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Abstract
Over the past several decades, type 2 diabetes mellitus (T2DM) has been 
considered a global public health concern. Currently, various therapeutic 
modalities are available for T2DM management, including dietary modifications, 
moderate exercise, and use of hypoglycemic agents and lipid-lowering 
medications. Although the curative effect of most drugs on T2DM is significant, 
they also exert some adverse side effects. Biologically active substances found in 
natural medicines are important for T2DM treatment. Several recent studies have 
reported that active ingredients derived from traditional medicines or foods exert 
a therapeutic effect on T2DM. This review compiled important articles regarding 
the therapeutic effects of natural products and their active ingredients on islet β 
cell function, adipose tissue inflammation, and insulin resistance. Additionally, 
this review provided an in-depth understanding of the multiple regulatory effects 
on different targets and signaling pathways of natural medicines in the treatment 
of T2DM as well as a theoretical basis for clinical effective application.
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Core Tip: This review compiled leading articles about the therapeutic effects of natural 
products and their active ingredients on islet β cell function, adipose tissue inflam-
mation, and insulin resistance and provided an in-depth understanding of the multiple 
regulatory effects of different targets and signaling pathways of natural medicines in the 
treatment of type 2 diabetes mellitus.
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INTRODUCTION
According to the International Diabetes Federation, the number of patients with diabetes mellitus (DM) worldwide was 
536 million in 2021, which is expected to reach 783 million by 2045[1]. Globally, China has the highest number of patients 
with DM, whose prevalence is increasing steadily. By 2045, the total number of patients with DM in China is expected to 
exceed 174 million[1]. Based on its etiology, mechanism, and clinical manifestations, DM can be classified into type 1 DM, 
type 2 DM (T2DM), specific types of DM due to other causes, and gestational DM[2]. In China, T2DM accounts for 90% of 
all DM cases[3]. T2DM is mainly caused by insulin resistance (IR) associated with obesity, deficiencies in insulin secretion 
(INS), and reduction in islet cell numbers due to apoptosis[3]. DM and its complications are serious health and economic 
problems that affect individuals worldwide and require urgent prevention and early intervention.

Through diet management, lifestyle changes, and oral use of biguanides and sulfonylureas, blood sugar levels can be 
effectively controlled to treat T2DM. Although these treatment modalities can relieve symptoms and improve patients’ 
conditions to a certain extent, they cannot completely prevent the occurrence and progression of complications; moreover 
they exert toxic side effects[4]. Natural medicines have become a hotspot in the exploration of alternative treatments for 
DM owing to their minimal side effects. Natural products mainly refer to small or macromolecular active substances with 
pharmacological properties and are extracted from plants, animals, or microorganisms. They can be used to treat DM and 
its complications through multiple targets and pathways. The antidiabetic ingredients of natural products include 
monomeric compounds such as flavonoids, alkaloids, terpenes, polyphenols, saponins, and quinines[5].

The current literature on T2DM treatment with natural products is mostly based on their different active ingredients; 
however, reviews on their regulation mechanisms are lacking. This review aimed to summarize the mechanism of natural 
products and/or their monomers on T2DM treatment (Table 1). It also provided a theoretical basis for comprehensively 
understanding the mechanism and clinical application of natural medicines in the treatment of T2DM by summarizing 
the signal pathways involved in the regulation.

PROTECTION OF ISLET Β CELLS
Inhibition of islet β cell function is a prerequisite for T2DM occurrence. β cell impairment and IR are crucial in the 
development and pathogenesis of T2DM[6]. During the course of the illness, islet β cell function failure is observed along 
with frequent episodes of exacerbation[7,8]. Natural products exhibit notable effectiveness in reducing the inflammation, 
promoting the regeneration, and inhibiting the apoptosis of islet β cells (Figure 1).

Reduction in the inflammation of islet β cells
The accumulation of intra-islet macrophages is observed in T2DM, which represents the primary source of proinflam-
matory cytokines within the islets[9]. Activated monocytes and macrophages release proinflammatory mediators, such as 
tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1)[10], which 
activate inflammatory signaling pathways, such as the inhibitor of kappa B kinase and c-Jun N-terminal kinase (JNK), 
and impair the insulin signaling pathway by regulating the levels of phosphoinositide 3-kinase (PI3K)and protein kinase 
B(Akt).

Flavonoids: Quercetin is one of the most important bioflavonoids found in vegetables, cereals, fruits, and other plants. It 
is widely detected in green tea, onions, and apples and exerts antioxidative, anti-inflammatory, and antifibrotic effects
[11]. A previous study reported that the anti-inflammatory effect of quercetin is mediated by the upregulation of 
peroxisome proliferator-activated γ (PPAR-γ), which interferes with proinflammatory transcriptional factors, such as 
signal transducer and activator of transcription (STAT) and nuclear factor-kappa B (NF-κB), and reduces the expression of 
IL-1β, IL-6, and TNF-α[12]. Abdelkader et al[13] also demonstrated that the anti-inflammatory effect of quercetin 
decreased the expression of IκB-α by inhibiting the expression of IKK-α and IKK-β in islets β cells, thereby inhibiting NF-
κB activation and decreasing TNF-α levels.

Naringin and hesperidin are abundant in citrus fruits and exert antioxidative, antidiabetic, lipid-lowering, anti-athero-
sclerotic, and anti-inflammatory effects[14,15] They can reduce the expression of TNF-α and IL-6, regulate the level of 
nitric oxide (NO), activate the JNK pathway, inhibit the PI3K/Akt pathway, inactivate the lipid peroxide reaction, and 
reduce the levels of free radicals in high-fat diet/streptozocin (HFD/STZ)-induced rats with diabetes[16].

Polyphenols: Curcumin is a bioactive molecule found in the rhizome of turmeric plants; it exhibits extensive pharmaco-
logical and biological activities, such as exerting anti-inflammatory and hypoglycemic effects, improving β cell function, 
preventing β cell death, and improving IR[17]. It has been reported that curcumin indirectly inhibits the NF-κB pathway 
to prevent inflammation by inhibiting IκB-α degradation as well as reduces the levels of IL-6, MCP-1, and TNF-α in the 
serum of rats with diabetes[18]. Another study reported that curcumin decreased the expression of JNK, cyclooxygenase-
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Table 1 Mechanism of natural products in the treatment of type 2 diabetes mellitus

ModelClassification, 
extracts/monomers In vivo In vitro

Signaling pathway Related 
genes/proteins

Improvement 
effect Ref.

