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Abstract
BACKGROUND 
Perineural invasion (PNI) has been used as an important pathological indicator 
and independent prognostic factor for patients with rectal cancer (RC). 
Preoperative prediction of PNI status is helpful for individualized treatment of 
RC. Recently, several radiomics studies have been used to predict the PNI status 
in RC, demonstrating a good predictive effect, but the results lacked generaliz-
ability. The preoperative prediction of PNI status is still challenging and needs 
further study.

AIM 
To establish and validate an optimal radiomics model for predicting PNI status 
preoperatively in RC patients.

METHODS 
This retrospective study enrolled 244 postoperative patients with pathologically 
confirmed RC from two independent centers. The patients underwent pre-
operative high-resolution magnetic resonance imaging (MRI) between May 2019 
and August 2022. Quantitative radiomics features were extracted and selected 
from oblique axial T2-weighted imaging (T2WI) and contrast-enhanced T1WI 
(T1CE) sequences. The radiomics signatures were constructed using logistic 
regression analysis and the predictive potential of various sequences was 
compared (T2WI, T1CE and T2WI + T1CE fusion sequences). A clinical-radiomics 
(CR) model was established by combining the radiomics features and clinical risk 
factors. The internal and external validation groups were used to validate the 
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proposed models. The area under the receiver operating characteristic curve (AUC), DeLong test, net reclassi-
fication improvement (NRI), integrated discrimination improvement (IDI), calibration curve, and decision curve 
analysis (DCA) were used to evaluate the model performance.

RESULTS 
Among the radiomics models, the T2WI + T1CE fusion sequences model showed the best predictive performance, 
in the training and internal validation groups, the AUCs of the fusion sequence model were 0.839 [95% confidence 
interval (CI): 0.757-0.921] and 0.787 (95%CI: 0.650-0.923), which were higher than those of the T2WI and T1CE 
sequence models. The CR model constructed by combining clinical risk factors had the best predictive 
performance. In the training and internal and external validation groups, the AUCs of the CR model were 0.889 
(95%CI: 0.824-0.954), 0.889 (95%CI: 0.803-0.976) and 0.894 (95%CI: 0.814-0.974). Delong test, NRI, and IDI showed 
that the CR model had significant differences from other models (P < 0.05). Calibration curves demonstrated good 
agreement, and DCA revealed significant benefits of the CR model.

CONCLUSION 
The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict 
the PNI status of RC noninvasively, which facilitates individualized treatment of RC patients.
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Core Tip: We constructed radiomics predictive models, clinical predictive model and clinical-radiomics (CR) model based on 
preoperative magnetic resonance imaging images of rectal cancer (RC), and independent clinical risk factors, to predict the 
preoperative perineural invasion (PNI) status of RC patients. The reliability and repeatability of the established predictive 
models were analyzed using internal and external validation groups. The CR model had the best stable neutral performance 
in both the internal and external validation groups. Therefore, the CR model was able to predict the PNI status of RC 
noninvasively before surgery, thereby providing support for the individualized treatment of RC patients.
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INTRODUCTION
Rectal cancer (RC) is one of the most common gastrointestinal malignancies worldwide, and its incidence is increasing 
annually. Most patients with RC are diagnosed in the middle and late stages[1]. Perineural invasion (PNI), a potential 
pathway for the metastatic spread of RC, has been used as an important pathological indicator and independent 
prognostic factor for patients with RC since the 7th edition of the cancer staging system developed by the American Joint 
Commission on Cancer (AJCC)[2].

PNI refers to the invasion of nerves by tumor cells, followed by the spread of tumor cells along the nerve sheath. It is 
categorized as tumor cell invasion of endoneural, neuronal sheath, and epineural membrane layers, or tumor cells 
surrounding the nerve and wrapping around > 33% of the epineural membrane[3]. Multiple studies have shown that the 
PNI status is correlated with postoperative recurrence rates and poor prognosis of RC[4-8]. Preoperative stratification of 
RC patients according to the PNI status facilitates individualized treatment and improves the prognosis of RC patients. 
Studies have shown that neoadjuvant chemoradiotherapy (nCRT) can significantly reduce the incidence of PNI[9-12]. 
Preoperative assessment of PNI is helpful in decision-making regarding nCRT, especially in patients with stage II RC. 
Currently, the use of nCRT for stage II patients is controversial. Stage II RC is a heterogeneous disease; therefore, distinct 
clinicopathological features may lead to different clinical outcomes and should be treated differently[13]. The latest 
European Society of Medical Oncology RC Guidelines indicate that PNI is a key factor in determining whether stage II 
patients will benefit from nCRT and postoperative adjuvant chemotherapy[14,15]. In addition, nCRT combined with total 
mesorectum excision is regarded as the standard treatment for locally advanced RC. Although the local recurrence rate is 
reduced to < 10%, the distant metastasis rate is still more than 20%-30%. Postoperative adjuvant chemotherapy is used to 
prevent distant metastasis, and the PNI status is an indicator of postoperative adjuvant chemotherapy[14-16]. However, 
nCRT can significantly reduce the incidence of PNI in patients with RC, promoting the downward phase of the tumor. 
Therefore, the postoperative pathological conditions do not fully reflect the patient’s status[17]. The preoperative 
evaluation of PNI is helpful for guiding the use of postoperative adjuvant chemotherapy for patients with locally 
advanced RC.
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Currently, PNI status cannot be assessed based on conventional preoperative biopsy or magnetic resonance imaging 
(MRI), but can only be determined through postoperative pathological examination. Conventional preoperative biopsy 
only obtains the mucosal and submucosal layers, whereas peripheral nerves mostly exist outside the mucosal muscle 
layer or even outside the intestinal wall. Additionally, MRI cannot display small nerves. The efficiency and timeliness of 
postoperative pathological testing limit the use of PNI[13].

