
WJG https://www.wjgnet.com 1377 March 14, 2024 Volume 30 Issue 10

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2024 March 14; 30(10): 1377-1392

DOI: 10.3748/wjg.v30.i10.1377 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

ORIGINAL ARTICLE

Observational Study

Differential diagnosis of Crohn’s disease and intestinal tuberculosis 
based on ATR-FTIR spectroscopy combined with machine learning

Yuan-Peng Li, Tian-Yu Lu, Fu-Rong Huang, Wei-Min Zhang, Zhen-Qiang Chen, Pei-Wen Guang, Liang-Yu 
Deng, Xin-Hao Yang

Specialty type: Gastroenterology 
and hepatology

Provenance and peer review: 
Unsolicited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): C 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Iizuka M, Japan

Received: October 31, 2023 
Peer-review started: October 31, 
2023 
First decision: December 5, 2023 
Revised: January 2, 2024 
Accepted: February 6, 2024 
Article in press: February 6, 2024 
Published online: March 14, 2024

Yuan-Peng Li, College of Physical Science and Technology, Guangxi Normal University, 
Guilin, Guangxi 541004, China

Tian-Yu Lu, Department of Gastroenterology, The Affiliated Hospital of South University of 
Science and Technology, Shenzhen 518000, Guangdong Province, China

Fu-Rong Huang, Zhen-Qiang Chen, Pei-Wen Guang, Liang-Yu Deng, Xin-Hao Yang, Department of 
Optoelectronic Engineering, Jinan University, Guangzhou 510632, Guangdong Province, China

Wei-Min Zhang, Department of Gastroenterology, Integrated Hospital of Traditional Chinese 
Medicine, Southern Medical University, Guangzhou 510632, Guangdong Province, China

Corresponding author: Wei-Min Zhang, PhD, Chief Physician, Director, Department of 
Gastroenterology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical 
University, No. 13 Shiliugang Road, Haizhu District, Guangzhou 510632, Guangdong 
Province, China. weigert@163.com

Abstract
BACKGROUND 
Crohn’s disease (CD) is often misdiagnosed as intestinal tuberculosis (ITB). 
However, the treatment and prognosis of these two diseases are dramatically 
different. Therefore, it is important to develop a method to identify CD and ITB 
with high accuracy, specificity, and speed.

AIM 
To develop a method to identify CD and ITB with high accuracy, specificity, and 
speed.

METHODS 
A total of 72 paraffin wax-embedded tissue sections were pathologically and 
clinically diagnosed as CD or ITB. Paraffin wax-embedded tissue sections were 
attached to a metal coating and measured using attenuated total reflectance 
fourier transform infrared spectroscopy at mid-infrared wavelengths combined 
with XGBoost for differential diagnosis.

RESULTS 
The results showed that the paraffin wax-embedded specimens of CD and ITB 
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were significantly different in their spectral signals at 1074 cm-1 and 1234 cm-1 bands, and the differential diagnosis 
model based on spectral characteristics combined with machine learning showed accuracy, specificity, and 
sensitivity of 91.84%, 92.59%, and 90.90%, respectively, for the differential diagnosis of CD and ITB.

CONCLUSION 
Information on the mid-infrared region can reveal the different histological components of CD and ITB at the 
molecular level, and spectral analysis combined with machine learning to establish a diagnostic model is expected 
to become a new method for the differential diagnosis of CD and ITB.

Key Words: Infrared spectroscopy; Machine learning; Intestinal tuberculosis; Crohn’s disease; Differential diagnosis; 
Inflammatory bowel disease
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Core Tip: Crohn’s disease (CD) is often misdiagnosed as intestinal tuberculosis (ITB). However, the treatment and prognosis 
of these two diseases are dramatically different. Therefore, it is important to develop a method to identify CD and ITB with 
high accuracy, specificity, and speed. For the first time the paraffin wax-embedded tissue sections were attached to a metal 
coating and measured using attenuated total reflectance fourier transform infrared spectroscopy at mid-infrared wavelengths 
combined with XGBoost for differential diagnosis of CD and ITB. Information on the mid-infrared region can reveal the 
different histological components of CD and ITB at the molecular level, and spectral analysis combined with machine 
learning to establish a diagnostic model is expected to become a new method for the differential diagnosis of CD and ITB.