Flavonoids

Quercetin STZ-induced 
Wistar rats

- IKK/NF-κB/TNF-α Serum SOD and 
GSH ↑, TNF-α ↓

Lowered blood 
glucose, cholesterol, 
and triglyceride 
levels and restores 
the number of islet β 
cells

Abdelkader et al[13]

Fructose-treated 
Wistar rats

INS-1 β cells Akt/FoxO1 p-Akt, JAK2, and 
STAT3 ↑, 
Akt/FoxO1 and 
Socs3 ↓

Protected β cell mass 
and function 

Li et al[35]

STZ-induced 
Sprague–Dawley 
rats

- - Islet β cell number 
↑, total cholesterol ↓

Caused regeneration 
of islets and 
increased insulin 
release

Vessal et al[39]

Balb/c mouse - - HO-1 and Bcl-2 ↑, 
NO, iNOS, and Bax 
↓

Enhanced islet 
viability, reduced 
apoptosis

Kim et al[67]

db/db mice INS-1 cells SIRT3-FoxO3a SOD2, CAT, and 
Sirt3 ↑, cleaved-
caspase-3 and 
Bax/Bcl-2 ratio ↓

Protected islet β cells 
against apoptosis

Wang et al[68]

HFD-induced 
C57BL/6 mice

- AMPKα1/SIRT1 GLUT4, AMPK, 
and SIRT1 ↑, TNF-α
, IL-6, and MSP-1 ↓

Suppressed ATM 
infiltration and 
inflammation, 
increased insulin 
sensitivity, and 
decreased adipose 
tissue weight

Dong et al[103]

Hesperidin STZ-induced 
Wistar rats

- PI3K/Akt FFA, p-IRS-1, Akt, 
IL-6, and TNF-α ↓

Enhanced the 
antioxidant defense 
system while 
inhibiting the 
production of 
proinflammatory 
cytokines

Mahmoud et al[16]

STZ-induced 
Wistar rats

- - Antioxidative 
enzyme activities ↑, 
MDA, NO, and 
lipid peroxidation ↓

Decreased oxidative 
stress while 
preserving the 
integrity of β cells

Coskun et al[36]

db/db mice Palmitic 
acid-
induced 
MIN-6 cells

ERK1/2 Bcl-2/Bax ratio↑, 
caspase-3, caspase-
9, and caspase-12 ↓

Inhibited cell 
apoptosis, improved 
fat metabolism 
disorders, and 
reduced blood sugar 
levels

Zhuang et al[38]

Puerarin HFD-induced 
C57BL/6J mice 

High 
glucose-
induced 
MIN-6 cells

- GLP-1R ↑, PDX-1, 
caspase-3, and 
Foxo1 ↓

Improved glucose 
homeostasis and 
protected β cell 
survival

Yang et al[42]

STZ-induced 
C57BL/6 mice

CoCl2-
induced 
MIN-6 cells

PI3K/Akt/mTOR Bcl-2/BAX ratio 
and SOD and GPX1 
activity↑, caspase-3 
↓

Protected pancreatic 
β cell function and 
survival

Li et al[43]

3Cyanidin-3-glucoside - High 
glucose-
induced 
MIN-6 cell

NF-
κB/MAPK/caspase

β cell viability ↑, 
ROS, ERK, p-ERK, 
JNK, p-JNK, 
caspase-3, and Bax 
↓

Decreased the 
generation of 
intracellular reactive 
oxygen species, DNA 
fragmentation, and 
apoptosis rate; 
prevented pancreatic 
β cell apoptosis

Lee et al[69]

β cell activity and 
Bcl-2 ↑, caspase-3 

Promoted pancreatic 
β cell survival and 

Kaempferol - PA induced 
INS-1E cells

PDX-
1/cAMP/PKA/CREB

Zhang et al[73]
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and Bax ↓ function

- High 
glucose-
induced 
INS-1E β 
cells

cAMP/Akt/CREB Bcl-2 ↑ Improved insulin 
secretory function 
and synthesis in β 
cells

Zhang and Liu[74]

Butein - 3T3-L1 cells NF-κB/AMPK iNOS, NO, ERK, 
JNK, and 
p38MAPK ↓

Prevented adipose 
tissue inflammation 
and obesity-linked IR

Wang et al[96]

Naringin - 3T3-L1 cells NF-κB/ERK/TNF-α TNF-α and IL-6 ↓ Repressed FFA 
secretion to alleviate 
IR induced by FFA

Yoshida et al[98]

HFD-induced 
C57BL/6 mice

3T3-L1 cells IκB-α/JNK/TNF-α TNF-α, TLR2, and 
MCP-1 ↓

Decreased blood 
glucose levels

Yoshida et al[99]

Baicalin HFD-induced 
C57BL/6 mice

- - β-cell activity ↑, 
HOMA-IR ↓

Improved IR by 
inhibiting 
macrophage-
mediated inflam-
mation

Na et al[115]

HFD-induced 
C57BL/6 mice

- - MCP-1 ↓ Suppressed 
macrophage infilt-
ration into the 
adipose tissue

Yoshida et al[100]

HFD-induced 
C57BL/6J mice, 
C57BL/6 mice

- IRS1/PI3K/Akt, 
AMPKα

MAPK, NF-κB, and 
p85 ↑, FFA, IRS1, 
and Akt ↓

Exerted an anti-
inflammatory effect, 
inhibited IR

Pu et al[125]

Icariin High-sugar HFD 
and STZ-induced 
SD rats

- AMPK/GLUT-4 p-AMPK, and 
GLUT4 ↑, islets cell 
number ↓

Reduced 
hyperglycemia

Li et al[76]

Cyanidin-3-glucoside - H2O2-
induced 
MIN-6 cells

- Islet cell apoptosis, 
ERK, p38, and 
caspase-3 ↓

Prevented diabetes 
by inhibiting 
oxidative stress-
induced β cell 
apoptosis

Lee et al[70]

Anthocyanins STZ-induced SD 
rats

- - Caspase-3 ↓ Reduced IR and β 
cell apoptosis

Nizamutdinova et al
[71]

Polyphenols

Curcumin STZ-induced SD 
rats

High- 
fructose-
induced 
U937 
monocytes

IKK/NF-κB/TNF-α TNF-α, IL-6, and 
MCP-1 ↓

Reduced inflam-
mation and oxidative 
stress levels

Jain et al[18]

High fructose fed 
Wistar rats

- IKK/NF-κB /COX-2 Proliferation of β 
cells and SOD ↑, 
TNF-α and COX-2 ↓

Reduced glucose 
intolerance and IR

Maithilikarpagaselvi 
et al[19]

STZ-induced SD 
rats

PA and high 
fructose-
induced 
INS-1 cells

- Caspase-3 and Bax 
↑

Inhibited apoptosis Li et al[83]

- 3T3-L1 and 
BV-2 cells

IKK/NF-κB/TNF-α TNF-α, IL-1β, IL-6, 
and COX-2 ↓

Inhibited chronic 
inflammation

Gonzales et al[111]

