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Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous 
syndrome with various comorbidities, multiple cardiac and extracardiac 
pathophysiologic abnormalities, and diverse phenotypic presentations. Since 
HFpEF is a heterogeneous disease with different phenotypes, individualized 
treatment is required. HFpEF with type 2 diabetes mellitus (T2DM) represents a 
specific phenotype of HFpEF, with about 45%-50% of HFpEF patients suffering 
from T2DM. Systemic inflammation associated with dysregulated glucose 
metabolism is a critical pathological mechanism of HFpEF with T2DM, which is 
intimately related to the expansion and dysfunction (inflammation and 
hypermetabolic activity) of epicardial adipose tissue (EAT). EAT is well esta-
blished as a very active endocrine organ that can regulate the pathophysiological 
processes of HFpEF with T2DM through the paracrine and endocrine 
mechanisms. Therefore, suppressing abnormal EAT expansion may be a 
promising therapeutic strategy for HFpEF with T2DM. Although there is no 
treatment specifically for EAT, lifestyle management, bariatric surgery, and some 
pharmaceutical interventions (anti-cytokine drugs, statins, proprotein convertase 
subtilisin/kexin type 9 inhibitors, metformin, glucagon-like peptide-1 receptor 
agonists, and especially sodium-glucose cotransporter-2 inhibitors) have been 
shown to attenuate the inflammatory response or expansion of EAT. Importantly, 
these treatments may be beneficial in improving the clinical symptoms or 
prognosis of patients with HFpEF. Accordingly, well-designed randomized 
controlled trials are needed to validate the efficacy of current therapies. In 
addition, more novel and effective therapies targeting EAT are needed in the 
future.
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Core Tip: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome requiring 
individualized treatment depending on phenotypic differences. HFpEF with type 2 diabetes mellitus is 
strongly associated with the expansion, inflammation, and hypermetabolic activity of epicardial adipose 
tissue (EAT). Thus, targeting EAT may be a promising therapeutic strategy for HFpEF with type 2 
diabetes mellitus. Lifestyle management, bariatric surgery, and certain drugs may suppress the accumu-
lation of EAT and improve the clinical symptoms and prognosis of HFpEF. More studies are required to 
validate the efficacy of current treatments and to develop new effective therapies.
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INTRODUCTION
Heart failure with preserved ejection fraction (HFpEF), a systemic and heterogeneous syndrome, is 
characterized by various comorbidities (mainly diabetes mellitus, hypertension, and metabolic 
syndrome), multiple cardiac and extracardiac pathophysiologic abnormalities, and diverse phenotypic 
presentations[1]. HFpEF is a growing public health challenge, which currently accounts for approx-
imately half of HF cases, and its prevalence continues to rise due to an aging population and the 
increasing burden of comorbidities[2]. Additionally, HFpEF is associated with poor prognosis, with a 5-
year mortality rate of up to 75%[3]. Standardized and effective interventions are lacking due to the 
complex pathophysiological underpinnings and clinical heterogeneity of HFpEF[4]. It may, however, be 
beneficial to halt disease progression and thus improve prognosis by providing individualized 
treatment based on phenotypic differences[4].

Type 2 diabetes mellitus (T2DM) is a substantial risk factor for the emergence and progression of 
HFpEF, and approximately 45%-50% of HFpEF cases suffer from T2DM, a specific phenotype of HFpEF
[5,6]. Systemic inflammation related to glucose metabolism disorders is accepted as a critical 
pathological mechanism of HFpEF with T2DM, which is responsible for the expansion and dysfunction 
(inflammation and hypermetabolic activity) of epicardial adipose tissue (EAT)[7]. EAT, a metabolically 
active visceral fat depot, can regulate the pathophysiological processes of HFpEF with T2DM through 
the paracrine and endocrine mechanisms[8]. Thus, inhibiting the accumulation of EAT may be a 
promising therapeutic strategy for HFpEF with T2DM. At present, lifestyle management, bariatric 
surgery, and some medications may contribute to reducing the inflammation response or accumulation 
of EAT, despite the fact that there is no available treatment for EAT. Notably, these interventions may 
attenuate pathological changes and improve the prognosis in patients with HFpEF.

Currently, a comprehensive review is lacking discussing the pathogenesis of EAT-mediated HFpEF 
with T2DM and therapies to inhibit EAT expansion. In this review, we evaluated the role of EAT in the 
development of HFpEF with T2DM and discussed current therapies to attenuate EAT expansion as well 
as future therapeutic perspectives.

ANATOMY, PATHOLOGY AND PATHOPHYSIOLOGY OF EAT
Anatomy of EAT
EAT represents the local visceral fat depot of the heart, located between the myocardium and the 
visceral pericardium[9] (Figure 1). Under healthy circumstances, EAT accounts for approximately 20% 
of the total heart weight and covers 80% of the cardiac surface[10,11]. In adults, EAT typically surrounds 
the coronary arteries and their major epicardial branches, mainly concentrated in the interventricular 
and atrioventricular grooves, with lesser amounts covering the atria, the free wall of the right ventricle, 
and the apex[9]. Interestingly, EAT is anatomically and functionally contiguous with the myocardium 
because of the shared microcirculation and the absence of muscle fascia, which may facilitate the local 
interaction of EAT with the myocardium and coronary arteries through vasocrine or paracrine cross-talk
[12]. Microscopically, EAT consists typically of adipocytes specialized in energy storage but also 
includes inflammatory cells (mainly macrophages and mast cells), immune cells, stromovascular cells, 
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Figure 1 Anatomical location of epicardial adipose tissue. Epicardial adipose tissue (EAT) is situated between the myocardium and the visceral 
pericardium. In normal adults, EAT usually accompanies the coronary arteries and their major epicardial branches, mainly concentrated in the interventricular and 
atrioventricular grooves, with lesser amounts covering the atria, the free wall of the right ventricle, and the apex.

and ganglia in normal adults. In pathological states, however, numerous inflammatory cell aggregates 
and abnormal expansion of the microvascular network are present in the EAT[13].

