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Abstract
BACKGROUND 
Liver cancer is one of the deadliest malignant tumors worldwide. Immunotherapy 
has provided hope to patients with advanced liver cancer, but only a small 
fraction of patients benefit from this treatment due to individual differences. 
Identifying immune-related gene signatures in liver cancer patients not only aids 
physicians in cancer diagnosis but also offers personalized treatment strategies, 
thereby improving patient survival rates. Although several methods have been 
developed to predict the prognosis and immunotherapeutic efficacy in patients 
with liver cancer, the impact of cell-cell interactions in the tumor microenvir-
onment has not been adequately considered.

AIM 
To identify immune-related gene signals for predicting liver cancer prognosis and 
immunotherapy efficacy.

METHODS 
Cell grouping and cell-cell communication analysis were performed on single-cell 
RNA-sequencing data to identify highly active cell groups in immune-related 
pathways. Highly active immune cells were identified by intersecting the highly 
active cell groups with B cells and T cells. The significantly differentially 
expressed genes between highly active immune cells and other cells were 
subsequently selected as features, and a least absolute shrinkage and selection 
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operator (LASSO) regression model was constructed to screen for diagnostic-related features. Fourteen genes that 
were selected more than 5 times in 10 LASSO regression experiments were included in a multivariable Cox 
regression model. Finally, 3 genes (stathmin 1, cofilin 1, and C-C chemokine ligand 5) significantly associated with 
survival were identified and used to construct an immune-related gene signature.

RESULTS 
The immune-related gene signature composed of stathmin 1, cofilin 1, and C-C chemokine ligand 5 was identified 
through cell-cell communication. The effectiveness of the identified gene signature was validated based on experi-
mental results of predictive immunotherapy response, tumor mutation burden analysis, immune cell infiltration 
analysis, survival analysis, and expression analysis.

CONCLUSION 
The findings suggest that the identified gene signature may contribute to a deeper understanding of the activity 
patterns of immune cells in the liver tumor microenvironment, providing insights for personalized treatment 
strategies.

Key Words: Liver cancer; Cell-cell communication; Gene signature; Prognosis; Immunotherapy; Single-cell RNA sequencing
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Core Tip: In this study, CellChat was employed to infer cell-cell communication, thereby selecting highly active cell groups 
in immune-related pathways on single-cell RNA-sequencing data. Highly active immune cells were identified by intersecting 
these groups with B and T cells. Subsequently, significantly differentially expressed genes between highly active immune 
cells and the remaining cells were incorporated into the Lasso regression model. Ultimately, incorporating genes selected 
more than 5 times in 10 Lasso regression experiments into a multivariable Cox regression model, 3 genes (stathmin 1, cofilin 
1, and C-C chemokine ligand 5) significantly associated with survival were identified to construct a gene signature.
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INTRODUCTION
Liver cancer, a malignant tumor with consistently high global incidence and mortality rates, has long been a focal point of 
medical research and clinical intervention[1,2]. In particular, within the rapidly advancing field of immunotherapy, 
immune checkpoint blockade (ICB) treatment has emerged as an innovative therapeutic approach, offering renewed hope 
for patients with liver cancer[3]. This strategy has achieved significant clinical efficacy by preventing tumor cells from 
suppressing the immune system and stimulating the body’s own immune response[3-5]. However, only a small fraction 
of liver cancer patients benefit from this treatment, and the molecular basis underlying the control of immune responses 
and evasion has not been determined[6,7]. To better guide treatment strategies and predict patient prognosis, it is 
imperative to explore into the molecular mechanisms and immune characteristics of liver cancer.