Gallic acid and p-
coumaric acid

STZ-induced 
Albino rats

- IKK/NF-κB/iNOS PPARγ mRNA and 
adiponectin ↑, TNF-
α, IL-1, and IL-6 ↓

Decreased glucose 
and glycosylated 
hemoglobin levels, 
increased insulin 
level and body 
weight

Abdel-Moneim et al
[23]

Resveratrol HFD-induced SD 
rats

- IKK/NF-κB/TNF-α ICAM-1, MCP-1, 
IL-1, and TNF-α ↓

Improved IR and 
vascular 
permeability and 
attenuated inflam-
matory injury

Zheng et al[28]

HFD + STZ-
induced SD rats

PA-induced 
INS-1E cells

SIRT1/NF-κB/TNF-α PPAR-γ, SIRT1, 
FOXO-3a, and 
TNF-α ↑

Decreased blood 
glucose and insulin 
levels

Cao et al[29]
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- UA-induced 
MIN-6 cells

PI3K/Akt miR-126 ↑, Bax, 
cleaved-caspase-3, 
and iNOS ↓

Enhanced cell 
viability, reduced cell 
apoptosis, and 
increased insulin 
secretion

Xin et al[77]

Human islet cells - - VEGF, insulin, and 
C-peptide secretion 
↑, ROS and HIF-1α 
↓

Diminished 
apoptosis and 
enhanced islet 
survival and function

Keshtkar et al[79]

Sargassum 
oligocystum

STZ-induced 
Wistar rats

- - - Enhanced the 
number of insulin-
positive β cells, 
facilitated the 
survival of islet β 
cells, and conserved 
islet mass

Akbarzadeh et al[46]

HSHFD-induced 
SD rats

- - - Decreased blood 
glucose levels, 
alleviated pancreas, 
liver, and kidney 
damage

Motshakeri et al[45]

Genistein HF + STZ-induced 
C57BL/6 mice

- - - Improved glycemic 
control, glucose 
tolerance, and insulin 
levels while 
enhancing islet β cell 
survival

Fu et al[47]

HFD + STZ-
induced Wistar 
rats

- ERK1/2 /Akt Bcl-2 and caspase-3 
↓

Regulated pancreatic 
β cell function, 
enhanced the 
morphology of 
pancreatic β cells, 
and mitigated 
cellular apoptosis

Yousefi et al[49]

Mangiferin PPX C57BL/6J 
mice

- - Cyclins D1 and D2 
and cyclin-
dependent kinase 4 
↑, p27Kip1 and 
p16INK4a ↓

Stimulated β cell 
proliferation and 
suppressed β cell 
apoptosis

Wang et al[53]

Cranberries - 3T3-L1 cells - AP2, FAS, LPL, HSL
, and PLIN1 mRNA 
↓

Inhibited mass 
production of the 
adipose tissue

Kowalska et al[105]

- 3T3-L1 cells - IL-6, PAI-1, McP-1, 
and leptin ↓

Exerted an anti-
inflammatory effect

Kowalska and Olejnik
[106]

Peanut skin extract HFD-induced 
mice

- - TNF-α, IL-1β, IL-6, 
and PAI-1 ↓

Maintained the gut 
microbiota, inhibited 
inflammation, and 
reduced fasting 
blood glucose levels, 
body weight, and 
food intake

Xiang et al[109]

Luteolin - 3T3-L1 cells AMPK/SIRT1 p-p65 ↑, TNF-α, IL-
6, and MCP-1 ↓

Inhibited inflam-
mation and 
promoted glucose 
disposal

Xiao et al[112]

HFD-induced 
C57BL/6N mice

- - IL-1β and PAI-1 ↓ Enhanced dyslip-
idemia, ameliorated 
hepatic steatosis, 
improved IR, and 
reduced inflam-
mation

Kwon et al[131]

HDF-induced 
C57BL/6J mice

- - PPARγ, SREBP1, 
SREBP2, ACC 
G6PD, Fas, ME, 
PAP, HMCGR, and 
ACAT ↓

Attenuated hepatic 
lipotoxicity and 
improved circulating 
fatty acid levels as 
well as hepatic 
insulin sensitivity

Kwon et al[130]

Palmitic acid 
and high-
fructose-

Proliferation of islet 
β cells, AKT, GSK-3
β, and GYS-2 levels 

Decreased fasting 
blood glucose, serum 
insulin, leptin, trigly-

Mulberry anthocyanin 
extract

db/db mice PI3K/Akt Yan et al[123]
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induced 
HepG2 cells

↑, TC, TG, FOXO-1, 
and PGC-1α ↓

ceride, IR, and 
cholesterol levels and 
increased 
adiponectin levels

Terpenoids

Geniposide HFD-induced 
C57BL/6J mice

MIN-6 cells β-catenin/TCF7L2 TCF7L2 and GLP-
1R ↑, GSK3 ↓

Promoted β cell 
survival by inducing 
proliferation and 
inhibiting apoptosis

Yao et al[56]

Paeoniflorin - INS-1 cells MAPK/caspase Bax, p38, JNK, 
caspase-3 activity ↓

Enhanced insulin 
secretion and 
inhibited β cell 
apoptosis

Liu et al[90]

- High-
fructose-
induced 
INS-1 cells

- HO-1 and Bcl-2 ↑, 
caspase-3 and Bax ↓

Protected β cells and 
reduced apoptosis

Liu et al[88]

Alpha-mangostin - STZ-induced 
INS-1 cells

PI3K/Akt and ERK Bax, p38, JNK, and 
caspase-3 activity ↓

Improved insulin 
secretion in 
pancreatic β cells and 
prevented apoptosis

Lee et al[87]

Ethanolic extracts of 
Pluchea indica

STZ-induced 
BALB/C mice

- - IFN-γ, TNF-α, IL-1β
, caspase-3, 
caspase-8, and 
caspase-9 ↓

Maintained body 
weight, reduced 
hyperglycemia, 
restored islet 
function, and 
inhibited β cell 
apoptosis

Nopparat et al[89]

Dioscorea batatas 
extract

HDF-induced 
C57BL/6 mice

- PI3K/Akt p-Akt ↑, p-ERK, 
and p-S6K1 ↓

Reduced glucose and 
insulin levels and 
improved IR

Kim et al[132]

Alkaloids

Rhizoma coptidis HFD/STZ-
induced Wistar 
rats

- PI3K/p-Akt PPAR-γ ↑, TNF-α, 
GLUT4, HOMA-IR, 
TC, TG, and p-Akt 
↓

Enhanced insulin 
sensitivity of the 
adipose tissue, 
regulated 
adipogenesis, 
elevated glucose 
uptake in adipocytes, 
and preserved β cell 
function

