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Abstract
Pancreatitis and pancreatic cancer (PC) stand as the most worrisome ailments 
affecting the pancreas. Researchers have dedicated efforts to unraveling the 
mechanisms underlying these diseases, yet their true nature continues to elude 
their grasp. Within this realm, oxidative stress is often believed to play a causal 
and contributory role in the development of pancreatitis and PC. Excessive 
accumulation of reactive oxygen species (ROS) can cause oxidative stress, and the 
key enzyme responsible for inducing ROS production in cells is nicotinamide 
adenine dinucleotide phosphate hydrogen oxides (NOX). NOX contribute to 
pancreatic fibrosis and inflammation by generating ROS that injure acinar cells, 
activate pancreatic stellate cells, and mediate macrophage polarization. Excessive 
ROS production occurs during malignant transformation and pancreatic carcino-
genesis, creating an oxidative microenvironment that can cause abnormal 
apoptosis, epithelial to mesenchymal transition and genomic instability. There-
fore, understanding the role of NOX in pancreatic diseases contributes to a more 
in-depth exploration of the exact pathogenesis of these diseases. In this review, we 
aim to summarize the potential roles of NOX and its mechanism in pancreatic 
disorders, aiming to provide novel insights into understanding the mechanisms 
underlying these diseases.
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Core Tip: Nicotinamide adenine dinucleotide phosphate hydrogen oxides (NOX) plays a significant role in the development 
of pancreatitis and pancreatic cancer (PC) by contributing to pancreatic fibrosis and inflammation. It achieves this by 
generating reactive oxygen species, which damage acinar cells, activate pancreatic stellate cells, and induce macrophage 
polarization. Moreover, NOX promotes PC progression by interfering with abnormal cell apoptosis, initiating the epithelial 
to mesenchymal transition processes, and leading to cell genomic instability. A thorough understanding of NOX’s 
involvement in pancreatic diseases is crucial for comprehending the underlying mechanisms of pancreatitis and PC. This 
review provides a summary of NOX’s potential roles and mechanisms in pancreatic disorders, emphasizing areas that require 
further investigation.
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INTRODUCTION
Incidence of diseases of the pancreas, including acute and chronic pancreatitis (CP) and pancreatic cancer (PC) are rising 
globally[1-3]. Acute pancreatitis (AP) is the leading cause for gastrointestinal-disease related hospital admissions and is 
associated with significant morbidity, mortality and socioeconomic burden[4]. CP causes persistent pain, as well as 
exocrine and endocrine pancreatic insufficiency. It also poses a risk factor for the development of PC[5]. PC is the 
malignancies with an incidence/mortality ratio of as high as 94% and a 5-year survival rate of about 9%[6]. Although 
researchers have been dedicated to exploring these diseases, the precise pathogenesis remains unclear. Research indicates 
that aberrant redox homeostasis occurs in both pancreatitis and PC. Reactive oxygen species (ROS) exert oxidative stress 
on the pancreatic cells, deregulating the redox homeostasis and promoting inflammation and tumorigenesis by initiating 
an aberrant induction of signaling networks[7,8].

Nicotinamide adenine dinucleotide phosphate hydrogen oxidases (NOX) is indeed a primary source of cellular ROS. 
During the development of PC and pancreatitis, the levels of ROS in pancreatic tissue are significantly increased, the 
source of these ROS is related to dysregulation of NOX in pancreatic cells[9,10]. The dysregulation of NOX plays an 
important role in pancreatitis and PC. Therefore, to clarify the regulatory mechanism of NOX in pancreatic cells will be 
more conducive to understanding the pathological process of pancreatitis and PC. In a word, we will present the existing 
evidence regarding the role and the mechanism of NOX in both pancreatitis and PC.