The success of immunotherapy in liver cancer hinges on a comprehensive understanding of the tumor immune 
microenvironment, necessitating the exploration of high-throughput technologies to unravel intricate molecular 
interactions[8-10]. Using bulk RNA sequencing (RNA-seq) data, Tang et al[11] first screened gene modules partitioned by 
weighted gene co-expression network analysis that were most relevant to tumor immune phenotype genes. Subse-
quently, a tumor immune phenotype-related gene signature in liver cancer was identified through least absolute 
shrinkage and selection operator (LASSO) and univariate Cox regression analyses. Similarly, Wang et al[12] employed 
differential expression analysis and univariate Cox regression to identify differentially expressed genes associated with 
overall survival. These genes were further refined through LASSO regression to construct a novel immune-related 
prognostic model in hepatocellular carcinoma. Although bulk RNA-seq provides a global view of gene expression 
patterns, single-cell RNA-sequencing (scRNA-seq) offers the advantage of revealing heterogeneity within tumors at the 
single-cell level[10,13]. Therefore, the integration of bulk RNA-seq and scRNA-seq data holds great promise. Yang et al
[14] utilized scRNA-seq data from liver cancer patients to identify tumor-associated endothelial cell (TEC) subpopu-
lations and established a prognostic model for liver cancer by integrating the marker genes of these cells with bulk RNA-
seq data. Li et al[15] accurately identified cell subpopulations related to liver cancer by integrating bulk and scRNA-seq 
data, introducing the cell group structure into the model construction process.

However, cellular crosstalk in the tumor microenvironment should also be considered, as it plays a crucial role in 
shaping the immune landscape of liver cancer[8,16,17]. The construction of a cell-cell communication network facilitates 
the identification of key participants in tumor-immune crosstalk. In this context, CellChat, a computational framework for 
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inferring cell-cell communication, provides a powerful means to identify the communication networks within the liver 
cancer microenvironment[18,19]. In CellChat, the dynamic process of intercellular communication is simulated using the 
law of mass action, and the inferred ligand-receptor pairs are systematically classified into functionally relevant signaling 
pathways[19]. The activity level of a cell group in immune-related pathways can be quantified by counting the number of 
times the cell group is used as a source and target.

In this study, we aimed to leverage the power of bulk RNA-seq and scRNA-seq data integration to identify a compre-
hensive immune-related gene signature in liver cancer. By focusing on the cell-cell communication network using the 
CellChat framework, we sought to unravel the intricate interplay among diverse cell groups within the liver cancer 
microenvironment. The identified gene signature holds promise for predicting liver cancer prognosis and understanding 
potential immunotherapeutic responses, providing valuable insights for personalized treatment strategies.

MATERIALS AND METHODS
Data collection and preprocessing
The liver cancer bulk RNA-seq data, which included 50 normal and 369 tumor samples, 368 of which included total 
survival time and status, were downloaded from The Cancer Genome Atlas (TCGA) database. The liver cancer scRNA-
seq data were downloaded from the Gene Expression Omnibus database with the accession number GSE125449 and 
included 8853 cells and 7 cell types[20]: Cancer-associated fibroblast, tumor-associated macrophage, malignant cell, TEC, 
cells with an unknown entity but that express hepatic progenitor cell markers, T cell, and B cell. For bulk RNA-seq data, a 
logarithmic transformation with a base of 2 was first performed on the original count data. The expression values of 
genes with the same name were subsequently averaged. The R package Seurat was used for preprocessing the scRNA-seq 
data. Specifically, the NormalizeData and FindVariableFeatures functions were used to normalize the data and select 2000 
highly variable genes, respectively. Standardization and principal component analysis were performed using the 
ScaleData and RunPCA functions, respectively. The first ten principal components were used to construct a shared 
nearest-graph through the FindNeighbors function. Two-dimensional cell visualization was achieved via the RunUMAP 
function.

Cell-cell communication inference
The Louvain algorithm, employed for cell grouping, was implemented through the function FindClusters in the R 
package Seurat, with the resolution parameter set to 0.5. Based on these cell grouping results, the cell-cell interaction 
network was inferred through CellChat. Specifically, the entire human ligand-receptor interaction database CellChatDB 
was chosen as the foundation for this article. CellChat utilizes the law of mass action to simulate ligand-receptor-
mediated signal interactions, which can not only infer intercellular communication but also further classify significant 
ligand-receptor pairs into functionally related signaling pathways. Immune-related pathways were identified by 
searching for pathway functions on the official Kyoto Encyclopedia of Genes and Genomes website (https://
www.kegg.jp). The number of times each cell group served as a source and target in immune-related pathways was 
counted, and the top 20% of cell groups were considered highly active. Highly active immune-related cells were 
identified by the intersection of the obtained highly active cell groups with T and B cells.