Radiomics can extract quantitative features that reflect tumor heterogeneity, allowing the extraction of deep mining 
data from images and analyzing noninvasive clinical predictors to provide detailed information for personalized 
treatment and patient management[18]. This technique is widely used for auxiliary diagnosis, pathological staging, 
prediction of treatment outcomes, and prognostication. Several radiomics studies have been used to predict PNI status in 
RC, demonstrating a good predictive effect. However, most studies were based on computed tomography or single 
sequences of MRI and were conducted at single centers without external validation. Therefore, the results lacked general-
izability[13,19-23].

This two-center study aimed to construct a radiomics prediction model for the PNI status of RC based on T2-weighted 
imaging (T2WI) and contrast-enhanced T1WI (T1CE) sequences of high-resolution MRI and to systematically compare the 
performance of different radiomics predictive models. The optimal radiomics predictive model combined with PNI-
related clinical features was selected to construct the final clinical-radiomics (CR) model, which provided the basis for 
individualized management strategies for RC patients.

MATERIALS AND METHODS
Patients
This two-center retrospective study was approved by the Ethical Review Committee of the Affiliated Hospital of North 
Sichuan Medical College (AHNSMC, file number: 2022ER431-1), which waived the need for informed consent from 
participants.

The study inclusion criteria were: (1) Postoperative pathologically confirmed RC; (2) high-resolution contrast-enhanced 
MRI of rectum performed using 1.5 T MRI within 1 wk before the operation, and a complete TNM staging report was 
obtained; and (3) preoperative peripheral blood carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) 
levels were detected within 1 wk before the operation.

The exclusion criteria included: (1) nCRT and other antitumor treatments were administered preoperatively; (2) 
postoperative pathological report did not record the PNI status; and (3) poor image quality, which made it difficult to 
segment the image of the lesion.

A total of 613 patients who underwent surgical resection of rectal RC were recruited between May 2019 and August 
2022. Finally, 244 patients from two independent centers were enrolled. Among them, 170 consecutive patients from 
Center 1 (Affiliated Hospital of North Sichuan Medical College) were randomly divided into a training group (n = 118) 
and an internal validation group (n = 52) at a ratio of 7:3, whereas 74 consecutive patients from Center 2 (Second Clinical 
School of North Sichuan Medical College) served as an external validation group. The detailed workflow of the study is 
presented in Figure 1.

Preoperative information on clinical and radiological variables was collected retrospectively from our medical records 
and Picture Archiving and Communication System (PACS). The clinical variables included age, gender, CEA level (< 5 or 
≥ 5 ng/mL), CA19-9 level (< 30 or ≥ 30 U/mL), histopathological grade, and clinical M stage. The radiological variables 
included the distance between the tumor and anal margin, MRI T stage, MRI N (mN) stage, clinical TNM (cTNM) stage, 
MRI-based circumferential resection margin (mCRM), and MRI-based extramural vascular invasion (mEMVI). PNI status 
data were derived from postoperative pathological analysis of hematoxylin and eosin (HE)-stained sections and immuno-
histochemical analysis of the resected specimens.

MRI
All patients in Center 1 were scanned using Siemens Aera 1.5 T MRI, and all patients in Center 2 were scanned using GE 
Sigma HDxt 1.5 T MRI. The sequences included high-resolution oblique axial T2WI and axial T1CE. T1CE sequences were 
obtained after intravenous administration of gadolinium contrast agent using an MRI-compatible power injector at a rate 
of 2 mL/s and a dose of 0.2 mL/kg, followed by flushing 20 mL of saline using a high-pressure syringe. The detailed 
sequence parameters are presented in Table 1.

Imaging analysis and segmentation
MR images were derived from PACS in the Digital Imaging and Communications in Medicine format. Two experienced 
radiologists, with 8 and 10 years of work experience, independently evaluated the MR images while being blinded to the 
postoperative pathological findings. Discrepancies among the readers were resolved through discussion. The diagnostic 
methods were based on the 8th AJCC staging system[24].

In cases with unknown pathological findings, Reader 1 used the 3D slicer software (version 4.11.2; https://www.slicer.
org) to manually delineate the lesion layer-by-layer on oblique axial T2WI and axial T1CE sequences, thereby obtaining 
the volume of interest (VOI) of the tumor. Subsequently, the 3D mask of the tumor was exported. One month after 
completing the image segmentation of all patients by Reader 1, 30 patients were randomly selected, for whom Readers 1 
and 2 independently performed repeated segmentation of the lesion and output masks. Repeatability analysis was 
conducted within and between observers to evaluate the stability of subsequent radiomics features.

https://www.slicer.org
https://www.slicer.org
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Table 1 Magnetic resonance imaging parameters of each sequence

Scanner Sequence Orientation TR (ms) TE (ms) FOV (mm2) Matrix Thickness (mm)

T2WI Oblique axial 4480 87 190 × 190 320 × 320 3Siemens Aera 1.5T

T1CE Oblique axial 7 3 210 × 210 256 × 256 3

T2WI Oblique axial 4120 70 180 × 180 256 × 192 3GE Signa HDxt 1.5T

T1CE Oblique axial 6 3 200 × 200 288 × 160 3

TR: Repetition time; TE: Echo time; FOV: Field of view; T2WI: T2-weighted imaging; T1CE: Contrast-enhanced T1WI.