NOX IN AP
AP occurs as a result of the abnormal activation of pancreatic enzymes, which leads to the digestion of the pancreas itself 
and surrounding organs[11]. It is primarily characterized by localized inflammation of the pancreas and can even cause 
systemic organ dysfunction. Acinar cell injury leading to premature activation of pancreatic enzymes is considered the 
primary factor in the initiation of AP[12]. The subsequent inflammation triggered by the necrosis of acinar cells plays a 
crucial role in the progression of the disease[13]. Among the immune cells responding to the released chemotactic factors 
from injured acinar cells during pancreatitis, macrophages are among the earliest[14]. Therefore, both acinar cells and 
macrophages play significant roles in the development of AP. As the disease worsens, AP can even cause multiple organ 
dysfunction, known as severe AP, which has a high mortality rate and attracts significant clinical attention[15]. Therefore, 
this section focuses on exploring the regulatory role of NOX in acinar cells, macrophages, and other organ failures 
associated with AP.

NOX causes acinar cell damage
Pancreatic acinar cells are secretory cells that primarily synthesize, store and ultimately release digestive enzymes into the 
duodenum[16]. However, when exposed to harmful stimuli, acinar cells exhibit inflammatory characteristics by 
activating signaling transduction pathways associated with the expression of inflammatory mediators[17]. The injury or 
death of acinar cells can initiate inflammatory cascades, which is the main pathogenesis of AP.

Pancreatic acinar cells constitutively express NOX subunits p67phox and p47phox in the cytosol, as well as NOX1 and 
p22phox in the membrane, which could be activated by cerulein[18]. Upon activation, a complex of the cytosolic subunits 
translocates to the membrane and facilitates NOX-dependent formation of superoxide and other secondary ROS. In the 
early stage of AP, the NOX activity of acinar cells is significantly upregulated, leading to the activation of downstream 
nuclear factor kappa-B (NF-κB) pathway and stimulation of interleukin (IL)-6 expression[18]. In addition to inducing AP, 
NOX can also participate in a series of inflammatory cascade reactions to promote the progression of AP.

NOX hyperactivity disrupts mitochondrial membrane potential, leading to ATP depletion and subsequent injury in 
pancreatic acinar cells[19]. The excessive production of ROS by NOX induced zymogen activation, mitochondrial 
dysfunction and cytokine expression, which further injury to pancreatic acinar cells[20,21]. And the use of the NOX1 
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inhibitor could suppress these responses and alleviate inflammation in alcoholic AP model. To further investigate the 
mechanism of NOX action on acinar cells in AP, Ju et al[22] discovered that NOX mediated the activation of Janus kinase 
(JAK)2/signal transducer and activator of transcription and mitogen-activated protein kinases (MAPKs) (ERK, JNK, p38) 
to induce the expression of transforming growth factor (TGF)-β1 in cerulein-stimulated pancreatic acinar cells, thereby 
facilitating the progress of AP. Furthermore, NOX is believed to be involved in acinar cell death. NOX upregulates IL-6 
and mediates ROS-induced apoptosis in pancreatic acinar cells stimulated with the cholecystokinin analogue cerulein
[23]. It is known that cerulein induced the expression of apoptosis-inducing factor (AIF) in pancreatic acinar cell. During 
the process of cell apoptosis, AIF relocates from the mitochondria to the cytoplasm, and subsequently enters the cell 
nucleus, resulting in the aggregation and fragmentation of nuclear DNA, ultimately inducing apoptosis in pancreatic 
acinar cells[24,25]. Previous studies have indicated that NOX activation might be the upstream events of AIF expression, 
leading to cerulein-induced apoptosis in pancreatic acinar cells[26].

NOX is involved in the M1 polarization of macrophage in AP
Accumulating evidences shows that both the number and activation of macrophages play a crucial role in determining 
the severity of AP[27-29]. Damaged pancreatic acinar cells release cell contents including trypsin, zymogen granules, 
cytokines, cell-free DNA and other damage-related molecular patterns, which recruit and activate inflammatory 
macrophages[30]. Macrophages can be categorized into two main subtypes, M1 and M2, based on their stimuli and 
function in vitro[31]. M1 macrophages are responsible for producing cytokines and inflammatory mediators, which 
contribute to the amplification of local and systemic inflammation. As a result, they dominate the pro-inflammatory 
phase of AP. On the other hand, M2-like macrophages are prevalent during the process of pancreas repair/regeneration
[32]. Therefore, M1 macrophages are dominated during the development of AP.