LASSO regression and Cox regression
Differential expression analysis was performed through the R package limma[21]. The significantly differentially 
expressed genes between highly active immune cells and other cells were selected using the criteria |log(fold change)|> 
1 and P < 0.05. The genes shared between these genes and the bulk RNA-seq data were included in the following LASSO 
regression model for selecting diagnostic-related features:

(1)
Where n represents the number of samples, w = (w1,w2,… wm)T is the coefficient vector corresponding to m shared genes, 

xi = (xi1,xi2,…,xim)T is the expression level of m genes in the i-th sample, b is the offset, λ represents the regularization 
parameter determined by 10-fold cross validation, and yi represents the label corresponding to the i-th sample. If a sample 
was considered to be a tumor, this value was 1; otherwise, it was 0. Eighty percent of the samples were randomly selected 
as the training set for LASSO regression, while the remaining 20% of the samples were used as the test set to evaluate the 
effectiveness of the selected diagnostic-related features. The coefficient vector w and threshold b in Equation (1) were 
solved through the R package glmnet[22]. To avoid randomness in the experimental results, the dataset was divided 10 
times by setting random seeds from 1 to 10. Genes that were selected more than 5 times were considered diagnostic-
related features.

To comprehensively evaluate the impact of risk factors on patient survival, diagnostic-related features were included 
in the following multivariable Cox regression model:

(2)
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Table 1 Number of times cell groups served as a source and target in immune-related pathways

Number of times
Cell group 12 15 6 2 10 9 14 11 8 1 7 13 3 5 4

Frequency 195 195 100 84 76 72 65 50 48 44 41 35 26 22 9

Figure 1 UMAP visualization of single-cell RNA sequencing data. A: UMAP visualization of 15 cell groups obtained through the Louvain algorithm; B: 
UMAP visualization of 7 cell types. CAF: Cancer-associated fibroblast; HPC: Hepatic progenitor cell; TAM: Tumor-associated macrophage; TEC: Tumor-associated 
endothelial cell.

Where h(t,x) represents the risk function at time t, h(t,0) denotes the baseline risk function, and (β1,β2,…,βs)T is the 
regression coefficient vector corresponding to s diagnostic-related features, which is solved through the R package 
survival.

Identification of a gene signature
After performing multivariable Cox regression analysis, genes significantly associated with survival were selected 
according to a criterion of p < 0.05 to identify the following gene signature:

(3)
Where genej represents the j-th gene among the t genes significantly associated with survival, coef(genej) represents the 

coefficient of genej when only genes significantly related to survival were included in the multivariable Cox regression, 
and EXP(genej) represents the preprocessed expression values of genej. When coef(genej) is greater than 0, the expression 
level of genej increases, and the patient’s survival risk increases; when the coefficient is less than 0, the expression level of 
this gene increases, and the survival risk decreases.

RESULTS
Identification of highly active immune cells
The preprocessed scRNA-seq data were divided into 15 cell groups using the Louvain algorithm. The UMAP visual-
ization of 15 cell groups and 7 cell types was presented in Figure 1A and B, respectively. Subsequently, the 
communication network between cell groups was inferred through the CellChat, and 16 immune-related pathways were 
identified. The cell-cell communication within signal pathways inferred integrin beta2 and major histocompatibility class 
I were demonstrated as examples in Figure 2A and B, respectively. In Figure 2A, cell group 12 serves as the source 
targeting the other six cell groups, while in Figure 2B, it serves as the target for all cell groups. The number of times each 
cell group served as a source and target in immune-related pathways was statistically displayed in Table 1. The top 20% 
of the cell groups in descending order were identified as highly active cell groups, i.e., cell groups 12, 15, and 6. A total of 
240 highly active immune cells were identified by intersecting 1009 cells from cell groups 6, 12, and 15 with 3785 T cells 
and B cells, as shown in Figure 3. These cells are involved in multiple immune-related signaling pathways and play a 
critical role in regulating immune responses.

Gene screening and gene signature identification
Differential expression analysis was also conducted between 240 highly active immune cells and the remaining 8613 cells. 
Then, 50 significantly differentially expressed genes were identified, and 46 genes shared between them and bulk RNA-
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Figure 2 Circle plot of signaling pathway networks inferred by CellChat. A: Visualization of the inferred integrin beta2 signaling pathway network 
details; B: Visualization of the inferred major histocompatibility class I signaling pathway network details. The different colors of the circles represent different cell 
groups. The size of the circle is proportional to the number of cells in the cell group. The arrows point from the source to the target, and the colors of the edges are 
consistent with those of the signal source. The width of the edges represents the communication probability. ITGB2: Integrin beta2; MHC-I: Major histocompatibility 
class I.