Citation: Li YP, Lu TY, Huang FR, Zhang WM, Chen ZQ, Guang PW, Deng LY, Yang XH. Differential diagnosis of Crohn’s disease 
and intestinal tuberculosis based on ATR-FTIR spectroscopy combined with machine learning. World J Gastroenterol 2024; 30(10): 
1377-1392
URL: https://www.wjgnet.com/1007-9327/full/v30/i10/1377.htm
DOI: https://dx.doi.org/10.3748/wjg.v30.i10.1377

INTRODUCTION
Crohn’s disease (CD) is an inflammatory bowel disease involving interactions between various pathogenic factors of 
unknown etiology[1,2]. CD has a high prevalence in North America and Europe but has shown an apparent increasing 
prevalence across the globe in recent years, especially in the Asia-Pacific region (China, India, etc.)[3,4]. Intestinal 
tuberculosis (ITB) is a primary or secondary chronic intestinal infection caused by Mycobacterium tuberculosis (M. 
tuberculosis)[5]. Due to economic development, lifestyle, and other reasons, ITB is mostly prevalent in Asia, but its 
prevalence in developed countries and regions has increased in recent years[6]. CD and ITB are two completely different 
diseases with similar symptoms, signs, and examination results, but completely different treatment methods, and misdia-
gnosis and mistreatment may cause serious consequences and even patient death[7]. Therefore, it is important to differ-
entiate between CD and ITB prior to treatment.

Currently, CD and ITB can be diagnosed by many methods, such as observation of clinical manifestations[8], 
endoscopy[9-13], histopathological examination[14], imaging examination[15,16], and M. tuberculosis detection[17-19], but 
these methods have limitations. Patients with CD and ITB have similar clinical manifestations. On histopathological 
biopsy examination, the specific manifestation of ITB was caseous necrotizing granuloma, and the specific manifestation 
of CD was non-caseous granuloma, but the detection rate of each manifestation was not high. Given the many similarities 
between ITB and CD, high misdiagnosis rates, and likely severe consequences of misdiagnosis and mistreatment, there is 
an urgent need to develop a new, rapid, and accurate differential diagnostic method.

Infrared spectroscopy is a fast and non-destructive detection technology that works mainly through illumination of the 
surface of a material with infrared light to induce changes in the molecular vibrations of the material, which are then used 
to conduct qualitative and quantitative analyses of the material. Regular fourier transform infrared (FTIR) spectrometers 
equipped with accessories for attenuated total reflectance (ATR) have the advantages of simple specimen preparation, no 
need for chemical reagents, non-destructiveness, and no special requirements for specimen size and water content. The 
main component of biological tissues is water, and in addition to water, tissues mainly contain organic compounds, such 
as proteins, lipids, and sugars, which have strong infrared activity. For example, the characteristic absorption of proteins 
in the mid-infrared region is mainly attributed to the stretching vibration of the amide carbonyl C = O in the band-1685-
1630 cm-1, also known as the amide I band, and the scissoring vibration of NH2 in R-CONH2 molecules in the band-1640-
1600 cm-1, also known as the amide II band[20]. These materials undergo significant changes in structure, conformation, 
and quantity during the pathological processes of tissues and cells, which may cause a certain degree of difference 
between diseased and normal tissues in the infrared absorption spectra. Different pathological processes result in 
different tissue components. Infrared spectroscopy is particularly sensitive to specimen changes, thereby providing a 
possibility for differential diagnosis of the disease.
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Given that infrared spectroscopy may contain abundant characteristic biochemical information, and in view of the 
complexity of CD and ITB pathology, this study is the first to propose a new differential diagnosis method for CD and 
ITB based on ATR-FTIR spectroscopy combined with machine learning. Paraffin wax-embedded tissue sections with a 
confirmed diagnosis of CD or ITB were subjected to ATR-FTIR measurements, and the spectral feature changes in the two 
types of sections in different spectral regions were analyzed. Next, the spectral features were combined with eXtreme 
Gradient Boosting of the gradient boosted decision trees (XGBoost) to establish a machine-learning model as a new, fast, 
and accurate detection method for the differential diagnosis of CD and ITB.

MATERIALS AND METHODS
Experimental instruments
A Bruker Vertex 70 FTIR spectrometer equipped with an ATR specimen measurement accessory was used. The ATR 
specimen cell was composed of a mixed crystal of diamond and ZnSe. The specimen was illuminated with infrared light 
at an incident angle of 45° such that total internal reflection occurred three times. Spectra were acquired in the range of 
4000-600 cm-1 using a deuterated triglycine sulfate detector with a KBr beam splitter. The number of scans was 16, the 
resolution was 4 cm-1, the experimental temperature was 25 °C ± 1 °C, and the relative humidity was 46%. During spectral 
acquisition, paraffin wax-embedded tissue sections of the intestinal mucosa were attached to the ATR accessory to obtain 
the FTIR absorption spectra. Each specimen was measured in three regions and each measurement was repeated 16 times 
and averaged.

Experimental specimen preparation
Specimen information: A total of 72 paraffin wax-embedded tissue sections that were pathologically and clinically 
diagnosed with CD or ITB with typical microscopic pathological features were collected from four hospitals: The 
Department of Gastroenterology of the 74th Army Group Hospital (formerly the 421 Hospital), Nanfang Hospital of 
Southern Medical University, Guangzhou Chest Hospital, and General Hospital of Southern Military Command, 
consisting of 28 CD tissue sections (16 males and 12 females) and 44 ITB tissue sections (36 males and 8 females). All 
specimens were from the same ethnic group with the same socioeconomic background, and were collected in accordance 
with the relevant laws and regulations.

