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Abstract
The incidence of type 2 diabetes mellitus is growing in epidemic proportions and 
has become one of the most critical public health concerns. Cardiovascular 
complications associated with diabetes are the leading cause of morbidity and 
mortality. The cardiovascular diseases that accompany diabetes include angina, 
myocardial infarction, stroke, peripheral artery disease, and congestive heart 
failure. Among the various risk factors generated secondary to hyperglycemic 
situations, advanced glycation end products (AGEs) are one of the important 
targets for future diagnosis and prevention of diabetes. In the last decade, AGEs 
have drawn a lot of attention due to their involvement in diabetic patho-
physiology. AGEs can be derived exogenously and endogenously through 
various pathways. These are a non-homogeneous, chemically diverse group of 
compounds formed non-enzymatically by condensation between carbonyl groups 
of reducing sugars and free amino groups of protein, lipids, and nucleic acid. 
AGEs mediate their pathological effects at the cellular and extracellular levels by 
multiple pathways. At the cellular level, they activate signaling cascades via the 
receptor for AGEs and initiate a complex series of intracellular signaling resulting 
in reactive oxygen species generation, inflammation, cellular proliferation, and 
fibrosis that may possibly exacerbate the damaging effects on cardiac functions in 
diabetics. AGEs also cause covalent modifications and cross-linking of serum and 
extracellular matrix proteins; altering their structure, stability, and functions. 
Early diagnosis of diabetes may prevent its progression to complications and 
decrease its associated comorbidities. In the present review, we recapitulate the 
role of AGEs as a crucial mediator of hyperglycemia-mediated detrimental effects 
in diabetes-associated complications. Furthermore, this review presents an 
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overview of future perspectives for new therapeutic interventions to ameliorate cardiovascular complications in 
diabetes.
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Core tip: Cardiovascular diseases (CVDs) in type 2 diabetes mellitus impose a clinical and an economic burden on the 
healthcare system. Early diagnosis of diabetes may prevent its progression to complications and decrease its associated 
comorbidities. The present manuscript reports the clinical relevance of estimating advanced glycation end products (AGEs) 
in diabetes. The deleterious effects of AGEs include many important biochemical reactions central to the development and 
progression of cardiovascular complications in diabetes. Therefore, AGEs are one of the important targets for future 
diagnosis and prevention of diabetes. The epidemiology of CVD in diabetes, AGEs as a crucial mediator of diabetic CVD, 
and an overview of different strategies for countering the accumulation of AGEs is discussed along with new therapeutic 
interventions to ameliorate their effects.
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INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a cluster of metabolic disturbances consequent to non-utilization of glucose due to 
insufficient production/secretion of insulin or its resistance. T2DM poses a major threat to global health. The number of 
people with T2DM is increasing at an alarming rate and has become one of the leading causes of death worldwide. The 
upsurge is corresponding with rising obesity, aging populations, increasing urbanization, calorie dense diets, economic 
development, and reduced physical activity. The global prevalence of diabetes as described by the International Diabetes 
Federation in 2021 was estimated to be 536.6 million (10.5%) and it is projected to reach 783.2 million (12.2%) by 2045[1]. 
Prevalence is expected to be higher in urban areas compared to rural ones. The estimated global cost of diabetes is slated 
to rise from 966 billion USD in 2021 to 1054 billion USD by 2045[1,2]. Consequently, T2DM imposes both a clinical and an 
economic burden on the health care system. DM is a complex pathophysiological process associated with several 
disabling and life-threatening health problems. Since DM basically affects blood vessels, it can affect almost any part of 
the body. People with diabetes are at risk of developing several complications affecting the heart, eyes, kidneys, and 
nerves. Vascular dysfunction is the single most serious consequence of long-standing DM[3,4] resulting in debilitating 
morbidity and mortality due to cardiovascular diseases (CVDs)[5,6]. The CVDs that accompany DM include stroke, 
myocardial infarction, peripheral artery disease, and coronary thrombosis[7].