Figure 3 Venn diagram of highly active cells with T cells and B cells. The red portion in the diagram represents cells from cell groups 6, 12, and 15, 
while the blue portion represents T cells and B cells. The middle section indicates the intersection between the two, and the numbers in parentheses correspond to 
the cell counts in these three sections.

seq data were included in the LASSO regression model. Of these, 14 genes were identified as diagnostic-related genes 
because they were selected more than 5 times in 10 experiments. The average diagnostic accuracy on the test set over 10 
experiments was 96.55%, indicating that the selected features were effective. Subsequently, multivariable Cox regression 
analysis was conducted, and 3 genes [stathmin 1 (STMN1), C-C chemokine ligand 5 (CCL5), and cofilin 1 (CFL1)] out of 14 
were selected to construct a gene signature due to their significant correlation with patient survival. The coefficients and 
P values of the 14 diagnostic-related genes were listed in Table 2. Ultimately, the following gene signature was generated 
by incorporating only STMN1, CCL5, and CFL1 into the multivariable Cox regression analysis model:

.
Patients with higher risk scores were considered to have worse prognoses. The samples were divided into high-risk 

and low-risk groups based on the median of this risk score.

Survival analysis and expression analysis
To assess the difference in survival between the high-risk and low-risk groups, Kaplan-Meier survival analysis was 
conducted, and the log-rank test was employed for statistical analysis. Figure 4 illustrated the significant difference 
between the high-risk and low-risk groups (P < 0.0001), with the median survival time of patients in the low-risk group 
being approximately three times longer than that in the high-risk group. These results indicated that the identified gene 



Li JT et al. Immune-related gene signature for liver cancer

WJG https://www.wjgnet.com 1614 March 21, 2024 Volume 30 Issue 11

Figure 4 Kaplan-Meier survival curves of the high-risk and low-risk groups. The red and blue curves represent the high-risk and low-risk groups, 
respectively, which were divided according to the median risk score. The significance of the difference between the two was evaluated through the log-rank test. 
TCGA-LIHC: The Cancer Genome Atlas Liver Hepatocellular Carcinoma.

signature could significantly distinguish between patients with favorable and poor prognoses.
Furthermore, expression analysis of the individual genes constituting the gene signature was conducted in the high-

risk and low-risk groups, as well as in tumor and normal samples; the results were presented in Figure 5. A t test was 
performed to assess whether there were significant differences between two groups of samples, and the obtained P values 
were displayed in all boxplots. The STMN1 and CFL1 genes had significantly greater expression in the high-risk group 
and tumor samples, while the CCL5 gene had greater expression in the low-risk group and normal samples. Meta-
analysis revealed that in liver cancer, STMN1 and CFL1 are considered oncogenes, and their upregulation is closely 
associated with poor prognosis[23,24]. The CCL5-high subtype is significantly correlated with immune cells and 
markedly improved overall survival[25]. This finding is consistent with the findings in Figure 5, providing additional 
confirmation for the reliability of the identified gene signature.

Immunocyte infiltration analysis
The relative infiltration of immune cells in the high-risk and low-risk groups was investigated using the single-sample 
gene set enrichment analysis algorithm[26]. This algorithm was implemented through the function GSVA in the R 
package GSVA. A reference gene set comprising 28 reported immune cell types was utilized for the analysis[27]. Figure 6 
showed that out of the 28 immune cell types, 20 exhibited significant correlations with the risk groups. The Kruskal-
Wallis test was used to evaluate significant differences between two groups. In particular, the infiltration levels in cell 
types activated B cell, effector memory CD8 T cell, eosinophil, immature B cell, mast cell, and type 1 T helper cell were 
significantly greater in the low-risk group than in the high-risk group. These results indicated that an immune-related 
gene signature identified through cell-cell communication plays a crucial role in stratifying the risk of liver cancer.