Figure 1 Flowchart of participant selection. nCRT: Neoadjuvant chemoradiotherapy; CEA: Carcinoembryonic antigen; CA19-9: Carbohydrate antigen 19-9; 
MRI: Magnetic resonance imaging; PNI: Perineural invasion.

Radiomics feature extraction and selection
The Radiomics package of the 3D-Slicer software (version 4.11.2; https://www.slicer.org) was used for original image 
preprocessing and radiomics feature extraction. To minimize the image extraction of radiomics features using different 
MRI models, the preprocessing of the original images included the following steps: (1) Voxel spacing was standardized, 
and all images were resampled to a volume of 1 mm × 1 mm × 1 mm; and (2) the image noise and normalized voxel 
intensity were controlled, and the voxel intensity values were discretized using a fixed bin width (25 HU)[25].

All VOIs were imported into the 3D-Slicer software for feature extraction. In total, 944 radiomics features were 
extracted for each VOI. The image types of the extracted radiomics features included the following: (1) A total of 107 
radiomics features extracted from the original image after image preprocessing [including shape features, first-order 
statistical features, gray-level co-occurrence matrix (GLCM) features, gray-level dependence matrix features, gray-level 
run length matrix (GLRLM) features, gray-level size zone matrix (GLSZM) features, and neighboring gray tone difference 
matrix features]; (2) a total of 93 radiomics features of images extracted (including first-order statistical, GLCM, gray-level 
dependence matrix, GLRLM, GLSZM, and neighboring gray tone difference matrix) using the Laplace operator of the 
Gaussian filter and the image derived from the transformation of 1σ (0.5); and (3) a total of 744 radiomics features 
extracted from eight image types derived from wavelet transformation (including first-order statistical features, GLCM 
features, gray-level dependence matrix features, GLRLM features, GLSZM features, and neighboring gray tone difference 
matrix features). The specific radiomics feature types extracted based on the abovementioned images are shown in 
Supplementary Table 1. For further details, please refer to http://pyradiomics.readthedocs.io/en/Latest/features.html.

Based on the training group data, the radiomics features were reduced and screened. First, dimensionality reduction, 
Z-score standardization, and maximum-minimum normalization of radiomics eigenvalues were used to remove 
irrelevant and redundant features. Then, radiomics features were screened using the following steps: (1) Radiomics 
features with inter- and intraclass correlation coefficients > 0.75 were screened to ensure their stability; (2) radiomics 
features with significant differences (P < 0.05) were screened using univariate logistic regression analysis; and (3) the least 
absolute shrinkage and selection operator regression algorithm was used to adjust the penalty parameters using 10-fold 
crossvalidation, and the regression coefficients of each radiomics feature were compressed, according to the principle of 
the simplest model. The radiomics features with non-zero coefficients were screened to establish the Rad-score.

https://www.slicer.org
https://f6publishing.blob.core.windows.net/e3805881-d1cf-4e16-aaa4-eb6361b2e4fe/WJG-30-2233-supplementary-material.pdf
http://pyradiomics.readthedocs.io/en/Latest/features.html
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Model construction and evaluation
Based on the training group data, univariate logistic regression analysis was carried out for all clinical and MRI factors. 
According to our results and clinical practice, relevant factors were selected for multifactorial logistic regression analysis. 
We constructed a clinical predictive model and three radiomics predictive models, namely T2WI, T1CE and T2WI + T1CE 
fusion sequence. Finally, the best radiomics predictive model was selected and combined with selected clinical and MRI 
risk factors to construct a combined CR predictive model.

The above predictive models were tested in the internal and external validation groups to determine their differen-
tiation, calibration and clinical effectiveness. The area under the receiver operating characteristic (ROC) curve (AUC), 
Delong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were used to 
compare the differentiation of each predictive model. Calibration curves were used to evaluate the calibration degree of 
each predictive model; that is, the consistency between the predicted and actual results. Decision curve analysis (DCA) 
was used to evaluate the efficacy of each predictive model. Finally, the optimal model was selected to construct a 
nomogram and an online interactive nomogram. The detailed research process is presented in Figure 2.

Statistical analysis
The clinical and MRI factors were analyzed using SPSS software version 26.0. Categorical variables are expressed as 
percentages and analyzed using χ2 or Fisher’s exact tests. Continuous variables with normal data distribution were 
expressed as mean ± SD, whereas those with non-normal distribution were expressed as median (interquartile range). P < 
0.05 (two-tailed) was considered statistically significant. R version 4.2.1 was used for feature screening, construction and 
evaluation of the predictive models. Several R packages were used for data analysis, including caret, irr, car, MASS, 
glmnet, pROC, nricens, rms, DynNom, rsconnect, rmda, plot, and ggplot2.

RESULTS
Patient characteristics
In this study, two hundred and forty-four patients were enrolled and categorized into the training (n = 118), internal 
validation (n = 52) and external validation (n = 74) groups. Table 2 summarizes the detailed clinical and radiological 
characteristics of the patients. There were no significant differences in the proportion of PNI-positive patients between the 
training group and the two validation groups (32.1, 32.7 and 33.8%, respectively; P > 0.05). There were no significant 
differences between the training, internal validation and external validation datasets (P > 0.05). In contrast, the training 
group dataset demonstrated significant differences between PNI-positive and PNI-negative patients in terms of CA19-9 
level, mN, mCRM, mEMVI and histological grade (P < 0.05). In the internal validation group, there were significant 
differences in the CEA and CA19-9 levels between the PNI-positive and PNI-negative patients (P < 0.05). In the external 
validation group, there were significant differences in CEA, mN and mEMVI between the PNI-positive and PNI-negative 
patients (P < 0.05).