Early diagnosis of DM may prevent its progression to CVD and decrease its associated comorbidities. Persistent 
hyperglycemia is considered to be an important factor in the development and the progression of diabetic complications 
and the exact mechanism of the deleterious effects of hyperglycemia on the onset of diabetic complications is still being 
explored[8]. Numerous hyperglycemia-induced mechanisms have been hypothesized to account for vascular complic-
ations in T2DM. These include the hexosamine pathway, polyADP-ribose polymerase activation, protein kinase C (PKC) 
activation, aldose reductase-mediated polyol pathway, and enhanced formation of advanced glycation end products 
(AGEs)[9-11]. Among these, the AGE-mediated pathways have been explored in the last decade because of mounting 
evidence that AGE accumulation is the crucial factor in the progression of diabetic complications[12,13]. AGEs are hetero-
geneous compounds resulting from nonenzymatic reactions of reducing sugars with other biomolecules such as lipids, 
proteins, and nucleic acid. This nonenzymatic glycation of proteins, lipids and nucleic acids is a slow and complicated 
process depending on the relative concentrations of the reactants. The moderate presence of AGEs has been notice in 
healthy individuals whereas, its formation increased under hyperglycemic conditions[14]. The severity of the complic-
ations in T2DM through AGEs corresponds with the quantum of hyperglycemia and varies with the structural and 
functional changes generated in most macromolecules. Also, AGEs interact with their receptors namely the receptor of 
AGEs (RAGE), and trigger the activation of multiple signals that can affect cellular functions and metabolism through 
upregulation of inflammation and oxidative stress[15,16].

The importance of AGEs in diabetic CVD is corroborated by the fact that the serum level of AGEs in T2DM CVD 
patients is higher compared to DM patients without CVD[17,18]. Studies have shown the association of AGEs with the 
prevalence as well as pathophysiological mechanisms of CVD in T2DM[19-21]. Jia et al[22] found that the tissue level of 
AGEs was independently associated with cardiac systolic dysfunction in T2DM patients with heart failure compared to 
T2DM patients without heart failure[22]. In vitro studies have shown that treatment of cardiomyocytes with AGEs for 24 

https://www.wjgnet.com/1948-9358/full/v14/i8/1146.htm
https://dx.doi.org/10.4239/wjd.v14.i8.1146


Bansal S et al. AGEs in diabetic-cardiovascular complications

WJD https://www.wjgnet.com 1148 August 15, 2023 Volume 14 Issue 8

h significantly reduces calcium transient in cells due to increased reactive species (RS) production[23]. Elevated serum 
AGEs predicted increased mortality due to CVD in Finnish women with DM who were followed up for 18 years[24]. In a 
recent review article by Dozio et al[25], the involvement of glycation in cardiovascular remodeling causing molecular, 
cellular and interstitial changes in the heart and vessels through different mechanisms has been demonstrated[25]. In a 
cross-sectional study carried out by De la Cruz-Ares et al[26] in 540 subjects, AGE levels and intima–media thickness of 
carotid arteries was consistently observed to be higher in CVD patients with T2DM[26]. Ninomiya et al[27] highlighted 
the importance of AGEs as a screening marker of atherosclerosis[27]. The AGE–RAGE axis further activates the 
pathological inflammation in plaques and atheromas[28]. Ren et al[29] identified the inhibition of prostacyclin in 
endothelial cells by the AGE–RAGE system, which promotes the formation of plasminogen activator inhibitor (PAI)-1 
contributing to the stabilization of thrombus formation by inhibiting the fibrinolytic activity[29].

This review focuses on summarizing the clinical relevance of AGEs in CVD development and progression in T2DM. 
Different anti-AGE strategies are also being discussed that may become potential candidates for future preventive and 
therapeutic strategies in diabetic CVD.

EPIDEMIOLOGY OF CVD IN T2DM
Current trends in the epidemiology of CVD in T2DM present an underlying connection between chronic and un-
controlled T2DM and vascular complications[30]. T2DM poses a major risk for the development of CVD and T2DM-
associated mortality[5]. Prevalence of coronary artery diseases, peripheral vascular diseases, and carotid artery disease 
has been observed in different macrovascular complications in T2DM[31]. Numerous epidemiological studies suggested 
that T2DM can accelerate atherosclerosis and increase the incidence of heart attacks and strokes[31,32]. Patients with 
T2DM have a two- to six-times higher risk of heart failure than non-T2DM patients and heart failure accounts for > 50% 
of deaths in T2DM patients[6,33,34]. CVD is a major comorbidity affecting about one-third of all people with T2DM. A 
cohort study carried out on 1.9 million people by Dinesh et al[35] identified T2DM as a significant risk factor for CVD, 
including stroke, heart failure, atherosclerosis, and myocardial infarction[35]. T2DM patients are also prone to various 
cardiovascular risk factors, such as hypertension, dyslipidemia, and obesity that can directly promote the occurrence of 
cardiovascular complications in T2DM[36,37].