Tumor mutation burden analysis
Tumor mutation burden (TMB) was approved by the United States Food and Drug Administration in 2020 as a biomarker 
for predicting the response to immunotherapy[28]. To assess the relationship between the identified gene signature and 
the immune response, the TMB of the samples was computed using mutation data obtained from liver cancer patients 
downloaded from the TCGA database. Figure 7A illustrated the TMB distribution across all samples. Figure 7B and C 
showed the mutation landscapes of the high-risk and the low-risk groups, respectively. Among the top 10 mutated genes, 
6 were common between the high-risk group and the low-risk group, but each gene had a different mutation type. 
Furthermore, the TMB in the high-risk and low-risk groups identified by the gene signature proposed in this article, as 
well as the groups identified by the gene signatures proposed by Tang et al[11] and Wang et al[12], were separately 
analyzed, as shown in Figure 7D-F. However, only the samples from the high-risk and low-risk groups defined by the 
proposed gene signature showed a significant difference in TMB (P = 0.01106). These results strongly demonstrated that 
the identified gene signature could predict the efficacy of immunotherapy.

Prediction of immunotherapy response
The TIDE algorithm, which simulates both the immune evasion mechanisms of immune function suppression and 
immune cell exclusion, more accurately predicts patient prognosis than individual biomarkers alone[29]. Currently, this 
algorithm has been widely applied for predicting patient responses to ICB therapy. In this article, the TIDE algorithm was 
used to analyze the response of liver cancer patients to immunotherapy using an online tool (http://tide.dfci.harvard.
edu/). A higher TIDE score indicates that the patient is more prone to experiencing immune escape and is likely to 
exhibit poor efficacy in response to immunotherapy. The Pearson correlation coefficient between TIDE scores and Risks 
cores was calculated, and the significant correlation trends between the two were illustrated in Figure 8A.

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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Figure 5 Box plots depicting the expression analysis of the genes employed in constructing the gene signature. A-C: Expression analysis of 
C-C chemokine ligand 5 (CCL5), cofilin 1 (CFL1), and stathmin 1 (STMN1) in the high-risk and low-risk groups; D-F: Expression analysis of CCL5, CFL1, and STMN1 
in the tumor and normal groups. The high-risk and normal groups are represented by red boxes, while the low-risk and tumor groups are represented by blue boxes. 
The significant differences between groups were evaluated through t tests. CCL5: C-C chemokine ligand 5; CFL1: Cofilin 1; STMN1: Stathmin 1.

Figure 6 Box plot of the degree of immune cell infiltration in the high-risk and low-risk groups. The infiltration degree of 28 immune cell types in 
the high-risk and low-risk groups was analyzed, and the significant differences between the two groups were evaluated using the Kruskal-Wallis test. aP < 0.05; bP < 
0.01; cP < 0.001; dP < 0.0001.
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Figure 7 Analysis of the tumor mutation burden in the samples. A: The distribution of tumor mutation burden (TMB) for all samples; B and C: Waterfall 
plots depicting mutation landscapes in the high-risk and low-risk groups, respectively; D-F: A comparative analysis of TMB was conducted in the high-risk and low-risk 
groups identified by the gene signature identified in this article and the groups identified by the gene signature proposed by Tang et al[11] and Wang et al[12].

Furthermore, the TIDE scores corresponding to the high-risk and low-risk groups identified by the gene signature in 
this article, as well as the groups identified by the gene signatures reported by Tang et al[11] and Wang et al[12], are 
depicted in Figure 8B-D. The TIDE scores exhibited significant differences across all high-risk and low-risk groups, with 
the minimum P value observed among groups stratified by the proposed gene signature (P = 3.762e-10). Moreover, 
compared to those of the other two methods, the gene signature identified in this article requires the fewest genes. A 
significant correlation was observed between TIDE score and Risk scores, and a distinction was made between the high-
risk and low-risk groups, suggesting that the identified gene signature could serve as a valuable tool for predicting the 
efficacy of immunotherapy.
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Table 2 Coefficients and P values corresponding to diagnostic-related genes in multivariable Cox regression