NOX-induced ROS production has a role in maintaining the polarization of M1 macrophage[33,34]. The involvement of 
NOX in mediating macrophage M1 polarization has been studied in various organs. For instance, NOX4 has been shown 
to induce macrophage M1 polarization following spinal cord injury[35]. In breast cancer, M1 macrophages exhibited 
significantly increased levels of ROS and mRNA expression of NOX2, NOX5, and CYBA (p22phox) compared to M2 
macrophages[36]. Moreover, it is reported that NOX2 could mediate macrophage M1 polarization in traumatic brain 
injury through NF-κB pathway[37]. Regarding the pancreas, Han et al[38] discovered that NOX-mediated oxidative stress 
the polarization of M1 macrophages in the pancreas, thereby promoting the progression of AP via the activation of NF-κB 
and inflammasome pathways. Accordingly, NOX is capable of mediating the polarization of M1 polarization and 
contributing to the progression of AP. Further research is warranted to elucidate the underlying mechanisms by which 
NOX maintains M1 macrophages in the context of AP.

NOX is involved in AP-associated organ dysfunction
Despite the mild nature of AP in most patients, about 20%-30% experience a severe form that frequently results in 
dysfunction of one or multiple organs, requiring intensive care[39]. Moreover, recent studies have uncovered a link 
between NOX and organ dysfunction in AP, in addition to its role in inducing local inflammation in the pancreas.

Carrascal et al[40] showed that circulating exosomes involved in the progression of inflammation from the pancreas to 
distant organs leading to organ dysfunction in AP. Interestingly, these exosomes’ impact is dependent on NOX. 
Specifically, NOX is activated by proteins carried by exosomes, resulting in the production of free radicals and the 
promotion of an inflammatory response. Furthermore, NOX inhibitor pretreatment blocked the expression of IL-1β and 
tumour necrosis factor alpha mRNAs induced by exosomes obtained from patients with severe AP.

NOX is widely distributed and is participated in various pathological processes of different organs. Yang et al[41] 
showed that NOX regulate the activity of downstream p-AKT and glycogen synthase kinase (GSK)-3β by regulating ROS 
levels, thereby affecting the release of inflammatory mediators and regulating AP-related kidney injury. Jin et al[42] found 
NOX2 and NOX4 were upregulated in lung tissue of severe AP and NOX-mediated ROS could activate NACHT, LRR, 
and PYD domains-containing protein 3 inflammasome and NF-κB signaling and facilitate AP-associated lung injury. Wen 
et al[43] showed that hyperactivity of NOX underlies myocardial injury in severe AP by promoting ROS generation with 
increased oxidative stress and cardiomyocyte apoptosis via activating the MAPK pathway. Moreover, NOX is involved in 
the process of intestinal barrier damage in sever AP, which was associated with an increase in the systemic concentration 
of cytokines, oxidative stress and activated NF-κB and p38 MAPK expression[44].

In summary, NOX promotes the development of AP by causing acinar cell damage and inducing macrophage 
polarization into M1 type (Figure 1). Moreover, NOX also be involved in distant organ dysfunction in AP. While the 
specific mechanism of NOX act on acinar cell and macrophages needs further study, which help us to further elucidate 
the pathogenesis of AP.