A cohort study carried out by Shah et al[33] demonstrated that the occurrence of peripheral artery diseases and heart 
failure was higher in T2DM by 16.2% and 14.7%, respectively[33]. Another cohort study carried out by National Health 
and Nutrition Examination Survey demonstrated that T2DM increases the risk of stroke by 26.3%, hemorrhagic stroke by 
50% and ischemic stroke by 50%[32,38]. An American heart report of 2014 revealed a risk of heart failure of 40% in T2DM 
patients compared to patients without T2DM[39]. A prospective study showed that angina, coronary angioplasty, 
myocardial infarction, and congestive heart failure were among the predictors of all-cause mortality in T2DM[40]. A 
systematic review by Vaidya et al[41] has shown that 15%–81% of T2DM patients have at least one cardiovascular 
complication[41]. Einarson et al[42] confirmed that CVD imposes a substantial burden on the treatment of T2DM at both 
patient and population levels[42]. On an average patients treated for both CVD and T2DM resulted in an additional cost 
ranging from $3418 to $9705 compared to T2DM alone. Given the substantial economic and health burden of CVD in 
T2DM patients, there is a need to understand the mechanism of T2DM–CVD relationship and early diagnosis of T2DM to 
prevent its devastating complications.

DIFFERENT PATHWAYS FOR AGEs FORMATION
AGEs are chemically modified complex group of heterogeneous molecules formed either exogenously or endogenously 
by different pathways specifically, Maillard reaction, polyol pathway, and oxidation reactions (Figure 1). The Maillard 
reaction was first described in 1912 by French Scientist Louis Camille Maillard as “browning reaction” due to the 
associated yellow–brown color change when reducing sugar was heated with amino acid[43]. The AGEs formed through 
the Maillard reaction secondary to hyperglycemic condition is under intense investigation since a positive correlation is 
found with vascular complications like CVD, retinopathy, neurodegenerative diseases and other parameters of aging[44-
46]. Maillard glycation reaction is different from enzymatic N-/O-linked glycosylation of proteins since they produce 
crosslinked products obtained from spontaneous and nonenymatic action of reducing sugars or their derivatives on other 
molecules, altering the structure and function of important cellular and extracellular components[47,48]. In healthy 
individuals AGEs are formed minimally and are cleared efficiently from the system. Formation and accumulation of 
AGEs becomes more rapid and pronounced under hyperglycemic conditions, oxidative stress, inflammatory conditions, 
and obesity[9,16]. AGE levels are higher in aged individuals, due to either overproduction or slower clearance indicative 
of their pathophysiological implications[49,50]

Accrual of AGEs is a multistage process starting with covalent binding of functional groups of monosaccharides to free 
amino groups of proteins, lipids, and nucleic acids forming labile reversible Schiff base intermediates under a 
hyperglycemic environment. This reaction is reversed if the hyperglycemia abates timeously. The initial Schiff’s base 
transforms over a period of days to a ketoamine, called Amadori’s product. The Amadori products are more stable, but 
the reaction is still reversible. The most well-recognized Amadori product is glycated hemoglobin, which is widely used 
as a reliable marker of glycemic control. Amadori products can be degraded into a variety of dicarbonyl compounds like 
3-deoxy-glucosone, glyoxal and methyl-glyoxal, which can further react with proteins to form intermediate glycation 
products. Yellow–brown irreversible AGEs are formed after a sequence of chemical modifications including dehydration, 
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Figure 1 Pathways for endogenous advanced glycation end products formation. Formation of AGEs occurs through different pathways. Maillard 
reaction which occurs at three stages: (1) Covalent binding of reducing sugars to free amino groups of proteins, lipids, and nucleic acid resulting in reversible Schiff 
base formation within hours; (2) it undergoes chemical rearrangement over a period of days to form a more stable Amadori product (the reaction is still reversible); 
and (3) Amadori’s products can be degraded into many reactive dicarbonyl compounds undergoing chemical rearrangements leading to the formation of irreversible 
AGEs. These spontaneous rearrangements are slow and often taking months to years but enhanced in presence of oxidative stress, and metal ions. Autoxidation of 
glucose and the peroxidation of lipids into dicarbonyl derivatives also results in AGEs formation. Monosaccharides glycolytic intermediates and dicarbonyl compounds 
formed during glycolysis also play an important role in AGEs formation. Polyol pathway, where glucose is converted to sorbitol by the enzyme aldose reductase and 
then sorbitol is converted to fructose by the action of sorbitol dehydrogenase. Fructose metabolites are converted into α-oxaldehydes and interact with monoacids to 
form AGEs. AGEs: Advanced glycation end products.

oxidation, and fragmentation reactions (Figure 1). These spontaneous rearrangements are normally slow, often taking 
months to years. Nevertheless, the presence of oxidative stress, metal ions, and other catalysts can substantially increase 
the post-Amadori formation of AGEs. They are stable and accumulate inside and outside the cells and some of them have 
fluorescent properties[9,12,16].