Gene Coefficient P value

NUSAP1 -0.108515073 0.219706452

STMN1 0.367886836 0.006598885

UBE2C -0.038808062 0.692223045

CKS1B 0.019614361 0.885123337

HMGB1 -0.036928764 0.841313659

CCL5 -0.351813314 0.000909645

DUT -0.200404711 0.201189097

PFN1 0.156824573 0.389822262

ITM2A -0.021567354 0.742760958

CCL4 0.146793282 0.182629575

CFL1 0.688652826 0.001683044

IL32 -0.054741614 0.491028415

MT2A 0.033545401 0.525093809

IFITM3 -0.053229362 0.706251853

NUSAP1: Nucleolar and spindle associated protein 1; STMN1: Stathmin 1; UBE2C: Ubiquitin conjugating enzyme E2 C; CKS1B: CDC28 protein kinase 
regulatory subunit 1B; HMGB1: High mobility group box 1; CCL5: C-C chemokine ligand 5; DUT: Deoxyuridine triphosphatase; PFN1: Profilin 1; ITM2A: 
Integral membrane protein 2A; CCL4: C-C chemokine ligand 4; CFL1: Cofilin 1; IL32: Interleukin 32; MT2A: Metallothionein 2A; IFITM3: Interferon 
induced transmembrane protein 3.

Figure 8 Analysis of predicted TIDE scores in the sample. A: Pearson correlation analysis between the sample risk score and TIDE score; B-D: A 
comparative analysis of the TIDE score was conducted for the high-risk and low-risk groups identified by the gene signature in this article and the groups identified by 
the gene signatures proposed by Tang et al[11] and Wang et al[12].

DISCUSSION
Our research demonstrated that utilizing cell-cell communication information to identify immune-related gene signature 
outperformed two other methods in terms of predictive performance. However, it’s worth noting that we focused on cell-
cell communication at the cell group level rather than at the level of individual cells. Investigating the interactions 
between cells at single-cell resolution and their impact on predicting patient prognosis and immunotherapeutic efficacy is 
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a direction for our future research.

CONCLUSION
In summary, our integrated analysis of bulk and scRNA-seq data, coupled with the exploration of the cell-cell 
communication network, has identified a comprehensive immune-related gene signature with clinical and therapeutic 
implications. The identified gene signature not only demonstrates potential as a prognostic tool for liver cancer but also 
provides invaluable insights into the dynamics of immune responses within the tumor microenvironment.

ARTICLE HIGHLIGHTS
Research background
Immunotherapy has provided hope to patients with advanced liver cancer, but only a small fraction of patients benefit 
from this treatment due to individual differences. Although several methods have been developed to predict the 
prognosis and immunotherapeutic efficacy in patients with liver cancer, the impact of cell-cell interactions in the tumor 
microenvironment has not been adequately considered.

Research motivation
Recent research has demonstrated the crucial role of cell-cell interactions in shaping the immune landscape of liver 
cancer.

Research objectives
This study aims to identify immune-related gene signatures through cell-cell interactions to predict prognosis and 
immunotherapeutic efficacy in liver cancer.

Research methods
In this study, CellChat was employed to infer cell-cell communication, thereby selecting highly active cell groups in 
immune-related pathways on single-cell RNA-sequencing (scRNA-seq) data. Highly active immune cells were identified 
by intersecting these groups with B and T cells. Subsequently, significantly differentially expressed genes between highly 
active immune cells and the remaining cells were incorporated into the Lasso regression model. Ultimately, incorporating 
genes selected more than 5 times in 10 Lasso regression experiments into a multivariable Cox regression model, 3 genes 
(stathmin 1, cofilin 1, and C-C chemokine ligand 5) significantly associated with survival were identified to construct a 
gene signature.

Research results
The immune-related gene signature composed of stathmin 1, cofilin 1, and C-C chemokine ligand 5 was identified 
through cell-cell communication. The identified gene signature has been validated to be superior to the other two 
methods through immunotherapy response prediction, tumor mutation burden analysis, and immune cell infiltration 
analysis, enabling better prediction of prognosis and immune therapy efficacy in liver cancer.

Research conclusions
This study suggest that the identified gene signature may contribute to a deeper understanding of the activity patterns of 
immune cells in the liver tumor microenvironment, providing insights for personalized treatment strategies.

Research perspectives
This article utilized cell-cell communication information and machine learning method, combined with Cox regression, to 
comprehensively analyze bulk and scRNA-seq data, identifying clinically and therapeutically relevant immune-related 
gene signature.
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