Gandhi et al[127]

Berberine db/db mice PA-induced 
MIN6 cells

iPLA2β/OL/OPA1 TNF-α, IL-1, NO, 
PEG2, and CRP ↑

Prevented apoptosis 
of β cells and 
enhanced islet β cell 
function

Li et al[84]

Brucea javanica, 
luteolin, protocatechuic 
acid

NA/STZ-induced 
SD rats

- - TG, TC, IL-6, INF-γ, 
TNF-α, ROS, and 
MDA ↓

Improved hepatic 
glucose and 
carbohydrate 
metabolism, 
suppressed oxidative 
stress, and prevented 
inflammation

Li et al[83]

Coffee STZ-induced 
C57BL/6J

- - Caspase-3 and Bax 
↓

Reduced glucose 
levels and 
maintained 
pancreatic insulin 
contents

Kobayashi et al[85]

Caffeic acid, 
naringenin, and 
quercetin

- INS-1 cells PI3K/Akt HSP90 mRNA ↑, 
caspase-3 and Bax ↓

Enhanced glucose-
induced insulin 
secretion and 
sensitivity and 
improved β cell 
survival and function

Kobayashi et al[86]

Quinones

Promoted β cell 
regeneration, 
mitigating inflam-
mation and oxidative 

Thymoquinone STZ-induced 
Wistar rats

- - Survivin CD31 and 
IL-10 ↑, caspase-3, 
IL-1β, and TBARSS 
↓

El-Shemi et al[60]
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stress, suppressed 
apoptosis of β cells, 
and enhanced 
revascularization of 
islets

Akt: serine/threoninekinase; ATM: Adipose tissue macrophage; CoCL2: Cobalt dichloride; FFA: Free fatty acids; GSH: Glutathione; HFD: High-fat diet; 
HSHFD: High sucrose-high fat diet; HOMA: Homeostasismodel assessment; IR: Insulin resistance; INS: Insulin; IL: Interleukin; MDA: Malondialdehyde; 
MCP: Membrane cofactor protein; NA: Nicotinamide; NF-κB: Nuclear factor-kappa B; NO: Nitric oxide; PA: Palmitic acid; PPAR: Peroxisome proliferator-
activated receptors; PPX: Partial pancreatectomy; PI3K: Phosphatidylinositol-3-hydroxykinase; ROS: Reactive oxygen species; SOD: Superoxide dismutase; 
STAT: Signal transducer and activator of transcription; STZ: Streptozocin. TC: Total cholesterol; TG: Triglyceride; TNF: Tumor necrosis factor; UA: Uric 
acid; VEGF: Vascular endothelial growth factor.

Figure 1 Mechanism of natural products in promoting the regeneration and inhibiting the apoptosis of islet β cells. The letters inside the black 
squares refer to natural products. Inhibitory effects are shown by black pathways. A: Alpha-mangostin; C: Caffeic acid; D: Dioscorea batatas extract; G: Gallic acid; 
Ge: Genistein; Gen: Geniposide; H: Hesperidin; K: Kaempferol; M: Mulberry anthocyanin extract; P: Paeoniflorin; Pu: Puerarin; Q: Quercetin; R: Resveratrol; FFA: 
Free fatty acids; FOXO: Forkhead box class O; JNK: c-Jun N-terminal kinase; mTOR: Mammalian target of rapamycin; NF-κB: Nuclear factor-kappa B; NO: Nitric 
oxide; PI3K: Phosphoinositide 3-kinase; ROS/RNS: Reactive oxygen/nitrogen species.

2 (COX-2), protein kinase C, extracellular signal-regulated kinase (ERK), and p38, reduced the level of malondialdehyde 
(MDA), and prevented inflammation[19].

Gallic and p-coumaric acids are found in plants such as tea, mango, and cocoa; they exert anti-inflammatory, antiox-
idative, and antiobesity effects[20,21]. IL-1β reportedly induces NO production, increases NF-κB DNA binding, activates 
inducible NO synthase (iNOS) in islet β cells, and aggravates the inflammatory injury in islet β cells. Oral administration 
of gallic and p-coumaric acids also increases the expression of PPAR-γ[22], suppresses the expression of NF-κB, decreases 
the levels of proinflammatory cytokines (IL-1, IL-6, and TNF-α), iNOS expression, and nitrite production, and increases 
insulin sensitivity[23].

Luteolin is widely found in vegetables, fruits, and natural herbs, such as parsley, thyme and celery. It exerts various 
antitumor and anti-inflammatory effects by inducing cell apoptosis and inhibiting NF-κB activation, respectively[24]. 
Luteolin reportedly inhibits the NF-κB pathway and increases IL-10 levels in lipopolysaccharide-activated macrophage-
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like cell lines, thus exerting its anti-inflammatory effect[25].
Resveratrol is detected in cereals, fruits, and plant derived-beverages. It exerts antidiabetic, anti-inflammatory, and 

antioxidative effects[26]. Resveratrol also inhibits the production of inflammatory factors by activating sirtuin 1 (SIRT1) 
and inhibiting p65/RelA acetylation, which results in decreased mRNA expression of ICAM-1, MCP-1, and TNF-α[27-29].

Genistein is an isoflavone found in legumes and herbs. It is a natural estrogen and tyrosine kinase inhibitor with 
potential hypolipidemic, antioxidative, and antiapoptotic effects[30]. Genistein reportedly inhibits p65 acetylation by 
activating SIRT1 to reduce the levels of IL-1β, IL-6, and TNF-α in ovariectomized rats with diabetes as well as the 
expression of NF-κB[31].

Alkaloids: Brucea javanica belongs to the bitter wood family, which is generally used for the treatment of DM[32]. A 
previous study showed that it effectively reduced the levels of TNF-α and IL-6 in rats, inhibited the NF-κB pathway, 
enhanced the expression of insulin receptor substrate-1 (IRS-1), and GLUT4 and played an anti-inflammatory role[33].

Promotion of β cell regeneration
β cells are key to maintaining balance in glucose metabolism. A decrease in the number of β cells leads to insufficient 
insulin production, which is one of the key factors in the pathogenesis of T2DM. β cell regeneration can be considered a 
new approach for treating T2DM[34].

Flavonoids: Quercetin promotes the differentiation and regeneration of β cells[13]. Previous studies have revealed that 
quercetin decreases the phosphorylation of Akt and FoxO1 in fructose-fed rat islets and increases the expression of 
nuclear FoxO1 in fructose-treated INS-1 cells[35]. Quercetin significantly decreases MDA and NO levels, increases antiox-
idative enzyme activities, and enhances insulin staining and β-cells preservation[36]. Oyedemi et al[37] reported that 
quercetin increased the number of pancreatic islets and β cells and can normalize the weight ratio of rat pancreas, 
suggesting that quercetin has the potential to regenerate pancreatic β cells. Furthermore, Zhuang et al[38] reported that 
quercetin improved the vacuolation of β cells and increased the number of pancreatic islets in db/db mice, consistent 
with the regeneration of pancreatic islets in STZ-induced rats with diabetes after 7 d of treatment with quercetin[39].