Physiology of EAT
EAT acts as a shock absorber, protecting coronary arteries from excessive distortion and compression 
during the contraction of the adjacent myocardium[14]. EAT has a greater capacity to release and 
uptake free fatty acids (FFA) compared to other visceral fat depots. The myocardium metabolizes FFAs 
from the coronary arterial blood, which is shared with the contiguous EAT. FFA oxidation is responsible 
for almost 50%-70% of the energy production in the heart[15]. Accordingly, EAT might serve as a 
physiological buffer to protect the myocardium from excessive fatty acid levels and as a direct energy 
source to provide FFA under increased metabolic demand. Moreover, EAT expresses uncoupling 
protein-1 (UCP1), a thermogenic protein located in the inner membrane of mitochondria. UCP1 
uncouples oxidative phosphorylation from ATP synthesis, ultimately dissipating energy as heat[16]. 
EAT might, therefore, provide direct heat to the myocardium and protect the heart under unfavorable 
hemodynamic conditions.

Pathophysiology of EAT
EAT has been widely established as a remarkably active endocrine organ that secretes various bioactive 
molecules, such as cytokines, adipokines, and chemokines, that can exert protective or detrimental 
effects depending on the local microenvironmental situation[17]. EAT can, therefore, locally modulate 
the adjacent myocardium and coronary arteries through the vasocrine or paracrine secretion of these 
bioactive molecules[12]. Physiologically, EAT mainly releases anti-inflammatory adipocytokines, such 
as adiponectin, adrenomedullin, omentin, and interleukin-10 (IL-10), which contribute to cardiopro-
tection and anti-atherosclerosis[14]. In contrast, adipocytes enlarge and produce high quantities of FFAs 
under pathological conditions, triggering EAT expansion, localized hypoxia, and the infiltration of 
macrophages, ultimately resulting in a chronic inflammatory response[8]. Subsequently, numerous 
proinflammatory adipokines are produced and accumulated, including IL-6, tumor necrosis factor-
alpha (TNF-α), monocyte chemotactic protein-1, leptin, resistin, and serglycin, which aggravate local 
inflammation, thereby affecting the heart and coronary arteries[12].
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CONTRIBUTIONS OF EAT TO HFPEF WITH T2DM
EAT in the pathophysiology of HFpEF with T2DM
Dysregulated glucose metabolism is a fundamental clinical characteristic of T2DM and is strongly 
connected with the aberrant accumulation of EAT[18-20]. As reported in Table 1, EAT thickness over the 
right ventricular free wall, EAT volume, or EAT area were significantly higher in patients with impaired 
fasting glucose, insulin resistance, or T2DM than in control subjects[21-39]. A meta-analysis of nine 
studies by Li et al[40] confirmed a positive correlation between the presence of T2DM and EAT 
expansion. Eventually, increased EAT deposition interacts directly with the heart through mechanical 
and metabolic mechanisms, leading to myocardial fibrosis, cardiomyocyte stiffness, and left ventricular 
(LV) diastolic dysfunction, which are the essential pathological features of HFpEF (Figure 2).

In terms of machinery, increased EAT occupies a large space in the cardiac fossa and applies a 
compressive contact force on the heart, resulting in pericardial restrain, increased ventricular filling 
pressures, and LV diastolic dysfunction. A meta-analysis of 11 studies showed that increasing EAT was 
independently associated with LV diastolic dysfunction even after adjusting for age, sex, and measures 
of adiposity[41]. In patients with T2DM, Christensen et al[27] and Song et al[42] substantiated the 
deleterious effect of increased EAT on LV global longitudinal strain and LV diastolic function assessed 
by peak velocity during early diastole (E)/peak velocity during atrial contraction (A) ratio, early 
diastolic mitral annular velocity (e’), and E/e’ ratio.

In terms of metabolism, EAT enlargement is linked to the buildup of FFAs and lipid metabolites[43], 
which induce myocardial lipotoxicity and in turn contribute to excessive oxidative stress, endoplasmic 
reticulum stress, and mitochondrial dysfunction, ultimately causing LV diastolic dysfunction[44]. 
Furthermore, excessive cardiomyocyte lipid deposits may lead to cardiac steatosis, which has been 
demonstrated to be an early marker of diabetic heart disease and is independently associated with LV 
diastolic function[45-47]. Simultaneously, hypertrophic adipocytes and activated macrophages exhibit 
increased production of proinflammatory adipocytokines and chemokines in EAT. These proinflam-
matory factors cause local inflammation, excessive oxidative stress, microvascular and endothelial 
dysfunction, and extracellular matrix deposition through vasocrine or paracrine mechanisms, resulting 
in cardiomyocyte stiffness, myocardial fibrosis, and subsequent LV diastolic dysfunction[8,9].