NOX IN CP
CP manifests from a long-term inflammation, which results in a significant replacement of the parenchyma by 
extracellular matrix (ECM)-rich connective tissue (i.e., fibrosis) and permanent organ damage[45]. Notably, fibrosis is the 
hallmark histological feature of CP[46]. Fibrosis is a post-injury repair response in which tissue homeostasis is disrupted 
and fibrotic changes occur under the action of specific cytokines and a pro-oxidative environment, eventually leading to 
organ dysfunction[47]. The current clinical treatment of CP is limited to symptomatic treatment and management of 
complications. Thus, a better understanding of the mechanism underlying the pathogenesis of CP is necessary in order to 
develop more effective therapeutic options to attenuate the progression of the disease. Clarifying the mechanism of 
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Figure 1 The scheme of the potential roles of nicotinamide adenine dinucleotide phosphate hydrogen oxides in pancreatic acinar cells 
and macrophages, which leading the development of acute pancreatitis. NOX: Nicotinamide adenine dinucleotide phosphate hydrogen oxides; AIF: 
Apoptosis inducing factor; ROS: Reactive oxygen species; NF-κB: Nuclear factor kappa-B; IL: Interleukin; TGF: Transforming growth factor; PDGF: Platelet-derived 
growth factor; PSC: Pancreatic stellate cell; DPI: Diphenylene iodium.

pancreatic fibrosis in CP and exploring therapeutic methods to delay or reverse pancreatic fibrosis are the basis to finding 
effective treatment for CP.

NOX induce pancreatic stellate cell activation
The activation of pancreatic stellate cells (PSCs) is the core to CP pathological processes. PSCs exist in two forms, the 
quiescent state and the activated state. Under physiological conditions, PSCs are in a quiescent state and secrete some 
growth-promoting cytokines to maintain the basic structure and function of the pancreas. When pancreas tissue damaged 
or in response to stimulation, PSCs are activated and transformed from their quiescent into myofibroblast-like phenotype, 
characterized by the disappearance of intracellular lipid droplets and the expression of α-smooth muscle actin (α-SMA) 
and ECM components such as type I collagen, type III collagen, and fibronectin[48]. PSCs express key components of 
NOX, p22phox, p47phox, NOX1, gp91phox/NOX2 and NOX4[49]; and NOX is recognized to be involved in PSCs 
activation.

Masamune et al[49] found that upregulating NOX activity in PSCs could induce PSCs activation and proliferation. 
Furthermore, diphenylene iodium (DPI) abolished ROS production in isolated PSCs and inhibited transformation of 
freshly isolated PSCs to a myofibroblast-like phenotype. NOX-mediated ROS in PSCs could accelerate fibrosis 
progression in CP. Xia et al[50] found Nox1-derived ROS in PSCs mediate the fibrotic process of CP by activating the 
downstream redox-sensitive signaling pathways AKT and NF-ĸB, up-regulating metalloproteases (MMP)-9 and Twist, 
and producing α-SMA and collagen I and III. However, limited research has been focused on exploring the mechanism of 
NOX promoting PSCs activation. More studies are needed in this topic.

NOX is involved in the M2 polarization of macrophage in CP
In the pancreatic tissue of CP, M2 macrophages are the dominant type of macrophages[51]. These M2 macrophages secret 
cytokines including TGF-β, platelet-derived growth factor, IL-10 and various matrix metalloproteinases, which play a role 
in the progression of fibrosis and chronic inflammation in CP[52]. Furthermore, M2 macrophages can activate PSCs, and 
the cross-talk between activated PSCs and M2 macrophages initiates and sustains the fibrotic process in CP[53]. NOX-
mediated ROS can act as second messengers playing an extremely important role in the regulation of macrophage 
polarization[54-56]. Previous studies showed NOX was involved in M2 polarization of macrophages. Reduced NOX2 
expression improves the wound healing functions of M2 macrophages in degrading disulphide protein[57]. Furthermore, 
the interaction between M2 macrophages with apoptotic bodies triggers instability of NOX2 mRNAs through binding 
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blockade of RNA-binding protein SYNCRIP to NOX2 3’ untranslated region. And this further defect the ROS production 
and leads to M2 macrophage polarization[58]. Mongue et al[59] found cardiomyocyte NOX4 modulated macrophage 
polarization toward M2 phenotype in myocardial injury mice model. Intervention of antioxidant butylated hydroxy 
anisole by inhibiting NOX-mediated O2− production blocked monocyte differentiation to M2 type[60]. These results 
suggest that NOX may play a role in regulating M2 polarization of macrophages in the pancreas of CP. Further studies 
are needed to investigate this relationship.