Puerarin, the dry root of pueraria, exerts neuroprotective, antioxidative, anti-inflammatory, and antiapoptotic effects
[40]. It reportedly increases the mass and proliferation of mouse β cells, leading to the activation of glucagon-like peptide 
1 receptor signaling[41]. Another study confirmed that puerarin protects pancreatic β cell function and promotes survival 
by mediating the PI3K/Akt pathway, thereby exhibiting resistance to the toxicity of cobalt chloride[42,43].

Polyphenols: Sargassum is a brown macroalgae found in shallow sea meadows. It exerts anti-inflammatory, antioxidative, 
and immune regulatory effects[44]. Pathological analysis of the islets revealed that the water extract of Sargassum can 
restore the damaged islet structure. Previous studies have revealed that the islet area and regeneration percentage 
increased and the regeneration function of pancreatic β cells improved after 30 d of supplementation with hydroalcoholic 
extract of Sargassum[45,46].

Genistein intake can improve hyperglycemia, increase insulin levels, and enhance glucose tolerance in mice with 
diabetes[47]. Akt and ERK1/2 are markers of cell proliferation and growth[48]. Genistein reportedly increases the 
expression of p-ERK1/2, p-Akt, and Bcl-2 and suppresses the expression of caspase-3, concomitant with improved 
morphology and mass of islet β cells[49].

Mangiferin is a polyphenolic compound isolated from Anemarrhena. C-glycoside, which is isolated from mango leaves, 
is a type of mangiferin exhibiting biological activities. It reduces blood glucose levels and contributes to the regeneration 
of pancreas and islet cells in rats with diabetes[50]. Neurogenin-3 (Ngn3) is a marker of new endocrine progenitor β cells
[51]. A previous study reported that mangiferin increased the expression of Ngn3, FoxO-1, and PDX after partial pancre-
atectomy in mice and contributed to the proliferation of β cells. Mangiferin can also regulate the cell cycle through the 
activation of p16INK4a and promote islet regeneration in rats[52,53].

Terpenoids: Geniposide is widely found in herbs. It exhibits anti-inflammatory, antioxidative, and antidiabetic effects
[54]. T cell transcription factor 7-like 2 (TCF7L2) is a key factor involved in the Wnt/β-catenin pathway, which is an 
important regulator of β cell survival and regeneration. Geniposide reportedly increases the expression of TCF7L2 by 
activating Wnt signaling[55]. Furthermore, it inhibits GSK3β activity as well as promotes the nuclear translocation of β-
catenin and regeneration of β cells. Geniposide can also induce ductal cell differentiation by upregulating TCF7L2 
expression and activating the JAK2/STAT3 pathway. Thus, it can promote β cell survival and regeneration by activating β
-catenin/TCF7L2 signaling[56].

Astragalus belongs to the legume family and possesses many pharmacological properties, including antidiabetic, 
antioxidative, anti-inflammatory, and antiapoptotic effects[57]. A previous study reported that Astragalus strengthens the 
structure of pancreatic islet cells; the researchers also reported the appearance of new pancreatic islet cells and abundant 
capillaries around the islets, which promote β cell regeneration in HDF/STZ-induced Wistar rats with diabetes[58].

Quinones: Thymoquinone is the most abundant constituent in the volatile oil of Nigella sativa seeds. It exerts antiox-
idative, anti-inflammatory, and immunomodulatory effects[59]. In rats with diabetes, treatment with thymoquinone can 
efficiently ameliorate the histomorphological deteriorations of pancreatic islets, replenish the mass of β cells; and restore 
the function of β cells[60]. It has also been shown that thymoquinone inhibits COX-2 activity, relieves lipid peroxidation, 
and enhances antioxidative enzyme activity, thereby protecting pancreatic β-cells[61].

Inhibition of β cell apoptosis
β cell apoptosis is a common pathological feature of T2DM. Mass production of superoxide ions and endoplasmic 
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reticulum stress caused by high concentrations of free fatty acids lead to β cell apoptosis and dysfunction. Furthermore, 
the impaired balance between oxidation and antioxidation promotes β cell apoptosis and dysfunction[62,63]. Excessive 
production of reactive oxygen species (ROS) and reactive nitrogen species induces IR and chronic inflammation through 
abnormal changes in intracellular signaling pathways[64]. Inflammation also promotes β cell apoptosis and dysfunction
[64,65].

Flavonoids: The decrease in mitochondrial membrane potential is an early indicator of apoptosis[66]. Previous studies 
have reported that quercetin reverses the decrease in mitochondrial membrane potential, inhibits the activation of 
caspase-3, caspase-9, and caspase-12, and increases the Bcl-2/Bax ratio, thereby suppressing apoptosis[38,67]. Quercetin 
also protects islet β cells from oxidation-induced apoptosis via SIRT3. After treating INS-1 cells and mice with diabetes 
were treated with quercetin, superoxide dismutase 2 and SIRT3 proteins levels increased, whereas the cleaved caspase-3 
levels and Bax/Bcl-2 ratio decreased, along with reduced blood glucose levels and elevated insulin levels[68].

According to a previous study, cyanidin-3-glucoside decreased the apoptotic rate, intracellular ROS generation, and 
caspase-3 activity as well as reduced MAPK phosphorylation in MIN-6 cells treated with high levels of glucose[69]. The 
same results were observed in MIN-6 cells treated with H2O2[70]. A previous study revealed that anthocyanins protected 
the pancreatic tissue from STZ-induced apoptosis by regulating the levels of caspase-3, Bax, and Bcl-2 proteins in rats 
with diabetes[71].

Kaempferol is a flavanol compound found in various Chinese medicinal herbs[72]. It has been reported that 
kaempferol protects β cells and human islets from palmitate-induced apoptosis via the upregulation of the PDX-1/
cAMP/PKA/CREB signaling cascade[73], increases the expression of Bcl-2 via CREB to activate the PI3K/Akt pathway, 
maintaining β-cell survival under high-glucose conditions, and reduces the expression of caspase-3[74].

Icariin is the main active ingredient of the natural medicine epimedium. It is considered a potential therapeutic agent 
for various diseases and is known to exert antioxidative, antineuroinflammatory, and antiapoptotic effects[75]. Icariin 
reportedly increases GLUT4 mRNA expression and promotes AMP-activated protein kinase (AMPK) phosphorylation to 
reduce the loss of islets in the pancreatic tissue[76].