Besides the Maillard reaction, other pathways such as the Hodge pathway, Namiki pathway and Wolff pathway can 
also result in AGEs formation, through autoxidation interactions of Amadori products, monosaccharides (glucose, 
fructose, ribose and glyceraldehyde) with amino acids and lipids[16,51-53]. Besides monosaccharides, the reactive 
products formed during glycolysis can also form AGEs by attacking proteins and other components. Some of the 
important glycolytic intermediates identified in AGEs formation are glyoxal, methylglyoxal, glucose-6-phosphate, triose 
phosphates, glyceraldehydes-3-phosphate and dihydroxy-acetone phosphate and 3-deoxyglucosone[54,55]. Auto-
oxidation of glucose, reaction between glycolipid and arginine/lysine also results in AGEs formation through glyoxal and 
methyl-glyoxal production[56,57]. The Polyol pathway where, enzymatically formed metabolites of glucose like sorbitol 
and fructose also contributes significantly to AGEs formation[58,59]. The free ribose formed during the degradation of 
nucleic acid also represents the main source of pentosidine formation[60].

Also, sugars vary in their susceptibility to the Maillard reaction, where D-glucose is less reactive and D-fructose is 
more reactive sugar as demonstrated in both thermally processed food and in vivo conditions[53,61,62]. Temperature also 
has a significant effect on early glycation product formation, where high temperature (120–180C) accelerates the Maillard 
reaction in processed food, and the same reaction for Amadori’s product formation in vivo conditions require much 
longer time[63].

Exogenous formation of AGEs through glyco-oxidation and lipo-oxidation reactions formed from heating food at high 
temperature and chemical processing, tobacco smoke components and other pollutants also contributes to the chemical 
load of AGEs. Blood and tissue AGE levels have been consistently observed to be higher in smokers and in patients on 
high AGEs diets compared to non-smokers and controls on low AGE diets[64-67]. Ingestion of exogenous AGEs has been 
shown to exacerbate diabetic complications like CVD in animal models, hence their role needs further exploration[68,69].
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TYPE OF AGEs
Due to variety of precursors and numerous pathways of nonenzymatic reactions, the AGEs are diverse in their chemical 
structure and properties. AGEs comprise a large number of chemical structures like N-carboxy-methyl-lysine (CML), 
pyrraline, pentosidine, cross-linked AGEs include GOLD [glyoxal-derived lysine dimer, 1,3-di(N_-lysino imidazolium 
salt], MOLD [methylglyoxal-derived lysine dimer, 1,3-di(N_-lysino)-4-(methyl-imidazolium salt], DOLD [3-deoxy-
glucosone-derived lysine dimer, 1,3- di(N_-lysino)-4 (2,3,4-trihydroxybutyl)imidazolium salt], etc.[16,70-72]. The best 
biochemical and immunohistochemically characterized AGEs found in humans are pentosidine, carboxyl methyl lysine 
and methylglyoxal, which accumulate and can potentially be used as biomarkers[73,74]. CML is the most well-charac-
terized AGE demonstrated in DM patients with CVD[75]. Structure and function of matrix proteins are modified with 
variable loss of function due to the aggregation of these adducts. Some of these AGEs have native fluorescence which can 
be used for their identification and quantification.

AGEs AND DIABETIC-CARDIOVASCULAR COMPLICATIONS
AGEs formed secondary to hyperglycemic conditions are gaining prominence as the underlying mechanism of CVD 
complications in T2DM. DM patients are known to have 20%–30% more circulating AGEs compared to controls, whereas 
DM patients with CVD complications have up to 40%–100% higher levels of AGEs[17,76]. The AGEs remain significantly 
high even after correction of variables such as duration of diabetes, sex, and age in T2DM patients with complications 
compared to those without complications[77,78]. Statistical analyses have also shown the association of AGEs level with 
the development and severity of atherosclerosis in DM patients[79,80]. Clinical reports have indicated that serum AGE 
levels can act as important marker or predictor of heart failure and CVD mortality in T2DM since their deposition has 
been detected in atherosclerotic plaques and heart muscles[81,82].