Model construction and evaluation
In this study, twelve features were retained from the three sequences: T2WI (n = 5), T1CE (n = 2) and T2WI + T1CE fusion 
sequence (n = 5). The detailed information regarding these features is presented in Figure 3 and Supplementary Table 2. 
The radiomics scores were calculated by multiplying the selected features with the corresponding coefficients for each 
modality as follows: T2WI_Rad-score = 14.86872 + (0.03702 × original_glcm_Correlation) + (0.10289 × ori-
ginal_glcm_MCC) + (8.2082 × original_glszm_ZoneEntropy) + (9.15542 × wavelet-LLL_glcm_MCC) + (-3.61471 × 
wavelet-LLL_glrlm_GrayLevelNonUniformityNormalized). T1CE_Rad-score = -26.133 + (2.919 × origi-
nal_shape_Maximum2DDiameterSlice) + (22.566 × original_gldm_DependenceEntropy). (T2WI + T1CE)_Rad-score = 
-7.0772 + (-0.1798 × T2WI_original_glcm_MCC) + (0.7251 × T2WI_original_glszm_ZoneEntropy) + (7.5941 × 
T2WI_wavelet-LLL_glcm_MCC) + (-4.442 × T2WI_wavelet-LLL_glrlm_GrayLevelNonUniformityNormalized) + (2.3265 × 
T1CE_original_shape_ Maximum2DDiameterSlice).

Three radiomics predictive models were constructed based on the Rad-score using logistic regression. In the training 
group, the AUCs of the T2WI sequence radiomics predictive model, T1CE sequence radiomics predictive model, and 
T2WI + T1CE fusion sequence radiomics predictive model were 0.817, 0.798 and 0.839, respectively, and these values 
were 0.763, 0.689 and 0.787 in the internal validation group, respectively, and 0.759, 0.841, and 0.836 in the external 
validation group, respectively. Detailed information regarding the predictive models is presented in Table 3 and Figure 4.

Univariate and multivariate logistic regression analyses of training group data demonstrated that cTNM [odds ratio 
(OR): 42.002; 95% confidence interval (CI): 2.913-605.511] (P = 0.006) and histological grade (OR: 0.113; 95%CI: 0.020-0.658) 
(P = 0.015) were independent risk factors for PNI in RC. Further details are presented in Table 4. The AUCs of the clinical 
predictive models for the training, internal validation and external validation groups were 0.804, 0.828 and 0.813, 
respectively. Further details are presented in Table 3.

The Delong test for the training group data showed no significant differences among the three radiomics predictive 
models (P = 0.476). However, the NRI and IDI indices demonstrated that the T2WI + T1CE fusion sequence radiomics 
predictive model had significantly higher predictive ability compared to the T2WI and T1CE sequence radiomics 
predictive models (NRI index > 0, IDI index > 0, P < 0.05). The T2WI + T1CE fusion sequence radiomics predictive model 
was superior to the T2WI and T1CE sequence radiomics predictive models. Further details are presented in Table 5. The 
T2WI + T1CE_Rad-score and independent clinical risk factors (cTNM and histological grade) were selected to construct a 

https://f6publishing.blob.core.windows.net/e3805881-d1cf-4e16-aaa4-eb6361b2e4fe/WJG-30-2233-supplementary-material.pdf
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Table 2 Characteristics of patients in the training, internal validation and external validation groups, n (%)

Training group (n = 
118)

Internal validation group 
(n = 52)

External validation 
group (n = 74)

Characteristics
PNI+ (n = 
39)

PNI- (n = 
79)

P value
PNI+ (n = 
17)

PNI- (n = 
35)

P value
PNI+ (n = 
25)

PNI- (n = 
49)

P value

Sex 0.854 0.882 0.640

    Male 25 (64.1) 52 (65.8) 12 (70.6) 24 (68.6) 16 (64.0) 34 (69.4)

    Female 14 (35.9) 27 (34.2) 5 (29.4) 11 (31.4) 9 (36.0) 15 (30.6)

Age (yr) 68 (56.5-73) 68 (58.5-75) 0.479 66.59 ± 12.57 64.17 ± 10.32 0.497 65.24 ± 11.70 66.84 ± 9.85 0.562

CEA 0.150 0.027 0.005

    Negative (< 5 
ng/mL)

23 (59.0) 57 (72.2) 9 (52.9) 30 (85.7) 14 (56.0) 42 (85.7)

    Positive (≥ 5 ng/mL) 16 (41.0) 22 (27.8) 8 (47.1) 5 (14.3) 11 (44.0) 7 (14.3)

CA19-9 0.034 0.019 1.000

    Negative (< 30 
U/mL)

30 (76.9) 72 (91.1) 12 (70.6) 34 (97.1) 23 (92.0) 46 (93.9)

    Positive (≥ 30 U/mL) 9 (23.1) 7 (8.9) 5 (29.4) 1 (2.9) 2 (8.0) 3 (6.1)

DIS 0.050 0.444 0.823

    High 24 (61.5) 31 (39.2) 9 (52.9) 15 (42.9) 12 (48.0) 22 (44.9)

    Mid 3 (7.7) 16 (20.3) 5 (29.4) 9 (25.7) 5 (20.0) 13 (26.5)

