphasized the function and mechanism of exosomal miRNAs from 
nonparenchymal cells for the initiation and malignant progression of HCC. Also, we introduced the influences of 
exosomal miRNAs delivered by tumor cells on nonparenchymal cells. The functions of the exosomal miRNAs in HCC 
were also summarized (Table 1). Finally, the therapeutic potential of exosomes for HCC was discussed. With the 
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development of nanoengineering technology, exosomes can be modified to carry specific miRNAs and target specific 
cells, thus enabling precision and individualized treatment of HCC.

Although significant progress has been achieved in elucidating the functions of exosomes and their miRNA cargoes in 
HCC, some challenges remain. Sometimes, different investigators reported different experimental observations for the 
same exosomal miRNAs. The inconsistency of experimental subjects and study designs might cause these discrepancies. 
Therefore, factors such as the environment, age and sex of the subjects, cause of HCC occurrence, and data collection from 
multiple centers should be considered to produce more accurate results. Moreover, different techniques can lead to the 
isolation of varied subtypes of extracellular vesicles, each exhibiting unique miRNA profiles, protein compositions, and 
biological functions[140-142]. In clinical applications, problems include low targeting efficiency and easily phagocytosed 
by the immune system. The exosome separation and purification method also have limitations and could be time-
consuming and laborious. Therefore, further research must be done to address these problems and determine more 
feasible and effective clinical translational applications of exosomes. The integration of nanoengineering and molecular 
biology allows for the utilization of exosome-mediated miRNAs in precision nanomedicine, presenting novel approaches 
for the diagnosis and treatment of HCC.
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