Relationship between increased EAT and clinical characteristics of HFpEF
As shown in Table 2, EAT expansion is closely related to severe pathologic changes, clinical manifest-
ations, and long-term prognosis in individuals with HFpEF[48-55]. According to research by van 
Woerden et al[48] and Pugliese et al[54], enlarged EAT is linked to increased plasma myocardial injury 
markers. Wang et al[49] found that the EAT volume was positively correlated with elevated inflam-
matory markers (C-reactive protein), LV hypertrophy (LV mass index), and LV diastolic dysfunction 
(E/e’ ratio and tricuspid regurgitation velocity). Venkateshvaran et al[50] confirmed that higher EAT 
was linked not only to LV hypertrophy and diastolic dysfunction but also to endothelial dysfunction. 
Koepp et al[51] showed that thickened EAT was associated with elevated cardiac filling pressures, 
pulmonary hypertension, and pericardial constraint. Additionally, some studies have confirmed that 
increased EAT may lead to decreased exercise tolerance or quality of life[50-54]. Importantly, EAT 
thickening was correlated with a 1.12-fold increased risk of the composite endpoint of death and HF 
hospitalization after 21 mo of follow-up, according to Pugliese et al[54]. After 24 mo of follow-up, van 
Woerden et al[55] confirmed that EAT expansion increased the risk of all-cause mortality, HF hospital-
ization, and the composite endpoint.

CURRENT INTERVENTIONS TARGETING EAT AND FUTURE THERAPEUTIC  
PERSPECTIVES IN HFPEF WITH T2DM
EAT plays an important role in the development and progression of HFpEF with T2DM and is strongly 
associated with an increased risk of adverse outcomes. Therefore, alleviating EAT expansion may be a 
promising therapeutic strategy. Although no treatment is available specifically for EAT, lifestyle 
management, bariatric surgery, and medications (Table 3) including anti-hyperlipidemia, anti-cytokines, 
and anti-hyperglycemia have been demonstrated to reduce the inflammation response or expansion of 
EAT and appear to be beneficial for HFpEF (Figure 3).

Non-pharmacological interventions
In diabetic and obese patients, lifestyle modifications (including a low-calorie diet and exercise training) 
and bariatric surgery can reduce EAT levels. Twenty severely obese patients were shown to have a 32% 
reduction in EAT thickness and alleviation in LV hypertrophy and diastolic dysfunction after 6 mo of 
calorie restriction with moderate exercise[56]. Serrano-Ferrer et al[57] confirmed that exercise training 
significantly reduced EAT thickness and serum TNF-α, increased lipocalin, and improved LV 
myocardial strain and strain rate. A study by Honkala et al[58] reported that 2 wk of continuous exercise 
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Table 1 Epicardial adipose tissue expansion in patients with glucose metabolism disorders

Ref. Participants, n Amount of EAT in the 
observation group

Amount of EAT in the 
control group P value

EAT thickness (mm) measured by echocardiography thickness on the right ventricular free wall 

Baloglu et al[21], 2019 T2DM patients: 128; healthy controls: 32 3.53 ± 0.79 4.64 ± 1.39 < 0.001

Akbas et al[22], 2014 T2DM patients: 156; healthy controls: 50 4.66 ± 1.50 3.91 ± 1.60 0.005

Chen et al[23], 2017 T2DM patients: 167; healthy controls: 82 4.00 (3.00-5.00) 2.00 (1.00-3.00) < 0.001

Philouze et al[24], 
2017 

T2DM patients: 44; healthy controls: 35 6.40 ± 1.70 3.30 ± 1.10 < 0.001

Cetin et al[25], 2013 T2DM patients: 139; age- and sex-matched 
controls: 40

6.00 ± 1.50 4.42 ± 1.00 < 0.001

Yafei et al[26], 2019 T2DM patients: 76; age- and sex-matched 
controls: 30

6.23 ± 1.27 4.60 ± 1.03 < 0.001

Christensen et al[27], 
2019 

T2DM patients: 770; age- and sex-matched 
controls: 234

4.60 ± 1.80 3.40 ± 1.20 < 0.0001

Wang et al[28], 2017 T2DM with duration ≤ 10 yr: 35; T2DM with 
duration > 10 yr: 33

4.47 ± 1.90 5.45 ± 1.40 < 0.05

Altin et al[29], 2016 Patients with IR: 113; age- and sex-matched 
controls: 112

7.34 ± 1.96 5.22 ± 1.75 < 0.001

Males: 8.00 ± 3.00 6.00 ± 2.00Iacobellis et al[30], 
2008 

Patients with IFG: 65; non-diabetic controls: 50

Females: 7.10 ± 4.00 5.80 ± 3.00

< 0.001

EAT volume (cm3) measured by computed tomography 

Wang et al[31], 2008 T2DM patients: 49; non-diabetic controls: 78 166.1 ± 60.6 123.4 ± 41.8 < 0.0001

Akyürek et al[32], 
2014 

T2DM patients: 93; non-diabetic controls: 85 40.1 ± 23.9 16.9 ± 7.7 < 0.001

Gullaksen et al[33], 
2019 

T2DM patients: 44; non-diabetic controls: 59 119.0 ± 49.0 86.0 ± 40.0 < 0.001

Groves et al[34], 2014 T2DM patients: 92; non-diabetic controls: 59 118.6 ± 43.0 70.0 ± 44.0 < 0.0001

Versteylen et al[35], 
2012 

Patients with IFG: 118; non-diabetic controls: 
209

92.0 ± 39.0 75.0 ± 34.0 < 0.001

EAT volume (cm3) or area (cm2) measured by cardiac magnetic resonance 

Huang et al[36], 2022 T2DM with duration ≤ 5 yr: 56; T2DM with 
duration > 5 yr: 57

48.4 ± 13.4 cm3 58.4 ± 17.3 cm3 < 0.001

Evin et al[37], 2016 T2DM patients: 20; healthy controls: 19 135.0 ± 31.0 cm3 90.0 ± 30.0 cm3 < 0.001

Al-Talabany et al[38], 
2018 

T2DM patients: 54; non-diabetic controls: 29 13.5 ± 3.5 cm2 11.8 ± 4.1 cm2 < 0.05

Rado et al[39], 2019 Prediabetes patients: 100; healthy controls: 200 9.2 cm2 7.7 cm2 < 0.001

EAT: Epicardial adipose tissue; IFG: Impaired fasting glucose; IR: Insulin resistance; T2DM: Type 2 diabetes mellitus.

training resulted in decreased EAT volume and myocardial triglyceride levels and improved aerobic 
exercise tolerance and insulin sensitivity in 16 patients with T2DM. A meta-analysis including five 
studies confirmed that exercise training reduced epicardial fat deposition[59].