    Low 12 (30.8) 32 (40.5) 3 (17.6) 11 (31.4) 8 (32.0) 14 (28.6)

mT 0.211 0.885 0.314

    mT1-2 3 (7.7) 15 (19.0) 6 (35.3) 10 (28.6) 5 (20.0) 9 (18.4)

    mT3 24 (61.5) 47 (59.5) 8 (47.1) 18 (51.4) 14 (56.0) 32 (65.3)

    mT4 12 (30.8) 17 (21.5) 3 (17.6) 7 (20.0) 6 (24.0) 8 (16.3)

mN 0.003 0.063 0.028

    mN0 5 (12.8) 27 (34.2) 3 (17.6) 18 (51.4) 6 (24.0) 19 (38.8)

    mN1 13 (33.3) 33 (41.8) 5 (29.4) 7 (20.0) 7 (28.0) 21 (42.9)

    mN2 21 (53.8) 19 (24.1) 9 (52.9) 10 (28.6) 12 (48.0) 9 (18.4)

cM 0.070 1.000 0.064

    cM0 34 (87.2) 77 (97.5) 17 (100.0) 34 (97.1) 22 (88.0) 49 (100.0)

    cM1 5 (12.8) 2 (2.5) 0 (0.0) 1 (2.9) 3 (12.0) 0 (0.0)

cTNM 1.000 1.000 1.000

    Ⅰ 1 (2.6) 29 (36.7) 0 (0.0) 16 (45.7) 0 (0.0) 18 (36.7)

    Ⅱ 9 (23.1) 25 (31.6) 5 (29.4) 13 (37.1) 3 (12.0) 12 (24.5)

    Ⅲ 25 (64.1) 23 (29.1) 11 (64.7) 5 (14.3) 19 (76.0) 19 (38.8)

    Ⅳ 4 (10.3) 2 (2.5) 1 (5.9) 1 (2.9) 3 (12.0) 0 (0.0)

mCRM 0.002 0.374 0.236

    Negative 14 (35.9) 52 (65.8) 9 (52.9) 23 (65.7) 15 (60.0) 36 (73.5)

    Positive 25 (64.1) 27 (34.2) 8 (47.1) 12 (34.3) 10 (40.0) 13 (26.5)

mEMVI 0.016 0.935 0.009

    Negative 15 (38.5) 49 (62.0) 10 (58.8) 21 (60.0) 10 (40.0) 35 (71.4)

    Positive 24 (61.5) 30 (38.0) 7 (41.2) 14 (40.0) 15 (60.0) 14 (28.6)

Histological grade 0.000 0.920 0.894
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    Well differentiated 4 (10.3) 27 (34.2) 2 (11.8) 11 (31.4) 4 (16.0) 13 (26.5)

    Moderately differen-
tiated

26 (66.7) 49 (62.0) 12 (70.6) 23 (65.7) 18 (72.0) 34 (69.4)

    Poorly differentiated 9 (23.1) 3 (3.8) 3 (17.6) 1 (2.9) 3 (12.0) 2 (4.1)

P value represents analysis of PNI-positive and PNI-negative datasets between each group. PNI: Perineural infiltration; CEA: Carcinoembryonic antigen; 
CA19-9: Carbohydrate antigen 19-9; mCRM: MRI-based circumferential resection margin; mEMVI: MRI-based extramural vascular invasion; mT: MRI T 
stage; mN: MRI N stage; cM: Clinical M stage; cTNM: Clinical TNM stage; DIS: The distance between tumor and anal margin, Low (0-5 cm from the anal 
verge), middle (5.1-10 cm from the anal verge), and high (10.1-15 cm from the anal verge).

Table 3 Performance of various predictive models in the training, internal validation and external validation groups

Models Training group Internal validation group External validation group

T2WI

AUC (95%CI) 0.817 (0.733-0.901) 0.763 (0.626-0.900) 0.759 (0.644-0.875)

Sensitivity 0.564 0.294 0.480

Specificity 0.899 0.886 0.857

Positive predictive value 0.733 0.556 0.632

Negative predictive value 0.807 0.721 0.764

T1CE

AUC (95%CI) 0.798 (0.707-0.890) 0.689 (0.521-0.857) 0.841 (0.752-0.930)

Sensitivity 0.487 0.471 0.480

Specificity 0.937 0.857 0.878

Positive predictive value 0.792 0.615 0.667

Negative predictive value 0.787 0.769 0.768

T2WI + T1CE

AUC (95%CI) 0.839 (0.757-0.921) 0.787 (0.650-0.923) 0.836 (0.735-0.937)

Sensitivity 0.641 0.529 0.560

Specificity 0.899 0.914 0.939

Positive predictive value 0.758 0.750 0.824

Negative predictive value 0.835 0.800 0.807

Clinical model

AUC (95%CI) 0.804 (0.727-0.881) 0.828 (0.719-0.937) 0.813 (0.724-0.903)

Sensitivity 0.718 0.706 0.800

Specificity 0.747 0.829 0.694

Positive predictive value 0.583 0.667 0.571

Negative predictive value 0.843 0.829 0.872

CR model

AUC (95%CI) 0.889 (0.824-0.954) 0.889 (0.803-0.976) 0.894 (0.814-0.974)

Sensitivity 0.692 0.647 0.760

Specificity 0.924 0.886 0.899

Positive predictive value 0.818 0.733 0.792

Negative predictive value 0.859 0.838 0.880

T2WI: T2-weighted imaging; T1CE: Contrast-enhanced T1WI; CR: Clinical-radiomics prediction model; AUC: Area under receiver operating characteristic 
curve.
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Table 4 Results of univariate and multivariate logistic regression analyses