Puerarin promotes the proliferation and reduces the apoptosis of pancreatic β-cells. It also reverses the effect of 
impaired glucose tolerance[41,42]. Isoflavone glycosides (the main component of puerarin) inhibit apoptosis and protect β 
cells via Akt phosphorylation[43].

Polyphenols: Resveratrol reportedly alleviates uric acid-induced apoptosis, reduces the expression of Bax, cleaved-
caspase-3, and iNOS, and activates the PI3K/Akt pathway by upregulating the expression of miR-126[77]. A previous 
study demonstrated that ROS overproduction affected cell apoptosis by destroying the mitochondrial membranes, 
releasing cytochrome C, and stabilizing HIF-1 and p53[78]. Previous research has also revealed that resveratrol inhibited 
the production of ROS and HIF-1α[79]. Another study showed that the PI3K/Akt pathway reduced ROS production and 
inhibited p53 expression and pancreatic islet cell apoptosis[80].

Curcumin possesses antiapoptotic activity and improves the function of pancreatic islets. On the one hand, it interferes 
with the interaction among Beclin1, Bcl-2, and Bim through the signal pathway mediated by JNK-1 and AMPK, thereby 
regulating the transition between apoptosis and autophagy[81,82]. On the other hand, it decreases palmitate-induced 
oxidative stress in pancreatic islet cells by regulating the NADPH pathway, increases insulin levels, reduces the 
expression of cleaved caspase-3 and Bax, and protects cells from apoptosis[83].

Alkaloids: In a previous study, overexpression of independent phospholipase A2β and treatment with berberine 
significantly attenuated palmitate-induced apoptosis. Furthermore, silencing independent phospholipase A2β partially 
abolished the antiapoptotic effect of berberine and inhibited cardiolipin/Opa1 signaling in MIN6 cells[84]. In another 
study, coffee ingestion protected β cells from STZ cytotoxicity, suppressed hyperglycemia, inhibited β cells apoptosis, and 
maintained the pancreatic insulin content by inhibiting the activity of poly ADP ribose polymerase[85]. Based on a 
previous research, caffeic acid, naringin and quercetin increased the expression of GLUT2, Ins1, β2, Pdx1, Akt1, Bcl2 and 
Hsp70/90, reduced the expression of caspase-3 and Bax, and inhibited apoptosis of INS-1E cells[86].

Terpenoids: Mangostin reduces ROS, p38, and JNK phosphorylation, restores the impaired secretory function of 
pancreatic β cells, and exerts its antiapoptotic effect on STZ-induced INS-1 cells[87]. Geniposide inhibits the apoptosis of 
INS-1 cells induced by high levels of glucose, thereby preventing caspase-3 cleavage. Further research demonstrated that 
AMPK siRNA attenuated the effects of geniposide on apoptosis-associated proteins and cell viability, suggesting that 
AMPK plays a key role in protecting β cells from high-glucose-induced apoptosis[88]. According to a previous study, 
pretreatment with licorice extract inhibited the expression of caspase-3, caspase-8, caspase-9, and other apoptotic factors 
as well as the expression of p-STAT1, thereby hindering STZ-induced β cell apoptosis[89].

Paeoniflorin is a glycoside extracted from the root of Paeonia lactiflora Pall. It inhibits the activation of the p38MAPK 
and JNK signaling pathway and reduces the phosphorylation of p38MAPK and ERK1/2 by increasing the expression of 
Bcl-2 and inhibiting the expression of Bax and caspase-3. It also increases the survival rate of STZ-induced INS-1 cells[90].

REDUCTION OF ADIPOSE TISSUE INFLAMMATION
Adipose tissue is an important endocrine organ that regulates insulin sensitivity and energy homeostasis throughout the 
body. It can secrete various hormones such as adiponectin, leptin, resistin, and visfatin as well as typical cytokines such 
as TNF-α and IL-6. It can also activate the MAPK and NF-κβ pathways[10,91]. Adipose tissue inflammation is a 
mechanistic pathogenesis of T2DM. Fat-infiltrated macrophages, basophils, and regulatory T cells cooperate with 
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adipocytes to mediate adipose tissue inflammation by secreting proinflammatory factors[92]. Activation of monocytes 
and release of MCP-1 cause the transformation of white fat cells into the proinflammatory phenotype[93]. MCP-1 recruits 
macrophages into adipose tissue, which in turn produce inflammatory cytokines. PPARα/γ agonists also reduce the 
expression of IL-6, CXC-L10, and MCP-1 in human adipocytes[94].

Flavonoids
Butein is isolated from the bark of the sumac tree. It exerts antioxidative, anti-inflammatory, antidiabetic, and neuropro-
tective effects[95]. It has been reported that pretreatment with butea results in the complete blockade of TNF-α-induced 
IκB-α degradation, prevents p65 phosphorylation at Ser311 and Ser536, and inhibits ERK, JNK, and p38MAPK 
phosphorylation in 3T3-L1 adipocytes[96]. These results are consistent with the previous findings, indicating that butein 
suppresses the expression of IL-6, TNF-α, and MCP-1, increases the expression of HO-1, and activates the p38MAPK/
Nrf2/HO-1 pathway in the epididymal white adipose tissue of HFD-fed mice[97]. These findings suggest that butein 
plays an anti-inflammatory role in adipocytes in vitro and in vivo.

Naringin possesses strong antioxidative activity. Previous studies have demonstrated that naringin suppresses TNF-α
–induced activation of NF-κB and ERK pathways in 3T3-L1 adipocytes[98]. Naringenin presumably exerts an anti-inflam-
matory effect by inhibiting IκB-α degradation and p-JNK expression, thereby inhibiting the expression of TLR2 in TNF-α 
induced adipocytes[99]. It was found to suppress macrophage infiltration into the adipose tissue by inhibiting MCP-1 
production[100]. A recent study demonstrated that naringenin suppresses neutrophil infiltration into the adipose tissue 
by regulating MCP-3 expression and macrophage infiltration[101].

SIRT1 activators suppress inflammatory responses by promoting p65 deacetylation and inhibiting NF-κB activity in 
adipocytes[102]. Quercetin increases antioxidative activity as well as p-AMPK and SIRT1 expression in the adipose tissue 
of HFD-fed mice. Moreover, it reduces proinflammatory enzymatic activity and cytokine levels[103].

Polyphenols
Cranberry contains various types of bioactive components with high antioxidative and anti-inflammatory potentials. It 
also exerts beneficial effects on adipogenesis and lipid metabolism in vitro[104]. Cranberries reportedly reduce lipid 
accumulation during adipocyte differentiation by decreasing the levels of acid-binding protein, lipoprotein lipase, fatty 
acid synthase, and perilipin 1[105]. In addition, they reduce H2O2-induced inflammation in 3T3-L1 cells by decreasing the 
expression of IL-6, PAI-1, MCP-1, and leptin in adipose tissue[106].