In summary, NOX is involved in the progression of CP (Figure 2). NOX promotes the activation of PSC in the fibrotic 
process of CP. Moreover, the application of NOX inhibitors in vitro effectively inhibits the activation of PSC. Additionally, 
several studies have shown that NOX induces M2 polarization of macrophages in other organs. It has been established 
that M2 macrophages promote the occurrence and development of CP. Therefore, further research is needed to 
investigate whether NOX also plays a regulatory role in the M2 polarization of macrophages in CP.

NOX IN PC
The global burden of PC has increased dramatically over the past few decades and is expected to continue to represent a 
leading cause of cancer-related mortality[61]. Although efforts are being made to explore the pathological process of PC, 
its specific etiology remains unclear. Furthermore, PC shows resistance to chemotherapy, and there is currently no 
effective clinical treatment available[62]. Therefore, elucidating the underlying mechanisms of PC and identifying 
potential therapeutic targets have been topics of great interest.

KRAS promotes NOX activity
The oncogenic KRAS mutation is the major event in PC; it confers permanent activation of the KRAS protein, which acts 
as a molecular drive common phenotypes that expose specific vulnerabilities[63]. KRAS transformed PC cells have 
increased NOX activity and superoxide levels, as compared to parental cells[64,65]. Moreover, several reports have 
indicated that in human PC, expression of NOX family members is increased when compared to non-transformed 
pancreatic tissue[66-68]. KRAS gene mutations can lead cells to depart from common phenotypes and expose specific 
vulnerabilities. One example of such a phenotype is abnormal redox homeostasis, with excessive accumulation of ROS 
playing a crucial role in causing this aberrant redox homeostasis[69]. The ROS generated by KRAS, primarily relies on 
NOX production. ROS exerts oxidative stress on cells, which disrupts redox homeostasis and promotes tumor formation. 
This occurs due to an abnormal activation of signaling networks that initiate tumorigenesis[70]. NOX is a multi-subunit 
enzyme which is activated through the small GTPase Rac1[71,72]. Consequently, in PC cell lines, presence of oncogenic 
KRAS links to increased Rac1 activity and superoxide production; and KRAS-induced ROS production can be inhibited 
by downregulation of p47phox, the cytosolic regulatory subunit of NOX[73,74]. Therefore, there is a close correlation 
between NOX and the development of PC caused by the oncogenic KRAS gene mutation.

NOX regulates PC cells from apoptosis
One reason why PC is highly aggressive and unresponsive to treatments is its resistance to apoptosis. ROS induce 
apoptosis indirectly through damage to DNA, proteins and lipids, or more directly through the activation of pro-
apoptotic signaling cascades such as SAPK/JNK, ERK1/2, and p38 upon the induction of the MAPK pathways[75]. 
However, at high concentrations, ROS, especially as H2O2, can inhibit caspases, resulting in irreversible damage to cell 
components and leading to necrosis[76]. Conversely, in certain cases, NOX-produced ROS can trigger an anti-apoptotic 
effect by activating NF-κB or Akt/ASK1 transduction pathways[77].

Study have found that growth factors can induce the production of ROS by mediating NOX in PC cells, thus protecting 
the cells from apoptosis[72]. The oncosuppressor p53 gene plays a crucial role in the process of apoptosis in cancer cells. 
Research has found that NOX1 inhibits tumor cell apoptosis by regulating p53 deacetylation, suppressing its transcrip-
tional activity, and activating the SIRT1 pathway[78]. Mochizuki et al[77] noted that ROS, generated by NOX4, transmits 
signals for cell survival through the AKT-ASK1 pathway. Furthermore, Lee et al[66] demonstrated that NOX4-generated 
ROS promote PC cell survival by inhibiting JAK2 dephosphorylation. Study has discovered that the application of a NOX 
inhibitor, Tyrosine, effectively inhibits cell proliferation of human and hamster PC cells by inhibiting the G1 phase of the 
cell cycle with cyclin D1 downregulation and inactivation of AKT-GSK3β and ERK1/2 signaling pathways[79]. Therefore, 
NOX could regulate PC cells from death.