Univariate logistic regression Multivariate logistic regression
Variables

OR (95%CI) P value OR (95%CI) P value

Gender 0.927 (0.418-2.098) 0.854 NA NA

Age 0.976 (0.944-1.008) 0.138 NA NA

CEA 1.802 (0.801-4.045) 0.152 NA NA

CA19-9 3.086 (1.056-9.375) 0.040a NA NA

DIS 1.487 (0.968-2.329) 0.075 NA NA

mT 1.717 (0.919-3.312) 0.096 NA NA

mN 2.507 (1.467-4.495) 0.001a NA NA

cM 5.662 (1.158-40.921) 0.044a NA NA

cTNM 3.705 (2.139-7.056) 0.000a 42.002 (2.913-605.511) 0.006a

mCRM 3.439 (1.562-7.838) 0.003a NA NA

mEMVI 2.613 (1.199-5.852) 0.017a NA NA

Histological grade 0.229 (0.092-0.496) 0.001a 0.113 (0.020-0.658) 0.015a

aP < 0.05.
CEA: Carcinoembryonic antigen; CA19-9: Carbohydrate antigen 19-9; DIS: The distance between tumor and anal margin; mT: MRI T stage; mN: MRI N 
stage; cM: Clinical M stage; cTNM: Clinical TNM stage; mCRM: MRI-based circumferential resection margin; mEMVI: MRI-based extramural vascular 
invasion; OR: Odds ratio; CI: Confidence interval; NA: Not available.

Table 5 Performance of various radiomics predictive models in the training group as evaluated using the Delong test, integrated 
discrimination improvement index and net reclassification improvement index

Radiomics prediction 
models AUC (95%CI) Delong test P 

value IDI (95%CI) IDI index P 
value NRI (95%CI) NRI index P 

value

T2WI + T1CE 0.839 (0.757-0.921)

T2WI 0.817 (0.733-0.901) 0.252 0.081 (0.031-0.131) 0.001 0.510 (0.104-0.865) 0.008

T1CE 0.798 (0.707-0.890) 0.196 0.127 (0.064-0.190) 0.000 0.536 (0.255-1.018) 0.005

AUC: Area under receiver operating characteristic curve; IDI: Integrated discrimination improvement; NRI: Net reclassification improvement; T2WI: T2-
weighted imaging; T1CE: Contrast-enhanced T1WI.

combined CR predictive model through logistic regression. The combined CR model demonstrated AUCs of 0.889, 0.889 
and 0.894 in the training, internal validation and external validation groups, respectively. Further details are presented in 
Table 3.

Construction and validation of models
Figure 4 shows the ROC curves of each model in the training, internal validation and external validation groups. The CR 
model demonstrated the best discrimination ability in each group (Table 3).

Further comparisons were made between the CR, clinical predictive and T2WI + T1CE fusion sequence radiomics 
predictive models. Based on the training group data, the Delong test showed no significant differences (P > 0.05) between 
the clinical predictive model and T2WI + T1CE fusion sequence radiomics predictive model. The CR model demonstrated 
a significant difference (P < 0.05) compared to the clinical predictive model and T2WI + T1CE fusion sequence radiomics 
predictive model. NRI and IDI indices further revealed that the CR model had significantly higher predictive ability 
compared to the clinical predictive model and T2WI + T1CE fusion sequence radiomics predictive model (NRI index > 0, 
IDI index > 0, P < 0.05) (Table 6).

The calibration curves of the three models are shown in Figure 5. The CR model had the best calibration ability in the 
training, internal validation and external validation groups (i.e., the calibration curve was closest to the reference line). 
The DCA curve is shown in Figure 6. The CR model achieved the highest clinical net benefit compared to the clinical 
predictive model and T2WI + T1CE fusion sequence radiomics predictive model.

Based on the final results of model construction and validation, the CR model with the best model performance was 
selected to construct a concise nomogram (Figure 7) and an online interactive dynamic web page nomogram (Figure 8) 
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Table 6 Performance of the clinical model, T2-weighted imaging + contrast-enhanced T1WI fusion sequence radiomics model, and 
clinical-radiomics model in the training group, as evaluated using the Delong test, integrated discrimination improvement index, and 
Net reclassification improvement index

Models AUC (95%CI) Delong test P 
value IDI (95%CI) IDI index P value NRI (95%CI) NRI index P 

value

CR model 0.889 (0.824-0.954)

Clinical 0.804 (0.727-0.881) 0.009 0.210 (0.130-0.290) 0.000 0.588 (0.271-0.904) 0.000

T2WI + T1CE 0.839 (0.757-0.921) 0.019 0.075 (0.026-0.124) 0.002 0.447 (0.164-0.731) 0.002

AUC: Area under receiver operating characteristic curve; IDI: Integrated discrimination improvement; NRI: Net reclassification improvement; CR: Clinical-
radiomics; T2WI: T2-weighted imaging; T1CE: Contrast-enhanced T1WI.

for visualization.

DISCUSSION
Noninvasive assessment of the prognosis of RC is challenging and has always been a research hotspot[26,27]. Research 
has shown that PNI is not only characterized by tumor cell infiltration and growth along the nerves but also involves an 
interaction between various neurotrophic and chemotactic factors released from tumor cells and the surrounding 
microenvironment. This process induces tumor invasion, local recurrence, and metastasis, leading to poor prognosis[28-
30]. Preoperative prediction of PNI status is helpful for individualized treatment of RC. For example, PNI-positive RC 
patients should receive more aggressive treatment, such as nCRT[9-12].

The present study constructed radiomics predictive models, clinical predictive models and CR models based on 
preoperative high-resolution MRI of RC, as well as independent clinical risk factors (cTNM and histological grade), to 
predict the preoperative PNI status of RC patients. The reliability and repeatability of the established predictive models 
were analyzed using internal and external validation groups. Compared to the radiomics and clinical predictive models, 
the CR model had the best discrimination, calibration and clinical net benefit, with stable neutral performance in both the 
internal and external validation groups.