Specimen preparation process: (1) Metal-coated slide preparation: Ordinary quartz glass slides were coated with a metal-
silver film, as shown in Figure 1. We filed an application for a patent for the invention of our method for coating a metal-
coated slide; (2) Conventional paraffin wax embedding: The study objects were paraffin wax-embedded tissue sections; 
after collection from patients. All fresh tissue specimens were fixed in formalin solution, washed, dehydrated, and 
embedded according to routine methods; (3) Mounting: Paraffin wax-embedded tissues were sectioned and picked with 
forceps after being subjected to routine warming treatment, and the selected tissue sections were accurately mounted 
onto a metal-silver film; and (4) Dewaxing: Dewaxing was carried out using xylene and gradient ethanol in a typical 
procedure as follows: the specimen was treated with the solvent in the order of xylene (first time, 15 min), xylene (second 
time, 15 min), 100% ethanol (first time, 3 min), 100% ethanol (second time, 3 min), 95% ethanol (3 min), 83% ethanol (3 
min), 70% ethanol (3 min), 50% ethanol (3 min), 30% ethanol (3 min), and distilled water (3 min); after dewaxing, the 
sections were allowed to stand for more than 30 h and then subjected to spectral measurement.

Optimization of dewaxing durations: To explore the effect of the dewaxing duration on the spectral measurement 
results, tissue sections attached to the metal slides were dewaxed for different durations and then subjected to spectral 
measurements: (1) Pre-test: Two paraffin wax-embedded specimens (one CD and the other ITB) were taken and each was 
sliced into eight sections for dewaxing. Every six hours from the start of the dewaxing, two sections from the same 
original specimen were removed from the dewaxing process and subjected to spectral measurements in the time order of 
0 (not dewaxed), 6 h (waxed; the same hereinafter), 12 h, 18 h, 24 h, 30 h, 36 h, and 42 h for a total of eight time points; and 
(2) Confirmation test: Two paraffin wax-embedded specimens (one CD and the other ITB) were obtained, and each was 
sliced into five sections for dewaxing. Two sections were sequentially removed from the dewaxing procedure at 25 h, 26 
h, 27 h, 28 h, and 29 h after the start of dewaxing and were subjected to spectral measurements, resulting in five time 
points.

Principle of the XGBoost method
XGBoost is short for Extreme Gradient Boosting, which works by constructing a set of classification and regression tree 
(CART) models and summing up the results of multiple CARTs as the final predictive output. The greatest advantage of 
this method is that during training, classifiers with good classification performance can compensate for those with poor 
classification performance. The theoretical basis is that the model classification output based on a combination of 
multiple-base classifiers is better than that based on a single-base classifier[21].

This principle is illustrated in Figure 2. In each iteration of gradient boosting, residuals are used to correct the previous 
predictor by optimizing a specific loss function. The loss function was significantly improved by including a regular-
ization term to balance the gradient of the objective function and complexity of the model to avoid overfitting[22]. This 
principle is mathematically expressed by equation (Eq.) 1.
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Figure 1 Argentum film on glass slides.

Figure 2 Schematic of XGBoost.

The training parameters for a given data set are denoted as, and “L” is the loss function of the training set, such as 
square loss or logic loss, which measures the fitness of the model to the training data. is a regularization term, such as an 
L1-regularization or L2-regularization term, which mainly measures the complexity of the model. The simpler the model, 
the better its ability to prevent over-fitting. Because the base classifiers are decision trees, the output of the model is 
obtained by averaging every tree’s classification or regression result over the ensemble F of k decision trees.

The objective function after t iterations can be expressed as Eq. 2.

In Eq. (2), n is the number of predictions, and →(t)/yi is expressed by Eq. 3.

The regularization term Ω (fk) of the decision tree is defined as Eq. 4.

In Eq. 4, γ is the complexity of each leaf, T is the number of child leaf nodes in the decision tree, and λ is the penalty 
parameter. In the XGBoost method, the loss function is approximated using a second-order Taylor expansion rather than 
the first-order Taylor expansion, which is adopted for general gradient boosting. Assuming that the loss function is the 
mean square error (MSE) function, the objective function can be expressed as below.

In Eq. 5, the constant term can be dropped for simplicity, and q (xi) is a function that assigns data points to a corres-
ponding child leaf node, with gi and hi representing the first and second derivatives of the MSE loss function, respectively. 
In Eq. 5, the loss function was determined by the sum of the loss values of each data sample. As each data sample 
corresponds to only one leaf node, the loss function can also be represented by the sum of the loss values of each leaf 
node. Accordingly, Eq. 5 can be rewritten as Eq. 6.



Li YP et al. Diagnosis CD from TB by AI

WJG https://www.wjgnet.com 1381 March 14, 2024 Volume 30 Issue 10

According to Eqs. 3-13, Gi and Hi can be defined as in Eq. 7.

Where Ij represents all data samples in leaf node j. Therefore, the optimization of the objective function can be 
transformed into minimizing the quadratic function.