Several studies have reported that bariatric surgery substantially reduces the accumulation of EAT in 
patients[60-64]. Gaborit et al[62] found a 27% reduction in EAT volume in obese patients at a 6-mo 
follow-up after bariatric surgery. In addition, individuals with HFpEF appear to benefit from lifestyle 
changes and bariatric surgery in terms of improved microvascular and endothelial dysfunction, left 
ventricular remodeling and diastolic dysfunction, exercise tolerance, and quality of life[65-68]. Thus, 
lifestyle modification and bariatric surgery may alleviate the abnormal expansion of EAT in HFpEF 
patients with obesity and T2DM and improve LV diastolic function and clinical symptoms. 
Nevertheless, further research is required to determine whether it can improve the prognosis of 
patients.
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Table 2 Relationship between increased epicardial adipose tissue and clinical characteristics of heart failure with preserved ejection 
fraction

Relationship between increased EAT and clinical characteristics of HFpEF
Ref. Participants, n Imaging 

method Pathological changes Clinical 
manifestations Prognosis

van Woerden et al
[48], 2018 

64 HF patients with 
LVEF > 40%

CMR Myocardial injury: increased 
creatine kinase-MB and TnT

Decreased quality of life 
(KCCQ score)

Wang et al[49], 2022 53 HF patients with 
LVEF > 50%

CMR Inflammation: increased CRP; LV 
hypertrophy: increased LVmass 
index; LV diastolic dysfunction: 
increased E/e' and tricuspid 
regurgitation velocity

Venkateshvaran et al
[50], 2022 

182 HF patients 
with LVEF > 50%

Echo Inflammation; endothelial 
dysfunction; LV hypertrophy: 
increased LV septal wall thickness; 
LV diastolic dysfunction: increased 
E peak deceleration time

Decreased quality of life 
(KCCQ score)

Koepp et al[51], 2020 169 HF patients 
with LVEF > 50%

Echo Increased cardiac filling pressures, 
pulmonary hypertension, and 
pericardial restraint

Decreased exercise 
capacity (VO2, AVO2 diff)

Haykowsky et al
[52], 2018 

100 HF patients 
with LVEF > 50%

CMR Decreased exercise 
capacity (VO2, 6-min 
walk test, leg power)

Gorter et al[53], 2020 75 HF patients with 
LVEF > 45%

Echo Decreased exercise 
capacity (VO2)

Pugliese et al[54], 
2021 

188 HF patients 
with LVEF > 50%

Echo Myocardial injury: increased TnT; 
inflammation: increased CRP

Decreased exercise 
capacity (peak VO2 and 
AVO2 diff)

Increased risk of the 
composite endpoint of HF 
hospitalization and 
cardiovascular deaths

van Woerden et al
[55], 2022 

105 HF patients 
with LVEF > 40%

CMR Increased risk of HF hospit-
alization, all-cause death, 
and the composite endpoint

AVO2 diff: Non-invasive arterial-venous oxygen content difference; CMR: Cardiac magnetic resonance; CRP: C-reactive protein; EAT: Epicardial adipose 
tissue; Echo: Echocardiography; E/e': Peak velocity during early diastole/early diastolic mitral annular velocity; HF: Heart failure; HFpEF: Heart failure 
with preserved ejection fraction; KCCQ: Kansas City cardiomyopathy questionnaire; LV: Left ventricular; LVEF: Left ventricular ejection fraction; MB: 
Myocardial band; TnT: Troponin T; VO2: Peak oxygen consumption.

Pharmacological interventions
Anti-cytokine drugs: Inflammation is an essential driver of abnormal EAT expansion. Theoretically, 
anti-cytokine drugs (anti-IL-1 and anti-IL-6, etc) can interfere with the pathophysiological process of 
EAT expansion and may eventually decrease EAT accumulation. Unfortunately, there are no relevant 
studies to confirm this. Furthermore, anti-cytokine drugs, particularly IL-1 blockade, have shown 
cardioprotective effects in many cardiovascular diseases[69]. Nevertheless, few clinical studies have 
examined their effects on HFpEF, and the results are inconsistent. The D-HART trial showed that a 14-d 
intervention with anakinra, an IL-1 blocker, significantly reduced the systemic inflammatory response 
and improved aerobic exercise capacity in individuals with HFpEF (n = 12)[70]. Contrarily, the D-HART 
2 trial found that anakinra intervention for 12 d failed to improve exercise capacity in patients with 
HFpEF (n = 21)[71]. Therefore, whether anti-cytokine drugs reduce EAT deposition has not been 
confirmed in clinical investigations, and their role in HFpEF with T2DM requires validation in 
standardized randomized controlled trials.