We constructed three radiomics predictive models based on T2WI and T1CE sequences: T2WI, T1CE and T2WI + T1CE 
fusion sequence. In the training and internal validation groups, the AUCs of the fusion sequence model were 0.839 
(95%CI: 0.757-0.921) and 0.787 (95%CI: 0.650-0.923), which were higher than those of the T2WI and T1CE sequence 
models. In the external validation group, the AUC of the fusion sequence model was 0.836 (95%CI: 0.735-0.937), which 
was lower than that of the T1CE sequence model (0.841, 95%CI: 0.752-0.930). Although the AUCs of the fusion sequence 
models in the training group were higher than those of the T2WI and T1CE sequences, there were no significant 
differences between the models in the Delong test (P > 0.05). The contradictory results may have been due to two reasons: 
first, the study sample size was not sufficiently large. Further research with larger sample sizes is needed. Second, there 
are inherent limitations of the Delong test. Although it is widely used to compare models, it may not be sufficiently 
sensitive to the incremental changes in the predictive ability of the model. Therefore, we also used the NRI and IDI 
indexes for evaluation[31]. The final results showed that the fusion sequence model had a significantly higher predictive 
ability compared to the T2WI and T1CE sequence models (NRI index > 0, IDI index > 0, P < 0.05). Therefore, a CR model 
was constructed using Rad-score fusion sequences and independent clinical risk factors.

The Rad-score value of the T2WI + T1CE fusion sequence radiomics predictive model consisted of five radiomics 
features, including one shape feature, two GLCM features, one GLRLM feature and one GLSZM feature. The shape 
feature is the maximum-2D-diameter-slice based on the original image of the T1CE sequence, which reflects the tumor 
size. This may be because larger tumors have a higher probability of contact with nerves, leading to a higher probability 
of PNI[32,33]. The GLCM features include Matthews’ correlation coefficient (MCC) based on original T2WI and wavelet 
transformation of T2WI sequence wavelet-LLL images. The GLCM features mainly reflect the probability of voxel values 
appearing at a given direction and distance in the spatial arrangement relationship between voxel gray levels of an image. 
MCC is primarily used to determine the binary classification, and it comprehensively considers true-positive, true-
negative, true-positive, true-negative, false-positive and false negative cases, making it a balanced indicator. The GLRLM 
feature is the gray-level nonuniformity normalized (GLNN) based on the T2WI sequence wavelet-LLL image. This 
feature reflects the spatial arrangement of voxels in the image, and the voxel length with the same gray level continuously 
appearing in the specified direction. GLNN is primarily used to determine the similarity of gray-level intensity values in 
the image. The GLSZM feature is the zone entropy (ZE) based on the original T2WI, which reflects the area of continuous 
voxel values quantified in the spatial arrangement of voxels and gray scales in the image. ZE represents the uncertainty or 
randomness of the measurement area and grayscale distribution. The higher the value, the greater the nonuniformity of 
the texture pattern.

Among the five radiomics features, two are wavelet-transformed features, which decompose the original image into 
different frequency domains and then extract features from each wavelet image individually. Therefore, multi-frequency 
domain and multi-scale image information can be obtained, allowing the obtained features to reflect the spatial hetero-
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Figure 2 Radiomics workflow.

geneity of tumors more effectively. The selected GLCM and GLSZM features of MCC and ZE mainly reflect the hetero-
geneity of the extracted VOI, which is inconsistent with the specific features extracted by Guo et al[23] and Huang et al
[20]. These findings may be explained by the differences in scanning and reconstruction parameters, as well as inconsist-
encies between the methods of model construction. Nevertheless, our results were consistent for some of the extracted 
radiomics features, reflecting tumor heterogeneity. This also confirms the results of previous studies, which found that 
the higher the tumor heterogeneity, the more aggressive the tumor is likely to be[34]. In addition, the GLRLM feature of 
GLNN mainly reflects the tumor homogeneity, which is negatively correlated with the Rad-score, confirming our 
conclusion.
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Figure 3 The process of feature selection and dimensionality reduction through least absolute shrinkage and selection operator. A-C: The 
process of 10-fold crossvalidation penalty parameter λ selection, according to the rule of the simplest model. The abscissa corresponding to the lowest point of model 
deviation is the optimal λ; D-F: Each colored line in the variation curve of the characteristic coefficient with value of λ, which was used to determine the non-zero 
coefficient characteristic parameters based on λ obtained in the upper panel of the figure. T2WI: T2-weighted imaging; T1CE: contrast-enhanced T1WI.

Univariate and multivariate logistic regression analyses of the clinical predictive model showed that cTNM and 
histological grade were independent risk factors for the PNI status of RC, which is in line with the results of Alotaibi et al
[32] and Poeschl et al[33]. The explanation for these findings may be that a higher TNM stage and lower histological grade 
correlate with a more malignant and aggressive tumor that is more likely to invade the nerves around the tumors. 
Previous studies have also shown that a high T stage, high N stage, distant metastasis, positive circumferential resection 
margin status, positive extramural vascular invasion status, high CEA level (≥ 5 ng/mL), and tumor budding are also 
independent risk factors for PNI. However, in the present study, the selection of patients and variables was biased due to 
the study design. Multivariate logistic regression analysis did not reveal significant results. Finally, the clinical predictive 
model based on cTNM and histological grade was selected, which demonstrated AUCs of 0.804 (95%CI: 0.727-0.881), 
0.828 (95%CI: 0.719-0.937) and 0.813 (95%CI: 0.724-0.903) in the training, internal validation and external validation 
groups, respectively, as well as satisfactory model stability. Compared with the T2WI + T1CE fusion sequence radiomics 
predictive model, the Delong test showed that there were no significant differences in the differentiation ability among 
the models. Therefore, the combined CR model was constructed, and showed the best performance. The AUCs of the CR 
model in the training and internal and external validation groups were 0.889 (95%CI: 0.824-0.954), 0.889 (95% CI: 0.803-
0.976) and 0.894 (95%CI: 0.814-0.974), respectively.