Regarding the main model parameters, the parameter space of XGBoost is mainly comprised of three types of 
parameters: general, booster, and learning objective. The general and learning objective parameters are intended to guide 
the overall functioning and control the metrics for the results of each step, whereas the booster parameters control each 
boosting step and are the main tuning parameters. The booster parameters include n_estimators, learning_rate, 
min_child_weight, gamma, subsample, and alpha. The parameter n_estimators is the number of base classifiers. If the 
number is set to a value that is too small or too large, underfitting or overfitting will occur. Learning_rate represents the 
weight reduction coefficient of each base classifier, and an incorrect setting of this parameter leads to failure in model 
fitting. Min_child_weight represents the minimum sum of instance weights required in a child leaf node and is used to 
improve the generalization of the model. Gamma controls the decrease in the value of the model loss function when a 
node splits. The subsample mainly controlled the probability of random sampling for each tree, which was typically set in 
the range of 0.5-1.0. The regularization parameter alpha represents the L1-regularization term of the weight and is used to 
reduce the complexity of the model.

The machine learning model was mainly run in Python 3.6.1, and scientific computing libraries, such as numpy 1.12.1, 
and pandas 0.19.2, were used for training and importing. Scikit-learn 0.18.1, and Xgboost 0.6 were used to support the 
XGBoost-based integrated learning model.

Evaluation parameters
The accuracy, specificity, and sensitivity are important evaluation indicators for XGBoost-based diagnosis models. The 
greater the accuracy of these indicators, the better the diagnostic performance of the model. The formulas for each 
parameter are shown in Eqs. 8-10.

In Eq. 8, “TPR” is the sensitivity, “FPR” is the specificity, “TP” is the number of positive samples in the dataset 
correctly classified by the model, “FN” is the number of positive samples in the dataset incorrectly classified by the 
model, “FP” is the number of negative samples in the dataset incorrectly classified by the model, and “TN” is the number 
of negative samples in the dataset correctly classified by the model. In Eq. 10, “M” and “N” represent the number of 
positive and negative samples, respectively.

RESULTS
Typical pathological features
Pathological diagnosis was conducted in accordance with the “Chinese Consensus on the Diagnosis and Treatment of 
Inflammatory Bowel Disease”[23]. The CD biopsy specimens included in this study all had characteristic manifestations, 
such as focal chronic inflammation, structural abnormalities of the focal crypt, and non-caseous granulomas. In the 
absence of granulomas, at least three of the following characteristic pathological manifestations must be observed: (1) 
Segmental or focal lesions; (2) confluent longitudinal linear ulcers; (3) pebble-like appearance and fistula formation; (4) 
mesenteric fat-enwrapped lesions; and (5) intestinal wall thickening and stenosis. If there were non-caseous granulomas, 
another characteristic manifestation of CD was observed under an optical microscope, and all specimens with ITB 
symptoms were excluded. Typical CD specimens are shown in Figure 3A. The characteristic manifestations of CD under 
an optical microscope include: (1) Transmural inflammation; (2) aggregated distribution of inflammation and transmural 
lymphoid hyperplasia; (3) submucosal thickening (due to fibrosis and fibromuscular tissue damage, inflammation, and 
edema); (4) fissures (fissure-like ulcers); (5) non-caseous granulomas (including lymph nodes); (6) abnormalities of the 
intestinal nervous system (submucosal nerve fiber hyperplasia, ganglion inflammation, and proliferation of 
intermuscular nerve fibers); and (7) normal maintenance of mucus secretion in the epithelium (the goblet cells are usually 
normal). ITB specimens underwent typical pathological changes, such as the appearance of caseous granulomas or 
related cell structures, as shown in Figure 3B. Specimens without the aforementioned significant pathological features 
were excluded from the study, as shown in Figure 3C and D.
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Figure 3 Pathological images of Crohn’s disease and intestinal tuberculosis. A: Typical pathological images of Crohn’s disease (CD); B: Pathological 
images of typical intestinal tuberculosis (ITB); C: Atypical pathological images of CD; D: pathological images of atypical ITB.

Spectral analysis
Effects of the background glass and paraffin wax: The effects of the background quartz glass and paraffin wax were 
investigated. As shown in Figure 4A, the characteristic absorption bands of quartz glass are centered at 785 cm-1, 990 cm-1, 
and 1145 cm-1, whereas the characteristic absorption bands of paraffin wax are centered at 2956 cm-1, 2916 cm-1, 2848 cm-1, 
1461 cm-1, and 719 cm-1, as shown in Figure 4B. The characteristic absorption of proteins, lipids, and carbohydrates in the 
mid-infrared region occurs mainly in the 1800 cm-1-600 cm-1 and 3000 cm-1-2500cm-1 bands. Therefore, these bands 
interfere with the characteristic signals of the tissues.