The deleterious effects of AGE-mediated cardiovascular complications in T2DM involve various pathological changes 
such as plaque formation, arterial stiffening, and generalized endothelial dysfunction aided by prothrombotic gene 
expression[83-85]. These detrimental effects of AGEs can be explained at the cellular and extracellular level as shown in 
Figure 2.

AGE–RAGE axis in cardiovascular complications
At the cellular level, AGEs mediate their effects through interaction with their receptors, especially RAGE. RAGE is 
recognized by multiple ligands and has been localized on endothelial cells, vascular smooth muscle cells (VSMCs), 
immune cells and many others[86]. The presences of RAGE on multiple cells indicate its involvement in pathways 
affecting the vascular system in diabetes[87]. AGE–RAGE interaction activates signaling cascades leading to enhanced 
production of reactive oxygen species (ROS), oxidative stress, inflammation, adhesion molecule expression, endothelin-1, 
PAI-1, tumor necrosis factor (TNF)-α, chemoattraction of inflammatory cells, smooth muscle and fibroblast proliferation, 
autophagy, and apoptosis[88-90]. AGE–RAGE interaction modulates the cellular properties that possibly promote 
proinflammatory and procoagulant gene pathways through stimulation of signaling molecules such as extracellular 
signal-regulated kinase (ERK)1/2, p21RAS, mitogen-activated protein kinase (MAPK), nuclear factor (NF)-κB, cdc42/rac, 
and Janus kinase (JAK)/STAT and adversely affect the cardiovascular health in diabetes[91,92]. Cipollone et al[93] have 
studied the association of AGE–RAGE interaction and RAGE overexpression in human diabetic plaque macrophages by 
an increased inflammatory reaction, cyclooxygenase-2/prostaglandin E synthase-1 expression that may contribute to 
plaque destabilization through induction of metalloproteinase expression[93]. Also, the AGE–RAGE system activates 
inflammation in plaques and atheromas. Therefore, therapeutic approaches are now targeting the AGE-RAGE system to 
prevent the development of atherosclerosis[94].

Glycation of cellular and extracellular components in diabetic CVD
AGEs are also involved in the covalent modifications and crosslinking of serum and extracellular matrix (ECM) proteins, 
lipids and nucleic acid leading to perturbation of their structure and functions. Proteins of ECM have slow turnover rate 
and longer half-life which make them more prone to glycation reaction and crosslinking under hyperglycemic conditions. 
Modification of ECM proteins and crosslinking interferes with cell–matrix and matrix–matrix interactions, leading to 
profibrotic action, decreased elasticity, increased stiffness and narrowing of vessels and other hallmarks of atherosclerosis
[14,95]. Cellular proteins also undergo the nonenzymatic glycation reaction by glucose and its derivatives like glucose-6-
phosdphate, glyceraldehyde-3-phosphate, dihydroxyacetone-phosphate, GO, and MGO. Cellular AGEs have also been 
known to activate signaling pathways further impacting the diabetic vascular complications[96]. AGEs also induce 
crosslinking of intracellular proteins that participate in Ca2+ homeostasis resulting in cardiomyocyte dysfunction[97]. 
AGE–RAGE interaction is also found to be associated with decreased Ca2+ levels by upregulated ryanodine receptor 
which is involved in maintaining ionic balance during systolic and diastolic phases[98].

Development of cardiovascular complications in T2DM is also associated with increased incidence of low-density 
lipoprotein (LDL) oxidation, glycation of paraoxonase (PON)1, and high-density lipoprotein (HDL)[99]. Oxidation of LDL 
in arterial walls is the primary step in initiation and progression of atherosclerosis by foam cell formation. Recent studies 
have reported that glycated LDL can evade recognition by LDL receptors and can attach to arterial walls[100]. Non-
enzymatic glycation of LDL is also responsible for impairment of hepatic receptor-mediated uptake and its removal. As a 
result, AGE-modified LDL is trapped in the subendothelium, causing its retention in the aortic wall where it is intern-
alized by macrophages resulting in foam cell formation[101-103]. Glycation of LDL also makes it more vulnerable to 
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Figure 2 Advanced glycation end product-mediated diabetic cardiovascular complications. AGEs mediate their pathological effects at the cellular 
and extracellular level by multiple pathways. At the cellular level, they activate signaling cascades via RAGE and initiate a complex series of intracellular signaling 
leading to reactive oxygen species generation, oxidative stress development, inflammation, adhesion molecule expression, endothelin-1, plasmin activator inhibitor 1, 
tumor necrosis factor alpha, chemoattraction of inflammatory cells, smooth muscle and fibroblast proliferation, autophagy, and apoptosis. AGE–RAGE interaction 
modulate the cellular properties through stimulation of signaling molecules such as ERK 1/2, p21RAS, MAPK, NF-B, cdc42/rac, and Janus kinase/STAT and 
adversely affects the cardiovascular health in diabetes. AGEs also causes covalent modifications and crosslinking of serum and ECM proteins, altering their structure, 
stability, and functions. Modification of ECM proteins and cross-linking interferes with cell–matrix and matrix–matrix interactions, affecting the matrix–cell signaling 
and leading to profibrotic action, decreased elasticity, increased stiffness, narrowing of vessels, and other hallmarks of atherosclerosis. VCAM1: Vascular cell 
adhesion molecules; JAK: Janus kinase; RAGE: Receptor for advanced glycation end products; NADPH: Nicotinamide adenine dinucleotide phosphate oxidase; NF-
κB: Nuclear factor-B; AGEs: Advanced glycation end products; MAPK: Mitogen-activated protein kinase; ROS: Reactive oxygen species; TNF-α: Tumor necrosis 
factor ; ERK: Extracellular signal-regulated kinase; LDL: Low-density lipoprotein; ECM: Extracellular matrix.