Compared with previous similar studies, the present study had certain strengths. First, this study extracted 944 
radiomics features from each sequence of the following images: Raw images, Gaussian transformed images, and wavelet 
transformed images. The number of features was significantly higher than in previous studies, which may reflect the 
spatial heterogeneity of tumors more effectively. Second, this study used internal and external validation groups to 
evaluate the models, whereas previous studies were based on a single-center internal validation group, lacking 
independent external validation. Third, the CR model demonstrated good stability in both the internal and external 
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Figure 4 Receiver operating characteristic curves for perineural invasion prediction of different models. A: Receiver operating characteristic 
(ROC) curves in the training group; B: ROC curves in the internal validation group; C: ROC curves in the external validation group. CR: Clinical-radiomics predictive 
model; T2WI: T2-weighted imaging; T1CE: Contrast-enhanced T1WI.

Figure 5 Calibration curves of the clinical model, T2-weighted imaging + Contrast-enhanced T1WI fusion sequence radiomics model and 
clinical-radiomics prediction model. Diagonal lines serve as reference lines, representing the most suitable model. The clinical-radiomics prediction model 
shows optimal calibration. A: Calibration curves in the training group; B: Calibration curves in the internal validation group; C: Calibration curves in the external 
validation group. CR: Clinical-radiomics prediction model; T2WI: T2-weighted imaging; T1CE: Contrast-enhanced T1WI.

validation groups, with greater repeatability than models proposed in previous studies. Fourth, the PNI status of 244 RC 
patients was evaluated based on HE staining and immunohistochemical analysis of postoperative resection specimens. A 
previous study demonstrated that immunohistochemical analysis can significantly improve the PNI detection rate, which 
is 2-3 times higher than the detection rate using HE staining alone[5]. However, some previous studies did not provide a 
detailed explanation of their specimen analysis methods[13,19,21,22], whereas others evaluated the PNI status based on 
HE staining only of postoperative specimens[20,23].

There were some limitations to this study. First, this was a retrospective study with possible selection bias. Second, 
although the external validation group included patients from an independent center based on strict eligibility criteria, 
further validation studies are needed to reduce the impact of data bias. Third, the VOI was manually delineated layer by 
layer, which takes a long time in clinical settings and may lead to interobserver variability. Therefore, further studies are 
needed to determine the feasibility of applying deep learning to automatically delineate the VOI[35,36].
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Figure 6 Decision curve analysis of the clinical model, T2-weighted imaging + contrast-enhanced T1WI fusion sequence radiomics model 
and clinical-radiomics prediction model. The clinical-radiomics prediction model exhibits the greatest net clinical benefit. A: Decision curve analysis (DCA) in 
the training group; B: DCA in the internal validation group; C: DCA in the external validation group. CR: Clinical-radiomics prediction model; T2WI: T2-weighted 
imaging; T1CE: Contrast-enhanced T1WI.

Figure 7 Concise nomogram was developed in the training group. cTNM: clinical TNM.

CONCLUSION
In conclusion, the radiomics model based on preoperative MRI was found to be useful for predicting the PNI status in 
RC. The CR model combined with the clinical risk factors of PNI was able to predict the PNI status of RC noninvasively 
before surgery, thereby providing support for the individualized treatment of RC patients.
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Figure 8 Online interactive dynamic web page nomogram based on the clinical-radiomics model was constructed to predict the 
perineural invasion status of patients. The Online tool is available at https://ly1070007554.shinyapps.io/dynnomapp/.

ARTICLE HIGHLIGHTS
Research background
Perineural invasion (PNI), is a potential pathway for the metastatic spread of rectal cancer (RC), and has been used as an 
important pathological indicator and independent prognostic factor. Preoperative stratification of RC patients according 
to PNI status facilitates individualized treatment and improves the prognosis of RC patients.

Research motivation
Nowadays, the preoperative predicton of PNI status is still challenging and needs further study.

Research objectives
To evaluate the usefulness of a model based on preoperative magnetic resonance imaging (MRI) radiomics for predicting 
PNI status in patients with RC and establishing and validating an optimal nomogram model for predicting PNI status 
preoperatively in RC patients.

Research methods
We enrolled 244 RC patients from two independent centers from May 2019 to August 2022. The patients from Center 1 
were randomly divided into a training group (n = 118) and an internal validation group (n = 52), whereas 74 patients 
from Center 2 served as an external validation group. Extracted and selected quantitative radiomics features and clinical 
risk factors to establish and validate the radiomics predictive model and clinical-radiomics (CR) model.

Research results
We extracted 944 radiomics features from T2-weighted imaging and contrast-enhanced T1-weighted imaging sequences, 
combined with PNI-related clinical features (clinical TNM and histological grade) to construct the final CR model, and 
used internal and external validation groups to evaluate the models. The final CR model showed good performance to 
predict PNI status, the area under the curve of the CR model in the training and internal and external validation groups 
were 0.889, 0.889 and 0.894, respectively.

Research conclusions
The CR model based on MRI radiomics features and clinical risk factors was able to predict the PNI status of RC 
noninvasively, showed stable performance, which can provide support for individualized treatment of RC patients.

Research perspectives
Further external verification is needed to optimize the model, and explore the feasibility of applying deep learning to 
automatically describe volume of interest, reduce the difference between observers, and improve the applicability of the 
model.
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