To remove the interference of the background quartz glass and paraffin wax, a metal-silver film with a diameter of 5 
mm was coated on quartz glass to shield the interfering absorption of the quartz glass. Figure 5 presents the shielding 
performance of the metal-silver in undewaxed sections 1, 2, and 3. The characteristic absorption of quartz glass at 785 
cm-1, 990 cm-1, and 1145 cm-1 was substantially shielded. In addition, paraffin wax-embedded tissue sections were 
dewaxed to reduce the interfering absorption of paraffin wax, as depicted in Figure 5. After being subjected to the 
dewaxing for 6 h, 12 h, and 18 h, the characteristic absorption of paraffin wax at 1461 cm-1 and 719 cm-1 was essentially 
eliminated, whereas its characteristic absorption at 2956 cm-1, 2916 cm-1, and 2848 cm-1 remained to some extent.

Optimization of dewaxing duration: To further reduce the interfering effects of paraffin wax on the absorption of tissue 
sections, the duration of dewaxing was optimized. First, the paraffin wax-embedded tissue sections were subjected to the 
dewaxing process for a time series of 6 h, 12 h, 18 h, 24 h, 30 h, 36 h, and 42 h, followed by observation of the absorption 
at 3000-2500 cm-1 as shown in Figure 6A. An abrupt decrease in absorption occurred from 24 h to 30 h of dewaxing, while 
the absorption after 30 h showed little variation. Second, further optimization was performed for a dewaxing duration of 
24-30 h as shown in Figure 6B; after 26 h, the characteristic absorption of paraffin wax leveled off without further 
reduction. Therefore, the optimal dewaxing time was determined to be 26 h.

Spectral feature analysis: The infrared spectral features of the biological tissues are outlined in Table 1. In addition to 
water, the intestinal mucosa mainly contains organic compounds such as lipids, proteins, and sugars, all of which have 
strong infrared activity. For example, the absorption band at 1800-1700 cm-1 is mainly attributed to the stretching 
vibration of lipid C = O; the absorption band at 1685-1630 cm-1 is mainly attributed to the stretching vibration of amide 
carbonyl C = O, also known as the amide I band; the absorption band at 1640-1600 cm-1 is mainly attributed to the 
scissoring vibration of NH2 in R-CONH2 molecules, also known as the amide II band; the 1500-800 cm-1 absorption band is 
mainly attributed to the stretching vibration of the P-O bond and the P = O double bond in nucleic acids as well as the 
stretching vibration of sugar C-OH[24]. The FTIR-ATR spectra of CD and ITB tissues are shown in Figure 7. The water 
absorption band was centered at approximately 3302 cm-1, and the vibration absorption bands of CH3 and CH2 were 
mainly centered at 2956 cm-1, 2916 cm-1, and 2848 cm-1, whereas the characteristic absorption bands of other tissue 
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Table 1 Signature fingerprint of infrared spectra

Bands position (cm-1) Assignments of group Assignments of substance

2925 υas, CH3 Lipid related

2855 υas, CH2 Lipid related

1740 υC=O Lipid

1640 Amide I Protein

1550 Amide II Protein

1460 δC-H Lipid related

1400 δC-H, δC-O-H Lipid related

1305 δC-H, δC-O-H Undetermined

1240 υas, PO2
- Nucleic acid related

1160 υC-O, δC-O-H, δC-O-C Carbohydrate related

1120 υC-O, δC-O-H, δC-O-C Carbohydrate related

1080 υas, PO2
- Nucleic acid related

Figure 4 Background absorption spectra of quartz and paraffin. A: Quartz; B: Paraffin.

components mainly appeared at 1645 cm-1, 1539 cm-1, 1456 cm-1, 1394 cm-1, 1234 cm-1, and 1056 cm-1 in the mid-infrared 
fingerprint region (1800-800 cm-1).

Analysis results of the ITB and CD FTIR-ATR spectra are shown in Figure 7. Figure 7B depicts the average spectral 
intensity of the characteristic absorption bands, with the error bars representing the intrinsic fluctuation of the spectral 
band intensity. The average spectral intensity of ITB at 3302 cm-1, 2956 cm-1, 2916 cm-1, 2848 cm-1, 1645 cm-1, 1539 cm-1, 1456 
cm-1, 1394 cm-1, and 1234 cm-1 was slightly higher than that of CD, while CD had slightly higher average spectral intensity 
at 1056 cm-1 than ITB. However, both ITB and CD showed large intrinsic fluctuations in spectral intensity, with a 
significant overlap of spectral intensity within the error ranges. Therefore, the differential diagnosis of ITB and CD based 
on the original spectral intensity is subject to large uncertainties and likely leads to misjudgment.