NOX facilitates epithelial to mesenchymal transition in PC
The epithelial to mesenchymal transition (EMT) is a crucial mechanism by which tumor cells acquire motility and 
invasiveness[80]. More and more evidence indicates that EMT plays a vital role in the pathogenesis, invasion, metastasis, 
and drug resistance of PC[81,82]. It is worth noting that recently, it has been discovered that many important EMT 
regulators are sensitive to redox reactions, thereby being able to elucidate the molecular basis of EMT from a redox 
perspective[83].

NOX4, a subunit of NOX, has been implicated in the EMT process in PC[84]. NOX4 mRNA correlation with EMT gene 
expression such as collagen (COL1A2, COL3A1, COL5A2), MMP2, MMP9 and fibronectin (FN1)[85]. Additionally, 
studies have discovered that NOX4-derived ROS transmit TGF-β-triggered EMT signals through PTP1B in PC[86]. 
Furthermore, Witte et al[87] proposed that TGF-β1-induced EMT in PC cells is mediated through RAC1/NOX4/ROS/p38 
MAPK cascade. More recent research has demonstrated that NOX4 caused inactivation of lysine demethylase 5A, leading 
to increased methylation modification of histone H3 and regulation of transcription of EMT-associated gene SNAIL1. 
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Figure 2 The scheme of the potential roles of nicotinamide adenine dinucleotide phosphate hydrogen oxides in pancreatic stellate cells 
and macrophages, which facilitating pancreatic fibrosis of chronic pancreatitis. NOX: Nicotinamide adenine dinucleotide phosphate hydrogen 
oxides; AIF: Apoptosis inducing factor; ROS: Reactive oxygen species; TGF: Transforming growth; IL: Interleukin; JAK: Janus kinase; STAT: Signal transducer and 
activator of transcription; MAPK: Mitogen-activated protein kinase.

Moreover, the deficiency of NOX4 has been shown to suppress hypoxia-induced EMT in PC cells[88].

NOX and genomic instability
Extensive reviews have investigated the impact of ROS on DNA damage. Cell exposure to chronic oxidative stress has 
been reported to elicit genomic instability. Moreover, there is evidence indicating elevated ROS levels in genomically 
unstable clones[89,90]. Although the precise function of NOX in cellular transformation remains unclear, several studies 
provide suggestive evidence for its role. NOX4 induces the production of ROS, which damages mitochondrial DNA and 
leads to mitochondrial dysfunction[91]. In addition to its known involvement in chromosomal instability, NOX1, NOX2, 
NOX4, and DUOX have been associated with the regulation of p53 transcription factor activity[92-94]. Moreover, p53 
mutation can “transform” NOX4 from a protective and good prognostic indicator into a harmful one by promoting 
programs favorable to cancer progression, including EMT, cell migration, cell adhesion, and angiogenesis[85].

There are studies suggest a relationship between NOX and oncogene in PC. Ogrunc et al[95] demonstrated that NOX4 
promotes the transformation of PC cells expressing oncogenes by generating mitogenic ROS. This transformation leads to 
a compromised DNA damage response and oncogene-induced cellular senescence bypass. Ju et al[96] identified that 
NOX4 as a critical factor that facilitates the interaction between KRAS activation and p16 inactivation, promoting the 
occurrence of PC.

In summary, NOX plays a crucial role in the progression of PC. NOX could regulate PC cells from death, promote the 
EMT process, and induce genomic instability (Figure 3). Furthermore, NOX is also involved in the key oncogenic process 
of abnormal redox homeostasis induced by the oncogene KRAS in PC. It is worth noting that that among the subunits of 
NOX, NOX4 has been extensively studied in relation to PC and has been found to promote PC through various 
mechanisms. Therefore, NOX4 may represent a potential therapeutic target for PC, but further research is needed to 
confirm this.