crosslinking with collagen in the arterial wall. Elevated lipid-linked AGEs in LDL have also been noticed in T2DM 
patients[104]. Glycation of HDL also influences inflammation and affects the removal of cholesterol, leading to the 
development of atherosclerosis[105]. PON1 is an HDL-associated enzyme with antiatherogenic properties that protects 
LDL and cell membranes from oxidation. Glycation of PON1 is found to decrease its activity in DM, leading to the 
development of premature atherosclerosis[17,106,107].

AGEs and oxidative stress in diabetic-CVD
T2DM patients are exposed to high oxidative stress, increased reactive species (RS) generation, and decreased antioxidant 
defense mechanism. Hyperglycemia-induced ROS generation unveils the pathophysiology of CVD in T2DM and 
increased production of ROS triggers the inflammatory cascades responsible for the pathogenesis of cardiovascular 
complications[108,109]. The level of transcription factors such as TNF-α and NF-кB is modulated by increased RS 
production mediated signal transduction pathways enhancing the proinflammatory events including inflammatory 
adhesion molecules, interleukin (IL)-6, IL-1, and cytokines[110-112]. The AGE–RAGE interaction is also involved in 
increased RS generation through stimulation of certain signaling mediators like ERK, phospholipase A2, phophoinositide 
3-kinase activation, activation of NADPH oxidase, inducible NO synthase (NOS), PKC and p38 MAPK[113-115]. 
Increased ROS production by mitochondria also triggers the inflammatory cascades in DM and prolonged exposure to 
high levels of ROS leads to oxidation, peroxidation and glyoxidation reactions resulting in increased oxidative stress 
markers such as protein carbonyl, oxidation of thiol group, lipid peroxidation, advanced oxidation protein products, and 
8-OHdG[17,116]. Oxidative injury to biomolecules has also been observed in tissues and blood of diabetics with high 
AGEs concentration[117,118]. In vitro and in vivo studies have reported that increased ROS production by AGE–RAGE 
interaction causes DNA damage that induces endothelial cell death by triggering the apoptotic pathway[119,120].

AGEs and endothelial cell dysfunction
Endothelial dysfunction is the hallmark for the development of cardiovascular complications in T2DM. The presence of 
RAGE on the endothelial cell surface suggests its relevance in endothelial dysfunction by interacting with AGEs in T2DM. 



Bansal S et al. AGEs in diabetic-cardiovascular complications

WJD https://www.wjgnet.com 1152 August 15, 2023 Volume 14 Issue 8

Lowered NO production, increased ROS generation, and enhanced expression of adhesion molecules, chemokines and 
cytokines are the hallmarks of endothelial dysfunction[121]. These conditions lead to inflammation, vasoconstriction, 
oxidative stress, myofibroblast migration, and proliferation inside the endothelial layer of vessels; all of which play a vital 
role in the development and progression of vascular complications in T2DM[122]. Under hyperglycemic condition 
endothelial cell proteins such as fibroblast growth factor and mitochondrial proteins undergo nonenzymatic glycation 
reactions affecting the vascular properties of cells by increased superoxide production, altering mitogenic and endothelial 
NOS (eNOS) activity[123,124].