The derivative spectra are shown in Figure 8. Between ITB and CD, the first- and second-derivative spectra differed 
significantly at 1134 cm-1 (carbohydrate C-O bond) and 1074 cm-1 (phosphodiester bond P-O), respectively. An intensity 
comparison of the two characteristic absorption bands is shown in Figure 9, with the error bars representing the intrinsic 
fluctuations of CD and ITB in the spectral intensity. The average spectral intensity of CD at 1134 cm-1 was stronger than 
that of ITB, with the former fluctuating in a relatively large range and the latter in a relatively small range; however, the 
two intensities overlapped severely within almost half of the error ranges. The average spectral intensity of CD at 1074 
cm-1 was stronger than that of ITB, with the former fluctuating in a relatively large range and the latter in a relatively 
small range; the two intensities overlapped within almost one-third of the error ranges. As shown above, ITB and CD still 
showed a significant overlap in the intensity distribution of the derivative spectra despite the obvious characteristic 
absorption bands, which likely led to misdiagnosis. Therefore, it is necessary to employ a machine learning-based classi-
fication method to extract the spectral characteristics of the ITB and CD in a more effective manner.



Li YP et al. Diagnosis CD from TB by AI

WJG https://www.wjgnet.com 1384 March 14, 2024 Volume 30 Issue 10

Figure 5 Absorption spectra of dewaxed and unwaxed tissue sections.

Figure 6 Optimization of dewaxing duration. A: Absorption spectra of tissues during the dewaxing process for 6-42 h; B: Absorption spectra of tissues during 
the dewaxing process for 24-30 h.

XGBoost model
Sample set partitioning: At present, the methods for selecting data samples mainly include the random sampling (RS) 
method, the Kenard-Stone (KS) method, the SPXY method (i.e., sample set partitioning based on joint x-y distances), and 
the duplex method. In the experiment, the RS method was used to partition sample sets. The prediction set samples of an 
XGBoost model are usually required to be independent; that is, they should not originate from the original calibration set 
samples. Therefore, for the 72 specimens collected in the study, each was measured in three different regions to generate 
three average spectra, totaling 194, after excluding spectra with outlying data points. Next, 194 spectra were randomly 
partitioned at a ratio of 3:1 into a calibration set (n = 145) and an independent prediction set (n = 49), as shown in Table 2.

XGBoost model results: In this study, an XGBoost model was designed in accordance with the characteristics of the ATR-
FTIR spectral data and the classification requirements to perform the binary classification of ITB and CD. The entire 
procedure is shown in Figure 10. The procedure consisted of three steps: Figure 10A and B acquisition of ATR-FTIR 
spectral datasets; Figure 10C implementation of principal component analysis and independent component analysis to 
extract the fingerprint spectral features of ITB and CD; and Figure 10C-E the use of a series of XGBoost decision trees as 
classifiers to classify the extracted fingerprint spectral features to produce the classification information for ITB and CD.

As shown in Table 3, a comparison of different data preprocessing methods revealed that the first-derivative spectra 
yielded the best results, with 17 ITB specimens and 23 CD specimens correctly identified by the model using original 
data, 20 ITB specimens and 25 CD specimens correctly identified by the model using first-derivative spectral data, and 16 
ITB specimens and 26 CD specimens correctly identified by the model using second-derivative spectral data. As shown 
above, the preprocessing methods significantly influenced the models, and the number of misdiagnosed cases based on 
the derivative spectra was smaller than that based on the original spectra. In particular, the first-derivative spectral model 
exhibited the highest accuracy (91.84%).

In this study, the XGBoost model parameters were optimized using a grid search method. The relevant search ranges 
were set as follows: Max_depth varied between 1 and 50 with steps of 1; n_estimators varied between 1 and 500 with 
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Table 2 Sample set divisions of Crohn’s disease and intestinal tuberculosis

Sample set CD ITB Total

Training set 79 66 145

Prediction set 22 27 49

CD: Crohn’s disease; ITB: Intestinal tuberculosis.

Table 3 Results of the XGBoost model

Predicted value
Group True value

ITB CD
Accuracy (%)

Original spectral data ITB 17.0000 5.0000

CD 4.0000 23.0000

Specificity (%) 0.8519

Sensitivity (%) 0.7727

Accuracy (%) 0.8163

First derivative spectral data ITB 20.0000 2.0000

CD 2.0000 25.0000

Specificity (%) 0.9259

Sensitivity (%) 0.9090

Accuracy (%) 0.9184

Second derivative spectral data ITB 16.0000 6.0000

CD 1.0000 26.0000

Specificity (%) 0.9630

Sensitivity (%) 0.7270

Accuracy (%) 0.8571

CD: Crohn’s disease; ITB: Intestinal tuberculosis.

steps of 10; min_child_weight varied between 1 and 30 with steps of 1; gamma varied between 0 and 15 with steps of 1; 
subsample varied between 0 and 1.1 with steps of 0.1; alpha varied between 0 and 10 with steps of 0.2; and learning_rate 
varied between 0 and 0.2 with steps of 0.01. The optimization process of the XGBoost model parameters is illustrated in 
Figure 10, and the optimal parameters are listed in Table 4.