Anti-hyperlipidemic drugs: Statins are 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors 
that can significantly reduce endogenous cholesterol production by inhibiting the rate-limiting enzyme 
in cholesterol synthesis[72]. As the anti-inflammatory effects have been established, researchers have 
begun to explore the role of statins in EAT in the last decade. According to Parisi et al[73], statin therapy 
dramatically decreased EAT thickness and EAT-secreted inflammatory mediators in individuals with 
aortic stenosis. In patients who successfully underwent percutaneous coronary intervention, Park et al
[74] demonstrated that atorvastatin (20 mg/d) reduced EAT thickness more significantly than 
simvastatin/ezetimibe (10/10 mg/d). Soucek et al[75] confirmed that substantial reductions in EAT 
were associated with intensive atorvastatin therapy (80 mg/d) in atrial fibrillation patients undergoing 
pulmonary vein isolation. A study by Alexopoulos et al[76] showed that intensive treatment (ator-
vastatin, 80 mg/d) was more successful in inducing EAT reduction than moderate-intensity treatment 
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Table 3 Pharmacological interventions targeting epicardial adipose tissue

Ref. Imaging 
method Participants, n Intervention method and 

duration Change of EAT Other findings

Park et al[74], 
2010

Echo 145 coronary artery 
stenosis patients

Atorvastatin: n = 82, 20 mg/d; 
simvastatin: n = 63, 10 mg/d; for 
6-8 mo

Atorvastatin decreased EAT 
thickness (0.47 ± 0.65 mm) more 
than simvastatin (EAT 0.12 ± 
0.52 mm, P = 0.001)

Decreased TC, TG, and LDL-C

Soucek et al
[75], 2015

CT 38 atrial fibrillation 
patients 

Atorvastatin: 80 mg/d, for 3 mo EAT volume decreased from 
86.9 (64.1-124.8) mL to 92.3 
(62.0- 133.3) mL (P < 0.05)

Decreased CRP, TC, and LDL-C

Alexopoulos et 
al[76], 2013 

CT 420 hyperlipidemic 
post-menopausal 
women

Atorvastatin: n = 194, 80 mg/d; 
pravastatin: n = 226, 40 mg/d; for 
12 mo

Atorvastatin decreased EAT 
volume (3.38%) more than 
pravastatin (0.83%, P = 0.025)

Decreased TC, TG, and LDL-C

Rivas Galvez 
et al[78], 2020 

Echo 41 patients treated 
with PCSK9 
inhibitors

Evolocumab: n = 16; alirocumab: 
n = 8; twice in 6 mo

EAT thickness decreased by 
20.39% (P = 0.0001).

Decreased BMI, TC, and LDL-C

Iacobellis et al
[82], 2017

Echo 41 patients T2DM Metformin: 500 mg-1000 mg, 
twice daily, for 6 mo

EAT thickness changed from 7.4 
± 1.6 mm to 7.5 ± 1.5 mm and 
6.9 ± 1.3 mm at 3 and 6 mo, 
respectively

Decreased BMI

Ziyrek et al
[83], 2019

Echo 40 T2DM patients Metformin: 1000 mg, twice daily, 
for 3 mo

EAT thickness decreased from 
5.07 ± 1.33 mm to 4.76 ± 1.32 
mm (P < 0.001)

Iacobellis et al
[84], 2020 

Echo 51 T2DM patients Metformin: 500 mg-1000 mg, 
twice daily, for 6 mo

EAT thickness decreased from 
8.0 ± 2.5 mm to 7.4 ± 2.5 mm 
and 7.5 ± 2.4 mm at 3 and 6 mo, 
respectively (compared with 
baseline P < 0.016)

Moody et al
[90], 2014 

CMR 12 T2DM patients Pioglitazone: 15 mg/d, for 2 wk, 
then increase to 45 mg/d, for 22 
wk

EAT area decreased from 15.3 ± 
3.9 cm2 to 14.0 ± 3.9 cm2 (P = 
0.03)

Decreased paracardial adipose 
tissue; improved left ventricular 
diastolic function

Lima-Martínez 
et al[94], 2015 

Echo 26 T2DM patients Combination of sitagliptin (50 
mg) and metformin (1000 mg), 
twice daily, for 24 wk

EAT thickness reduction of 15% 
(P = 0.001)

van Eyk et al
[99], 2019

CMR 22 T2DM patients Liraglutide: 0.6 mg/d gradually 
increased to 1.8 mg/d in 2 wk, for 
26 wk

EAT area reduction of 0 ± 2 cm2 Decreased visceral fat volume

Bizino et al
[100], 2020

CMR 23 T2DM patients Liraglutide: 0.6 mg/d gradually 
increased to 1.8 mg/d in 2 wk, 26 
wk

EAT area reduction of 1.1 ± 6.0 
cm2

Decreased body weight and 
subcutaneous fat

Iacobellis et al
[82], 2017 

Echo 54 T2DM patients Combination of liraglutide 
(increased to 1.8 mg/once daily) 
and metformin (1000 mg, twice 
daily), for 12 wk

EAT thickness reduction of 29% 
and 36% at 3 and 6 mo, 
respectively

Decreased BMI and HbA1c

Zhao et al
[101], 2021

Echo 21 T2DM patients Liraglutide: 0.6 mg/d gradually 
increased to 1.2 mg/d in 3-5 d, for 
3 mo

EAT decreased from 5.00 (5.0-
7.0) mm to 3.95 ± 1.43 mm (P < 
0.001)

Decreased weight, HbA1c, TC, 
TG, and LDL-C

Dutour et al
[102], 2016 

CMR 22 T2DM patients Exenatide: 5 mg twice daily, for 4 
wk, then increase to 10 mg twice 
daily, for 22 wk