Serum level of AGEs is negatively associated with the extent of endothelium-dependent vasodilation in T2DM patients
[125]. NO acts as an antiatherogenic factor due to its effective vasodilatory, anti-inflammatory, and antiproliferative 
activities[110,126]. Increased ROS production by AGEs is one of the reasons for inactivation of NO as well their 
conversion to peroxynitrite form, thereby affecting the integrity of endothelial cells. Formation and accumulation of AGEs 
inside the endothelial cells is also found to be associated with reduced eNOS gene expression and increased eNOS mRNA 
degradation[126]. AGE–RAGE interaction on endothelial cells also results in enhanced production of asymmetric 
dimethylarginine, which is an endogenous inhibitor of eNOS and is one of the strongest marker of cardiovascular disease 
progression[127]. AGEs are also involved in NO quenching and inactivation of endothelium-derived NO[88]. Uhlmann et 
al[128] reported a significant reduction in NO production in AGE-treated cells in vitro. Their results implied that AGEs 
have a role in the modulation of NO activity in diabetic pathophysiology[128]. Ren et al[29] demonstrated the 
involvement of AGEs in reducing eNOS expression and NO bioavailability by increasing the oxidative stress 
development through activation of p38 and ERK1/2 in human coronary artery endothelial cells in vitro[29]. Therefore, 
accumulation of AGEs and AGE–RAGE interaction has an important impact on the pathogenesis of diabetic-CVD by 
affecting the vasodilating properties of endothelial cells. The AGE–RAGE axis also provokes the expression of p22hox 
and gp91hox, which are reduced form of NADPH oxidase in endothelial cells and causes its dysfunction[28].

Involvement of AGEs has also been noticed in the production of vascular endothelial growth factor (VEGF) by 
endothelial cells and thereby involved in atheroma formation. The activation of NF-кB by AGEs increases the secretion of 
VEGF (that prevent the repair of endothelial lesions resulting in atherogenesis), stimulates the differentiation of monocyte 
to macrophages and the accumulation of oxidized LDL in the vasculature leading to foam cell formation[29,129]. 
AGE–RAGE involvement has also been observed to inhibit the prostacyclin production and generation of PAI-1 in 
endothelial cells[130]. Formation and accumulation of AGEs have also been implicated in platelet activation and 
aggregation, stimulation of procoagulant activity, thrombus formation, and endothelial cell damage mediated by upregu-
lation of protease-activated receptor-1 and -2 potentiates thrombin[131,132]. Decreased endothelial progenitor cell (EPC) 
function and mobilization poses a major risk for developing cardiovascular complications in T2DM[133]. AGE–RAGE 
interaction augments the apoptotic pathways and suppresses the migration and tube formation of late EPC by downregu-
lation of Akt and cyclooxygenase-2[134]. Glycation of Arg-Gly-Asp motif of fibronectin by AGEs results in impairment of 
vascular repair by inhibiting EPC adhesion, migration, and spreading[134].

Vascular complications are also characterized by the adhesion and transmigration of monocyte into the subendothelial 
space. AGE–RAGE interactions enhance this process by activation of proinflammatory molecules such as NF-кB, which 
causes the overexpression of proinflammatory genes and adhesion proteins that aid monocyte adhesion to endothelial 
cells[103,135,136]. Foam cells and fatty streak formation take place in the vessel wall by monocyte and oxidized lipid at 
the adhesion site. These fatty streaks mature into advanced lesions with a fibrous cap that can dislodged resulting in an 
infarct or a stroke[137]. These observations suggest that AGEs have a definitive role in development and progression of 
vascular injuries observed in diabetes.

AGEs and VSMC modifications
Recently researchers have identified the phenotype transformation of VSMCs into macrophages during cardiovascular 
pathology[138]. In vitro studies have shown the effects of AGEs on increased proliferative activity and production of 
fibronectin in cultured SMCs. Transforming growth factor-β might act as a mediator in AGE-induced fibronectin 
production in SMC through AGE–RAGE interactions[139]. In vivo, the effect of AGEs on the growth of SMCs has also 
been noticed and is mediated by increased production of cytokines or growth factors[140]. Expansion of neointima is a 
unifying feature of atherosclerosis. Significant decreased in neointimal expansion, SMC proliferation, migration, and 
expression of ECM proteins have been demonstrated in homozygous RAGE-null mice. These data highlight the 
involvement of the AGE–RAGE axis in modulating the SMC properties and suggesting an important pharmaceutical 
target for suppression of neointima expansion[44,140]. VSMC phenotype transformation and calcification is one of the 
main pathological manifestations of atherosclerosis[141]. Recently Bao et al[142] showed the effect of AGEs on VSMC-
derived foam cell formation and phenotype transformation. They identified the effect of CML on decreased expression of 
VSMC markers and increased expression of macrophage markers. They also noticed the involvement of AGEs in SMC 
migration and the secretion of proinflammatory factors[142]. Xing et al[143] explained the associated mechanism of 
phenotype transformation of VSMCs to macrophages by AGEs during atherosclerosis. They noticed that AGEs induced 
activation of RAGE/TLR4/FOXC2 signaling in macrophages with high expression of delta-like ligand (Dll)4 during M1 
polarization. These altered macrophages promoted phenotype conversion of VSMC through Dll4/Notch pathway after 
cell-to-cell contact[143].