As shown in Figure 11, the accuracy and area under the curve (AUC) increased gradually with the increase in 
max_depth, n_estimators, subsample, and learning_rate, eventually approaching a stable value, and decreased with an 
increase in min_child_weight, gamma, and alpha, eventually approaching a stable value. The AUC was significantly 
greater than accuracy in all cases. The optimal parameters of the XGBoost model are listed in Table 4: Max_depth = 3, 
n_estimators = 71, min_child_weight = 4, gamma = 0, subspecimen = 1, alpha = 0.3, and learningrate = 0.1. Finally, all 
optimal parameters were used to establish an optimal XGBoost model, which led to a sensitivity of 90.90% (20/22), 
specificity of 92.59% (25/27), and accuracy of 91.84% (45/49) for differential diagnoses, as shown in Table 3.

DISCUSSION
Differential diagnosis of CD and ITB has long been the focus of research worldwide. Daperno et al[25] established a 
diagnostic model for CD and ITB based on endoscopic parameters, with a sensitivity and specificity of 82.9% and 82.0%, 
respectively. Ramadass et al[26] extracted DNA from fecal specimens and conducted a polymerase chain reaction for M. 
tuberculosis (TB-PCR) targeting the IS6110 sequence, achieving a sensitivity of 79% and a specificity of 88% for the differ-
ential diagnosis of CD and ITB. Li et al[27] of the Department of Gastroenterology, Peking Union Medical College 
Hospital of the Chinese Academy of Medical Sciences, investigated the usefulness of in vitro interferon γ release assay (T-
SPOT.TB) in differentiating ITB from CD and determined the sensitivity and specificity of T-SPOT. The prevalence of TB 
in the diagnosis of CD was 84.2% and 75.4%, respectively. Kedia et al[28] used computed tomography of the small 
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Table 4 Optimal parameters of the XGBoost model based on first-derivative spectral data

AUC (%) Accuracy (%)
Parameters Step length Optimal range

Optimal value Test Optimal value Test

Max_depth 1.00 (1, 50.0) 3.0 79.9 4.0. 74.5

N_estimators 10.00 -1500 71.0 80.3 81.0 74.4

Min_child_weight 1.00 (1, 30.0) 4.0 82.1 4.0 76.0

Gamma 1.00 (0, 15.0) 0 82.1 0 76.0

Subsample 0.10 (0, 1.1) 1.0. 82.1 1.0. 76.0

Alpha 0.10 (0, 10.0) 0.3 82.0 2.8 75.9

Learning_rate 0.01 (0, 0.2) 0.1 82.0 0.1 75.2

AUC: Area under the curve.

Figure 7 Fourier transform infrared spectrometers equipped with accessories for attenuated total reflectance spectral analysis of 
intestinal tuberculosis and Crohn’s disease. A: Original spectrum; B: Spectral intensity of the characteristic bands. CD: Crohn’s disease; ITB: Intestinal 
tuberculosis.

Figure 8 Derivative spectrum. A: First-derivative spectra; B: Second-derivative spectra. CD: Crohn’s disease; ITB: Intestinal tuberculosis.
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Figure 9 Derivative spectral characteristic intensity analysis. CD: Crohn’s disease; ITB: Intestinal tuberculosis.

Figure 10 Schematic diagram of XGBoost used to identify intestinal tuberculosis and Crohn’s disease. A: Original spectra; B: Derivative spectra; 
C: Feature extraction; D: Modeling analysis; E: Classification results. CD: Crohn’s disease; ITB: Intestinal tuberculosis; PCA: principal component analysis; ICA: 
Independent component analysis.

intestine to diagnose CD and ITB and achieved a sensitivity of 68% and specificity of 80%. Despite many clinical studies 
on the differential diagnosis of CD and ITB using clinical features, radiology, endoscopy, histopathology, immunology, 
M. tuberculosis identification, and serum markers, these methods have drawbacks that result in great difficulty in the 
differential diagnosis of CD and ITB and high misdiagnosis rates.

In order to overcome obstacles to the differential diagnosis of CD and ITB, ATR-FTIR spectroscopy in the mid-infrared 
region was adopted in this study as a new method for the differential diagnosis of CD and ITB. In recent years, extensive 
studies have been conducted on the application of ATR-FTIR spectroscopy for the differential diagnosis of diseases[29-
34]. However, one drawback of infrared spectroscopy is that groups with infrared activity are subject to a high degree of 
collinearity, making it difficult to understand disease progression through changes in the groups. As shown in Figures 7B 
and 9, the pathological differences between tissues and cells were prone to be obscured by the differences between 
individual specimens and the noise of instrumentation, with a significant overlap in the distribution of the band position 
and peak intensity of the ATR-FTIR spectroscopy. Therefore, the differential diagnosis of TB and CD based solely on 
spectral intensities is subject to large errors and is likely to lead to misdiagnosis. Therefore, to reduce the influence of 
these factors and extract effective discriminative information, this study, for the first time, proposes a differential 
diagnosis model for CD and ITB based on the combination of spectral information with machine learning.