Peanut skin extract is a rich source of polyphenols[107]. It is effective in the treatment of various diseases, such as DM, 
obesity, and inflammation[108-110]. A previous study reported that peanut skin extracts significantly alleviate adipose 
tissue inflammation by reducing the expression of TNF-α, IL-1β, IL-6, and PAI-1[109].

According to another study, the combined use of curcumin and resveratrol inhibited the activation of NF-κB, decreased 
the expression of IL-1β, TNF-α, IL-6, and COX2, and reduced the damage induced by chronic inflammation in adipocytes
[111]. Based on a previous study, luteolin increases the expression of p-AMPK and SIRT1, suppresses the expression of p-
p65, and decreases the mRNA expression of TNF-α, IL-6, and MCP-1 in 3T3-L1 cells[112]. Studies have shown that SIRT1 
inhibits NF-κB activation[113], and AMPK antagonizes inflammation through SIRT1[114].

NATURAL PRODUCTS CAN TREAT T2DM BY INHIBITING IR
IR usually refers to the reduction in insulin-induced glucose uptake and utilization efficiency in the muscle, body fat, and 
liver, leading to compensatory INS, which ultimately results in a series of clinical manifestations such as hyperglycemia, 
hyperinsulinemia, and dyslipidemia[115,116]. A previous study reported that lipid accumulation in the liver and adipose 
tissue accelerated IR in patients with T2DM[117]. Inflammatory factors such as TNF-α and IL-6 activate the NF-κB 
pathway and inhibit the expression of IRS-1 and GLUT4, thereby promoting IR[118,119]. IL-1β also inhibits the IRS-1 
pathway and promotes IR[120]. In general, IR is related to the NF-κB, JNK, p38MAPK, and PI3K/Akt pathways. When 
the energy intake is high, the activation of the PI3K/Akt pathway can alleviate obesity and IR[121](Figure 2).

Flavonoids
Anthocyanins reportedly improve INS and IR[122]. A previous study showed that mulberry anthocyanin extract activates 
the PI3K/Akt pathway, increases the phosphorylation of its downstream target GSK3β, activates GYS2, and alleviates IR 
in HepG2 cells induced by high levels of glucose and palmitic acid. According to in vivo experiments, mulberry 
anthocyanin extract reduces the secretion of leptin and insulin and increases the levels of adiponectin in the serum, 
thereby improving IR[123].

According to a previous study, baicalein reduced the expression of TNF-α and F4/80, activated AMPK, p-AKT, and 
IRS-1, and induced dephosphorylation of ERK, NF-κB and JNK, thereby reducing IR[124]. A study by Pu et al[125] 
confirmed that the inhibitory effect of baicalein on IR was mediated by the inhibition of the MAPK pathway and 
activation of the IRS1/PI3K/Akt pathway.

Naringin possesses strong antioxidative activity. It reportedly increases the expression of GLUT4, adiponectin, and Ch-
REBPβ in white adipocytes, promotes energy consumption and insulin sensitivity, and inhibits the proliferation of fat 
cells[126].
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Figure 2 The mechanism of natural products suppresses insulin resistance. The letters inside the black squares refer to natural products. A: Alpha-
mangostin; B: Berberine; Bu: Butein; C: Caffeic acid; Cu: Curcumin; Cy: Cyanidin-3-glucoside; D: Dioscorea batatas extract; G: Gallic acid; Ge: Genistein; Gen: 
Geniposide; H: Hesperidin; I: Icarrin; K: Kaempferol; L: Leteolin; M: Mulberry anthocyanin extract; P: Paeoniflorin; Pu: Puerarin; Q: Quercetin; R: Resveratrol; CHOP: 
CCAAT-enhancer-binding protein homologous protein; ER stress: Endoplasmic reticulum stress; FFA: Free fatty acids; FOXO: Forkhead box class O; GFR: Growth 
factor receptor; GR: Growth factor; IKK: Inhibitor of nuclear factor-kappa B kinase; IL-1β: Interleukin 1β; IL-1: Interleukin 1; iNOS: Inducible nitric oxide synthase; 
IRAK: Interleukin 1 receptor-associated kinase; JNK: c-Jun N-terminal kinase; mTOR: Mammalian target of rapamycin; NF-κB: Nuclear factor-kappa B; NO: Nitric 
oxide; PI3K: Phosphoinositide 3-kinase; ROS/RNS: Reactive oxygen/nitrogen species; STAT: Signal transducer and activator of transcription; STAT1: Signal 
transducer and activator of transcription 1; STAT3: Signal transducer and activator of transcription 3; TNF-α: Tumor necrosis factor-alpha; TNFR: Tumor necrosis 
factor receptor.

Polyphenols
Gallic acid increases the expression of PPAR-γ in the adipose tissue, liver, and skeletal muscle, enhances tyrosine kinas 
activity, promotes IRS phosphorylation, and improves insulin-dependent glucose transport through GLUT4 in the PI3K/
p-Akt dependent pathway in the adipose tissue, thereby improving IR in rats[127]. Adiponectin plays an important role 
in regulating insulin function as well as the occurrence and development of T2DM[128]. Gallic acid reduces the levels of 
serum total cholesterol and triglycerides by inhibiting adipogenesis and increasing adiponectin activity. The combined 
use of gallic acid and p-coumaric acid increases the levels and mRNA expression of PPAR-γ and reduces the levels of 
serum adiponectin in STZ-induced rats with diabetes[23].

Luteolin reportedly reduces blood lipid and glucose and improves hyperinsulinemia and IR through PPAR-γ[129]. It 
increases the absorption of circulating free fatty acids and reduces liver fat toxicity by increasing the protein expression of 
PPARγ in the adipose tissue[130]. In HFD-fed mice, luteolin reduces lipid formation, increases fatty acid oxidation, and 
significantly reduces the levels of IL-1, IL-6, and PAI-1, thereby improving obesity and metabolic disorders[131].

Terpenoids
HFD-induced IR in mouse visceral adipose tissue is characterized by increased p-ERK and decreased p-Akt expression. 
The therapeutic effect of the Dioscorea batatas extract decreased the protein expression of p-ERK and p-S6K1 and enhanced 
the translocation of GLUT4 to the plasma membrane of the visceral adipose tissue in mice. It has been speculated that the 
Dioscorea batatas extract attenuates IR by upregulating the expression of GLUT4 in the plasma membrane of the visceral 
adipose tissue in HFD-fed mice[132]. The discoloration mixture of Astragalus membranaceus and Potentilla anserina 
reportedly increases the mRNA expression of PPARγ and PI3K in the liver, reduces FPG levels, and improves IR in mice
[133].