EAT volume reduction of 8.8 ± 
2.1%

Decreased weight, HbA1c, and 
hepatic triglyceride content

Morano et al
[103], 2015 

Echo 25 T2DM patients Combination of exenatide (5 mg 
twice daily, for 1 mo, and then 
increase to 10 mg twice daily, for 
2 mo) and liraglutide (1.2 mg/d), 
for 3 mo

EAT thickness decreased from 
9.4 ± 1.6 mm to 8.0 ± 1.9 mm (P 
= 0.003)

Decreased MRI; improved renal 
resistive index

Iacobellis et al
[104], 2020 

Echo 6 T2DM patients Semaglutide: n = 30, 1 mg weekly; 
dulaglutide: n = 30, 1.5 mg 
weekly; for 12 wk

EAT thickness reduction of 20% 
in both semaglutide and 
dulaglutide groups

Decreased BMI and HbA1c

Requena et al
[108], 2021 

CMR 84 non-diabetic 
patients with 
HFrEF

Empagliflozin: 10 mg/d, for 6 mo EAT volume reduction of 5.14 
mL, P < 0.05

Decreasing subcutaneous fat 
and matrix volume

EAT thickness decreased from 
7.6 ± 1.7 mm to 6.7 ± 1.3 mm (P 

Decreased BMI, waist circum-
ference, HbA1c, uric acid, 

Ardahanlı et al
[109], 2021 

Echo 37 T2DM patients Empagliflozin: 10 mg/d, for 6 mo
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< 0.001) systolic and diastolic blood 
pressure, and carotid intima-
media thickness

Iacobellis et al
[84], 2020 

Echo 51 T2DM patients Combination of dapagliflozin (5 
to 10 mg/d) and metformin (500 
to 1000 mg, twice daily), for 24 
mo

EAT thickness decreased by 
15% from baseline to 12 wk and 
20% after 24 wk (compared 
with baseline P < 0.01)

Decreased weight and HbA1c

Sato et al[110], 
2018 

CT 20 T2DM patients Dapagliflozin: 10 mg/d, for 6 mo EAT volume reduction of 16.4 ± 
8.3 mL (P < 0.05)

Decreased HbA1c, TNF-α, TG, 
insulin resistance, and left atrial 
dimension

Sato et al[111], 
2020

CT 18 T2DM patients 
with coronary 
artery disease

Dapagliflozin: 5 mg/d, for 6 mo EAT volume reduction of 15.2 ± 
12.8 mL (P < 0.05)

Decreased HbA1c, TNF-α, and 
insulin resistance

Braha et al
[112], 2021

CT 52 T2DM patients Dapagliflozin: 10 mg/d, for 6 mo EAT volume reduction of 17.1% 
(P < 0.001)

Decreased BMI, triglyceride 
glucose index, and HbA1c

Yagi et al[113], 
2017 

Echo 13 T2DM patients Canagliflozin: 100 mg/d, for 6 mo EAT thickness decreased from 
9.3 ± 2.5 to 8.1 ± 2.3 mm (P < 
0.01) and to 7.3 ± 2.0 mm (P < 
0.001) at 3 mo and 6 mo, 
respectively

Decreased BMI

Fukuda et al
[114], 2017 

CMR 9 T2DM patients Ipragliflozin: 50 mg/d, 12 wk EAT volume decreased from 
102 (79-126) mL to 89 (66-109) 
mL (P = 0.008)

Decreased weight, BMI, HbA1c, 
TG, leptin, fasting plasma 
glucose, and insulin resistance

Bouchi et al
[115], 2017

CMR 19 T2DM patients Luseogliflozin: 2.5-5.0 mg/d for 
12 wk

EAT volume decreased from 
117 (96-136) mL to 111 (88-134) 
mL (P = 0.048)

Decreased weight, BMI, systolic 
and diastolic blood pressure, 
HbA1c, fasting plasma glucose, 
insulin resistance, and CRP

Gaborit et al
[116], 2021

CMR 26 T2DM patients Empagliflozin: 10 mg/d, 12 wk EAT volume decreased from 
108.5 ± 31.8 mL to 106.9 ± 31.8 
mL (P = 0.09)

Decreased BMI, TG, HbA1c, 
fasting blood glucose, liver fat 
content, and visceral fat volume

BMI: Body mass index; CMR: Cardiovascular magnetic resonance; CRP: C-reactive protein; CT: Computed tomography; EAT: Epicardial adipose tissue; 
Echo: Echocardiography; HbA1c: Glycosylated hemoglobin; HFrEF: Heart failure with reduced ejection fraction; LDL-C: Low-density lipoprotein 
cholesterol; MRI: Magnetic resonance imaging; PCSK9: Proprotein convertase subtilisin/kexin type 9; T2DM: Type 2 diabetes mellitus; TC: Total 
cholesterol; TG: Triglycerides; TNF-α: Tumor necrosis factor-α.

(pravastatin, 40 mg/d) in hyperlipidemic post-menopausal women.
Furthermore, proprotein convertase subtilisin/kexin type 9 (PCSK9), part of the EAT secretome, is 

involved in EAT-induced inflammation[77]. Therefore, PCSK9 inhibitors, a new class of lipid-lowering 
drugs, may inhibit the abnormal expansion of EAT. A non-randomized cohort of 24 patients reported a 
20.39% reduction in EAT thickness after 6 mo of PCSK9 inhibitor treatment (evolocumab or alirocumab)
[78]. In recent years, statin therapy has been reported to considerably reduce mortality in patients with 
HFpEF, possibly associated with a reduction in the inflammatory response or accumulation of EAT[79,
80]. Thus, hypolipidemic medicines may attenuate aberrant EAT expansion and be advantageous in 
diabetic HFpEF, and well-designed randomized controlled trials are still needed to validate this.