XGBoost is a type of machine learning algorithm based on multiple classifiers, with the advantages of fast computation 
speed, good learning performance, and ability to process large-scale complex data[35]. This algorithm has been widely 
used in biomedicine[36-38]. The results of this study showed that the differential diagnosis model of CD and ITB based 
on ATR-FTIR spectral information combined with XGBoost achieved an accuracy rate of up to 91.84%, a significant 
improvement over previous research results. The high diagnostic accuracy of the XGBoost-based method is mainly due to 
its ability to differentiate subtle differences in the composition and concentration of the intestinal mucosa by differen-
tiating the differences in the position, intensity, and shape of the characteristic absorption bands in ATR-FTIR 
spectroscopy. Machine learning can be used to determine the best classification function from these spectral feature 
differences to obtain satisfactory classification results.

In addition, to eliminate the background interference of the glass substrate and paraffin wax, ATR-FTIR spectroscopy 
was improved in three ways: (1) Quartz glass was used as the substrate. As shown in Figure 4A, compared with ordinary 
glass, quartz glass is transparent in the infrared region and does not interfere with the spectral signal of paraffin wax-
embedded tissues; (2) The paraffin wax-embedded tissue specimens were dewaxed, and the optimal dewaxing duration 
was determined. According to a recent study, paraffin wax does not affect ATR-FTIR spectroscopy. However, in this 
study, paraffin wax seriously interfered with the signals of the intestinal tissues. As shown in Figure 4B, the characteristic 
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Figure 11 XGBoost model optimization results based on first derivative spectral data. A: Characteristic component; B: Max_depth; C: N_estimators; 
D: Min_child_weight; E: Gamma; F: Subsample; G: Alpha; H: Learning_rate.

absorption bands of paraffin wax were centered at 2956 cm-1, 2916 cm-1, 2848 cm-1, 1461 cm-1, and 719 cm-1. The charac-
teristic absorption of proteins, lipids, and carbohydrates in the mid-infrared region was mainly at 1800 cm-1-600 cm-1 and 
3000 cm-1-2500 cm-1. Therefore, the characteristic spectral signals of paraffin wax had a large overlap with the charac-
teristic signals of tissues, causing significant interference in the later spectral analysis. To reduce the spectral signal 
interference of paraffin wax-embedded tissues, the tissues were subjected to dewaxing treatment, and the dewaxing 
duration was optimized. These improvements ultimately minimized the influence of paraffin wax (Figures 5 and 6); and 
(3) The spectra were preprocessed. Converting the original spectra into derivative spectra improved the spectral 
resolution and reduced noise, thereby increasing the model accuracy from 81.63% to 91.84%.

CONCLUSION
A differential diagnosis model of CD and ITB based on ATR-FTIR spectral information in the mid-infrared region 
combined with a machine learning algorithm (XGBoost) was established in this study, aimed at exploring the feasibility 
of applying ATR-FTIR mid-infrared spectra to the differential diagnosis of CD and ITB. The results showed that the 
derivative spectra of the ATR-FTIR mid-infrared spectra could not only provide spectral features of CD and ITB but also 
reveal more differential information for the machine learning algorithm to learn, so that the algorithm could use the 
spectral features of CD and ITB to achieve classification. The XGBoost model based on ATR-FTIR spectral information 
showed significant improvements in accuracy, specificity, and sensitivity compared to previous models. The results 
suggest that owing to the advantages of non-destructiveness, high sensitivity, and the ability for real-time diagnosis, 
ATR-FTIR mid-infrared spectroscopy technology may serve as a new method for the differential diagnosis of CD and ITB.

ARTICLE HIGHLIGHTS
Research background
Crohn’s disease (CD) is often misdiagnosed as intestinal tuberculosis (ITB). However, the treatment and prognosis of 
these two diseases are dramatically different. Therefore, it is important to develop a method to identify CD and ITB with 
high accuracy, specificity, and speed.

Research motivation
Here we present the application of ATR-FTIR Spectroscopy as an easy-to-use method without chemical reagents and 
label-free diagnostic tool for the identification of CD and ITB.

Research objectives
To develop a method to identify CD and ITB with high accuracy, specificity, and speed.

Research methods
For the first time the paraffin wax-embedded tissue sections were attached to a metal coating and measured using 
attenuated total reflectance (ATR) fourier transform infrared (FTIR) spectroscopy at mid-infrared wavelengths combined 
with XGBoost for differential diagnosis of CD and ITB.



Li YP et al. Diagnosis CD from TB by AI

WJG https://www.wjgnet.com 1390 March 14, 2024 Volume 30 Issue 10

Research results
ATR-FTIR spectroscopy combined with XGBoost methods led to a sensitivity of 90.90% (20/22), specificity of 92.59% (25/
27), and accuracy of 91.84% (45/49) for differential diagnoses of CD and ITB.

Research conclusions
ATR-FTIR spectroscopy combined with XGBoost methods can effectively increase the accuracy of differential diagnosis of 
CD and ITB.

Research perspectives
ATR-FTIR spectroscopy combined with XGBoost methods is expected to become a new method for the differential 
diagnosis of CD and ITB.
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