CLINICAL STUDY ON NATURAL PRODUCTS IN THE TREATMENT OF DM
To date, only a few clinical studies have been reported on natural medicines for treating DM. Most previous studies have 
focused on the addition of natural medicines to the diet to examine their effects on blood glucose levels, blood lipid 
levels, and body mass index in patients with T2DM. The addition of soluble fibers from psyllium to the normal diet of 
patients with T2DM significantly improved the levels of fasting blood sugar, hemoglobin A1c, C-peptide, Homeostasis 
Model Assessment-IR, and Homeostasis Model Assessment-B after 8 wk of administration[134]. A study by Noureddin et 
al[135] also showed that psyllium supplementation decreased the body weight, blood glucose levels, and cholesterol 
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Figure 3 Mechanisms of natural products for the treatment of type 2 diabetes mellitus. The letters inside the black squares refer to nature products. 
Inhibitory effects were shown by black pathways. A: Alpha-mangostin; B: Berberine; Bu: Butein; C: Caffeic acid; Cu: Curcumin; Cy: Cyanidin-3-glucoside; D: 
Dioscorea batatas extract; G: Gallic acid; Ge: Genistein; Gen: Geniposide; H: Hesperidin; I: Icarrin; K: Kaempferol; L: Leteolin; M: Mulberry anthocyanin extract; P: 
Paeoniflorin; Pu: Puerarin; Q: Quercetin; R: Resveratrol; Akt: serine/threoninekinase; AGE: Advanced glycation end products; AP-1: Activator protien-1; Bad: Bcl2 
associated death promoter; Bax: BCL2-Associated X; Bcl-2: B-cell lymphoma-2; Cdk4: Cyclin dependent kinase 4; CHOP: CCAAT-enhancer-binding protein 
homologous protein; eIF4G: Eukaryotic translation initiation factor 4G; ER stress: Endoplasmic reticulum stress; FFA: Free fatty acids; FOXO: Forkhead box class O; 
GFR: Growth factor receptor; GR: Growth factor; IkBa: Inhibitory subunit of NF Kappa B Alpha; IKK: Inhibitor of nuclear factor-kappa B kinase; IL-1β: Interleukin 1β; 
IL-1: Interleukin 1; iNOS: Inducible nitric oxide synthase; IRAK: Interleukin 1 receptor-associated kinase; JNK: c-Jun N-terminal kinase; mTOR: Mammalian target of 
rapamycin; NF-κB: Nuclear factor-kappa B; NO: Nitric oxide; PI3K: Phosphoinositide 3-kinase; ROS/RNS: Reactive oxygen/nitrogen species; STAT: Signal 
transducer and activator of transcription; STAT1: Signal transducer and activator of transcription 1; STAT3: Signal transducer and activator of transcription 3; TNF-α: 
Tumor necrosis factor-alpha; TNFR: Tumor necrosis factor receptor.

levels and increased the high-density lipoprotein cholesterol levels in patients with T2DM. Similar results were reported 
in other clinical trials[136,137].

A previous study showed that dietary raspberries significantly reduced serum glucose levels at 2 h and 4 h after intake 
and decreased the serum levels of IL-6 and TNF-α[138]. These results indicated that propolis increased the serum activity 
of superoxide dismutase and GPx, decreased the levels of fasting blood sugar, 2-h postprandial glucose and insulin, and 
alleviated IR[139]. In a previous study, based on the results of the area under the curve, the consumption of bitter melon 
for 3 mo increased INS and decreased the body weight, body mass index, and glucose in patients with T2DM, possibly by 
increasing uncoupling protein expression or inhibiting PPAR-γ[140].

These results indicated that quercetin intake was inversely correlated with T2DM prevalence in the Chinese 
population. Moreover, quercetin intake reduced pancreatic β-cell inflammation, thus successfully treating T2DM[141].

CONCLUSION
Accumulating studies including clinical trials and animal experiments have confirmed the effectiveness of natural 
products. In vivo and in vitro studies have demonstrated that the active ingredients of monomeric compounds, such as 
flavonoids, polyphenols, alkaloids, terpenes, and quinones in natural medicines can inhibit the release of inflammatory 
mediators and reduce oxidative stress. Thus, reduction in IR and lipid accumulation can protect islet cells and treat 
T2DM. The mechanisms by which natural medicines treat T2DM include the following: (1) β cell inflammation was 
mainly inhibited by IKK/IκB/NF-κB, PI3K/Akt, and SIRT1/NF-κB pathways; (2) β cell regeneration was mainly 
promoted via ERK1/2/MDA, PI3K/Akt/mTOR, Wnt/β-catenin, and JAK2/STAT3/Ngn3 pathways; (3) β cell apoptosis 
was inhibited through MAPK/caspase-3, PI3K/Akt/caspase-3, and SIRT1/HIF-1/P53 pathways; (4) Adipose tissue 
inflammation was attenuated by PPAR-γ/SREBP, TGF-β/STAT3/Smad2/3, P38MAPK/Nrf2/HO-1, JNK/MCP-1, and 
AMPK/SIRT1 pathways; and (5) IR was alleviated mainly through IRS1/PI3K/Akt, TGF-β/Smad, LKB1/AMPK/PGC1α, 
and mTOR/S6K1 pathways (Figure 3).
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Commonly used drugs for treating T2DM, such as α-glutaminase inhibitors, sulfonylureas, biguanides, and 
glitalactone, can be used alone or in combination to regulate blood glucose levels. However, the multiple side effects and 
high cost of these drugs have led to the urgent need to explore natural medicines to treat T2DM. In recent years, an 
increasing number of studies have explored various effective active ingredients of natural medicines for treating T2DM to 
discover a new alternative medicine. The plants and their main components reported in this review can alleviate the 
effects of T2DM on the body to a certain extent and provide a theoretical basis for the development of new drugs. Further 
studies in the following areas are still warranted: (1) The potential toxicity of natural medicines and the interactions 
between drug compatibilities remain unclear. Common adverse effects associated with the intake of natural medicines 
include gastrointestinal disturbances such as abdominal pain, diarrhea, constipation, nausea, and vomiting[142-145]. 
However, more severe toxicities may occur and affect patients’ cardiovascular systems, auditory functions, or 
reproductive health[146,147]. Furthermore, the concomitant use of natural medicines and established antidiabetic drugs 
may increase the risk of hypoglycemia in patients with T2DM[148]. Thus, further studies are warranted on the specific 
mechanism of action and long-term toxic side effects of these natural products; and (2) Although some natural products 
have shown positive effects in cell and animal models, their activities have not yet been verified. Thus, further clinical 
studies are warranted to confirm the efficacy of natural medicines.
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