Anti-hyperglycemic drugs: Metformin, an oral anti-hyperglycemic drug for patients with T2DM, 
lowers blood glucose levels by decreasing hepatic glucose production (gluconeogenesis) and improves 
insulin sensitivity by increasing peripheral glucose uptake and utilization[81]. In recent years, several 
studies have begun to explore its impacts on EAT, as its positive effects on reducing body weight and 
fat composition have been revealed. Iacobellis et al[82] showed that metformin treatment (500-1000 mg, 
twice daily) for 3-6 mo failed to reduce EAT thickness in patients with T2DM. In contrast, Ziyrek et al
[83] found a significant reduction of EAT thickness after 3 mo of metformin monotherapy (1000 mg, 
twice daily) in individuals with T2DM. After increasing the sample size, Iacobellis et al[84] also 
discovered that metformin slightly reduced EAT thickness. Additionally, metformin treatment 
decreased mortality in HFpEF patients and improved LV hypertrophy and diastolic dysfunction[85,86]. 
Unfortunately, studies on the effects of metformin on EAT accumulation are scarce and controversial, 
and future research is needed to generate robust evidence.

Thiazolidinediones (TZDs), which are peroxisome proliferator-activated receptor gamma (PPAR- γ) 
agonists, can enhance insulin sensitivity by activating peroxisome proliferator-activated receptor 
gamma[87]. As a result, it reduces the secretion of proinflammatory cytokines in the visceral fat depots 
and thereby can inhibit the abnormal enlargement of EAT[88]. Pioglitazone, a member of TZDs, was 
shown to significantly reduce EAT inflammatory markers (IL-6, TNF-α, resistin, and matrix metallopro-
teinase-9) and increase adiponectin in patients with coronary artery disease and metabolic syndrome
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Figure 2 Epicardial adipose tissue in the pathophysiology of heart failure with preserved ejection fraction with type 2 diabetes mellitus. 
Dysregulated glucose metabolism is intimately related to the expansion of epicardial adipose tissue (EAT). Increased EAT deposition interacts directly with the heart 
through mechanical and metabolic mechanisms. Mechanically, EAT expansion may directly contribute to pericardial restrain, resulting in left ventricular (LV) diastolic 
dysfunction. Metabolically, EAT enlargement is linked to the buildup of free fatty acids, which may induce myocardial lipotoxicity and cardiac steatosis. 
Simultaneously, hypertrophic adipocytes and activated macrophages secrete numerous proinflammatory adipocytokines and chemokines in EAT. Subsequent local 
inflammation, excessive oxidative stress, microvascular and endothelial dysfunction, and myocardial stiffness and fibrosis ultimately lead to LV remodeling and 
diastolic dysfunction.

[89]. According to Moody et al[90], pioglitazone treatment was linked to a 9% reduction in EAT area and 
improvement in LV diastolic function in patients with T2DM, and there was a significant negative 
correlation between EAT and LV diastolic function. However, TZDs may cause serious cardiovascular 
adverse effects, especially HF[91,92]. As a result, the clinical use of TZDs in the treatment of HFpEF is 
limited due to their potential to exacerbate HF.

Dipeptidyl peptidase 4 (DPP-4) inhibitors improve glucose-dependent insulin secretion by increasing 
bioactive incretins, which inhibit glucagon release and then promote insulin production to decrease 
blood glucose levels[93]. Only a single-group pre-post study by Lima-Martínez et al[94] showed that 26 
overweight patients with T2DM had a 15% reduction in EAT thickness after 6 mo of treatment with a 
combination of metformin and sitagliptin, a DPP-4 inhibitor. Unfortunately, there is a lack of research 
on regulating EAT using DPP-4 inhibitors alone. Therefore, relevant studies still need to support 
whether DPP-4 inhibitors can reduce EAT accumulation. In addition, it is controversial whether an 
increased risk of HF is associated with DPP-4 inhibitors[95].

Glucagon-like peptide-1 receptor agonists (GLP1-RAs) comprise a novel anti-diabetic drug class that 
maintains glucose homeostasis by stimulating glucose-dependent insulin secretion, suppressing 
glucagon release, and inhibiting gastric emptying[96]. Previous studies reported the presence of GLP-1R 
in EAT with mRNA and protein expression, and targeting GLP-1R in EAT can reduce local adi-
pogenesis, enhance fat utilization, and drive brown fat differentiation[97,98]. According to research by 
van Eyk et al[99] and Bizino et al[100], liraglutide reduced visceral or subcutaneous fat but failed to 
reduce EAT accumulation in T2DM. Five investigations, however, demonstrated that liraglutide[82,101-
103], exenatide[102,103], semaglutide[104], and dulaglutide[104] not only significantly decreased EAT 
deposition but also improved glycolipid metabolism disorders. A meta-analysis performed by Berg et al
[105] confirmed that GLP1-RAs suppressed the abnormal accumulation of EAT. Moreover, liraglutide 
treatment has been shown to improve LV stiffness and diastolic dysfunction and reduce mortality in 
HFpEF patients[106]. As a result, GLP1-RAs can inhibit abnormal EAT expansion and may be beneficial 
for HFpEF. However, further research on this subject is still necessary due to the small numbers of both 
studies and subjects.