PERSPECTIVE
As we known, NOX is a membrane-bound multi-component enzyme complex. Different isoforms of NOX are distributed 
in different tissues, cells, and subcellular structures, exerting specific functions under physiological and pathological 
conditions. Although studies have demonstrated the significant role of NOX in pancreatitis and PC, the exact subunit of 
NOX responsible for these conditions remains unclear. NOX subunits express differently in acinar cells, PSCs and 
macrophages. Identifying the specific subunits participate in promoting pancreatic disorders progression help us better 
understand the pathogenesis of pancreatitis and PC. Further studies are needed to explore this topic.



Bi YW et al. NADPH oxidase in pancreatic diseases

WJG https://www.wjgnet.com 435 February 7, 2024 Volume 30 Issue 5

Figure 3 The scheme of the potential roles of nicotinamide adenine dinucleotide phosphate hydrogen oxides in pancreatic cancer. ASK: 
Apoptosis signal regulating kinase; TGF: Transforming growth; SIRT: Silent information regulator; NF-κB: Nuclear factor kappa-B; ERK: Extracellular regulated 
protein kinases; SMAD: Drosophila mothers against decapentaplegic protein; NOX: Nicotinamide adenine dinucleotide phosphate hydrogen oxides; AIF: Apoptosis 
inducing factor; ROS: Reactive oxygen species; EMT: Epithelial to mesenchymal transition.

Although numerous studies were conducted on the investigation of pancreatitis and PC, no effective methods of 
prevention and treatment have been developed. Since NOX play an important role in both pancreatitis and PC, it may be 
considered as a therapeutic target. Study showed inhibition of NOX by DPI suppresses apoptosis of pancreatic acinar 
cells by reducing the expression of apoptosis-associated genes and caspase-3 activity[97]. NOX2 inhibitor, GSK2795039, 
caused about 50% reduction in the level of serum amylase activity in AP mice[98]. Apocynin is a specific inhibitor of 
NOX. Recent studies proved that apocynin could prevent AP and AP-associated organs injury[41-44]. NOX1 knockout 
alleviate pancreatic fibrosis in CP mice[50]. In terms of PC, drug resistance is the main reason why chemotherapy drugs 
cannot achieve ideal treatment effects. It is worth noting that NOX is associated with chemotherapy resistance[99-101]. 
Recent breakthroughs in cancer treatment consisting of new combinations of existing medications. It reminds us that 
chemotherapy with NOX inhibitor may achieve better therapeutic effects in PC. More studies are needed to verify the 
therapeutic effect of NOX in pancreatic diseases.

Though they are distinct diseases of pancreas that pancreatitis is benign and PC is malignant, numerous studies 
indicate that pancreatitis is linked to PC[102,103]. The exact nature of this association is not fully elaborated. Aberrant 
redox homeostasis is the common features in the pathogenesis of pancreatitis and PC, which could be mediated by NOX. 
Therefore, further study may focus on the role of NOX in the transformation of pancreatitis and PC which help us clarify 
the complex relationship between them.

CONCLUSION
In conclusion, NOX plays a role in the occurrence and development of pancreatitis by regulating various types of 
pancreatic cells, such as acinar cells, PSCs, and macrophages. Additionally, it promotes PC progression by participating 
in abnormal cell apoptosis, triggering the EMT processes, and causing cell genomic instability. Understanding the role of 
NOX in pancreatic diseases is crucial for a gaining a deeper understanding of the underlying mechanisms of pancreatitis 
and PC. Further research is needed to uncover the specific functions of different subtypes within the NOX family in these 
diseases. Moreover, the development of NOX-specific inhibitors is necessary to validate the feasibility of targeting NOX 
as a treatment approach for pancreatic diseases.
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