Sodium-glucose cotransporter 2 inhibitors (SGLT2-Is), the newly developed anti-hyperglycemic 
agents, bind to the SGLT2 transporter in the proximal tubule of the kidney and then promote the 
urinary excretion of glucose by preventing the reabsorption of glucose[96]. In recent years, SGLT2-Is 
have been found to play an essential role in mediating anti-inflammatory effects, and therefore its role 
in regulating EAT has gained significant attention. In individuals undergoing cardiac surgery, Diaz Dí
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Figure 3 Current interventions targeting epicardial adipose tissue and possible mechanisms. Current interventions targeting epicardial adipose 
tissue (EAT) reported in the literature include non-pharmacological interventions (lifestyle management and bariatric surgery) and pharmacological interventions 
related to anti-cytokines, anti-hyperlipidemia, and anti-hyperglycemia. By increasing fat oxidation or sensitivity to insulin and inhibiting inflammation or hypermetabolic 
activity, these interventions may prevent abnormal expansion and inflammation of EAT. EAT: Epicardial adipose tissue; DPP-4: Dipeptidyl peptidase 4; GLP1-RAs: 
Glucagon-like peptide-1 receptor agonists; PCSK9: Proprotein convertase subtilisin/kexin type 9; SGLT2-Is: Sodium-glucose cotransporter 2 inhibitors; TZDs: 
Thiazolidinediones.

az-Rodríguez et al[107] demonstrated the expression of SGLT2 in EAT and that dapagliflozin promoted 
the differentiation of EAT cells and decreased the release of proinflammatory chemokines in in vitro 
assays. Multiple clinical studies have demonstrated that SGLT2-Is (empagliflozin[108,109], dapagliflozin
[84,110-112], canagliflozin[113], ipragliflozin[114], luseogliflozin[115]) can dramatically decrease EAT 
deposition, improve glucolipid metabolism, and reduce inflammatory responses. Conversely, only one 
study by Gaborit et al[116] indicated that empagliflozin failed to reduce EAT volume in patients with 
T2DM.

A meta-analysis conducted by Masson et al[117] confirmed that SGLT2-Is could significantly reduce 
EAT accumulation and improve glucolipid metabolism. Interestingly, Requena-Ibáñez et al[108] 
reported that empagliflozin could reduce EAT volume in patients with non-diabetic HFrEF. According 
to Yagi et al[113], canagliflozin reduced EAT thickness independent of lowering blood glucose. Thus, 
SGLT2-Is play an essential role in inhibiting EAT accumulation, possibly independent of glycemic 
control. Moreover, the current studies confirmed that SGLT2-Is exerts direct pleiotropic effects on the 
myocardium of HFpEF model animals through multiple mechanisms, such as reducing inflammation, 
suppressing oxidative stress, and improving cardiac structural and functional dysfunction (myocardial 
hypertrophy, stiffness fibrosis, and LV diastolic dysfunction)[118-121]. Clinically, SGLT2-Is (em-
pagliflozin and dapagliflozin) have been confirmed to improve exercise tolerance[122] and quality of life 
in HFpEF patients[123,124] and lower the risk of cardiovascular death or HF hospitalization[125-127]. 
Consequently, SGLT2-Is exhibit significant prevention of abnormal EAT expansion and positive 
therapeutic effects in HFpEF, which warrants further clinical validation.

SUMMARY AND FUTURE PERSPECTIVES
T2DM can be one of the essential drivers of the occurrence and development of HFpEF and is associated 
with a worse prognosis of HFpEF. Systemic inflammation associated with glucose metabolism disorders 
is a crucial pathological mechanism for HFpEF with T2DM, which is associated with the expansion and 
dysfunction of EAT. EAT is a facilitator of the pathophysiological process of HFpEF, which may 
promote inflammation, oxidative stress, myocardial steatosis, and myocardial fibrosis via vasocrine or 
paracrine mechanisms, ultimately contributing to LV remodeling and diastolic dysfunction. 
Accordingly, inhibition of the expansion of EAT may be an attractive therapeutic intervention for 
HFpEF with T2DM.
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Currently, lifestyle management, bariatric surgery, and certain medications related to anti-cytokines, 
anti-hyperlipidemia, and anti-hyperglycemia can help to alleviate the inflammation and or accumu-
lation of EAT and reduce clinical symptoms or improve long-term prognosis in patients with HFpEF. 
Nevertheless, the specific mechanisms by which these drugs inhibit EAT expansion remain to be further 
explored, and clinical studies on their use in HFpEF with T2DM are lacking. As a result, relevant 
foundational research and well-designed randomized controlled trials are needed to elucidate the 
pharmacological mechanisms and efficacy of current interventions. Another critical aspect is to develop 
new methods to suppress the inflammation or expansion of EAT. Concomitantly, it is essential to 
thoroughly investigate the mechanisms of abnormal accumulation of EAT so that more novel and 
effective therapies targeting EAT will become available.

CONCLUSION
In the development of HFpEF with T2DM, the expansion and dysfunction of EAT exert an essential role. 
Through vasocrine or paracrine pathways, abnormal EAT accumulation may lead to inflammation, 
oxidative stress, myocardial steatosis, and myocardial fibrosis, resulting in LV remodeling and diastolic 
dysfunction, which are essential features of HFpEF. Therefore, targeting EAT may be a prospective 
therapeutic intervention for HFpEF with T2DM. At present, lifestyle management, bariatric surgery, 
and pharmaceutical interventions may help alleviate the expansion of EAT and improve the clinical 
manifestations or prognoses of HFpEF patients. Nonetheless, well-designed randomized controlled 
studies are required to confirm the efficacy of existing treatments. Moreover, it is hoped that more novel 
and effective therapies targeting EAT will become available in the future.
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