ANTI-AGEs THERAPIES
The deleterious effects of AGEs in the development and progression of diabetic vascular complications have driven the 
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focus of pharmacological intervention towards attenuating the effects of AGEs. Although lifestyle modification, better 
glycemic control, regular physical activity, smoking cessation, restriction of AGE-rich diet have been reported to reduce 
the availability of precursors for glycation reactions and AGEs formation in T2DM[144-146]. A plethora of studies over 
the last few decades have been dedicated to in searching for pharmacological agents capable of interfering with glycation 
reactions and their sequelae. The underlying mechanism of action of these proposed drugs are based on AGEs inhibitors, 
AGEs crosslink breakers, detoxifying the dicarbonyls intermediates, and AGE–RAGE signaling blockers (Figure 3)[147,
148]. No AGE-modifiers have been approved as drugs as yet, although some AGE-associated medications are in clinical 
and preclinical testing. Phytochemicals having antioxidant and anti-inflammatory properties have the potential to arrest 
the detrimental effects of AGEs and downstream consequences of the AGE–RAGE pathway[149].

Inhibition of endogenous AGEs formation
The first drug that was discovered to impede endogenous AGE formation was aminoguanidine with a guanidine group 
that is capable of trapping α-dicarbonyl product of early glycation reactions and thereby preventing the subsequent 
reactions with proteins[150,151]. Bolton et al[152] demonstrated the role of aminoguanidine in reducing proteinuria and 
progression to retinopathy, however due to its side effects, it is unlikely to be used for therapeutic purposes[152]. 
Compounds structurally related to aminoguanidine such as ALT-946 and OPB-9195 have been developed and tested as 
potential drugs. ALT-946 therapy was found to reduce renal AGE accumulation, and reduce albumin excretion in animal 
models[153]. OPB-9195 is an antagonist of peroxisome proliferator-activated receptor-γ and inhibits the glycoxidation and 
lipoxidation reactions. In animal models, OPB-9195 decreased the progression of nephropathy, lowered the blood 
pressure, and the serum level of AGEs[154,155]. LR-90 is another aromatic compound with anti-AGE properties due to its 
metal-chelating ability and its interaction with dicarbonyl compounds. It affords renoprotection such as improved renal 
albuminuria, reduction of connective tissue growth factors, fibronectin and collagen deposition in experimental model of 
type 1 and type 2 nephropathy[156]. TM2002 is a powerful AGE inhibitor that has transition metal-chelating properties 
and is nontoxic. It improves renal and cardiac lesions, and decreases infarct volume in different animal models[157,158]. 
Benfotiamine is a prodrug of thiamine monophosphate with AGE-lowering properties, mediated through preventing 
dicarbonyl formation[159,160]. In a pilot study, Brownlee et al[150] observed that treatment along with α-lipoic acid 
improved complications in patients with type 1 or type 2 DM. Pyridoxamine also intervenes in the glycation process by 
blocking the transformation of Amadori products into AGEs[161]. They have the ability to trap ROS, thereby blocking the 
oxidative degradation of Amadori intermediates and preventing the formation of AGEs[162,163].

Preformed AGEs breakers
Among the deleterious effects of AGE accumulation, crosslinking of ECM is of prominence and results in cardiovascular 
stiffness. Phenylthiazolium bromide was the first reported AGE crosslink breaker that is not stable in aqueous solution
[164]. Several of its derivates have now been derived, such as ALT-711 or alageberium, and have the ability to break AGE 
crosslinks. The precise mechanism of their action relies on reaction with carbonyl groups present in AGE crosslinks and 
cleavage of carbon–carbon bonds. Application of alageberium in animal models has proved to be effective in reducing 
large artery stiffness and blood vessel fibrosis, attenuating atherosclerosis, diabetic nephropathy, and hypertension[165,
166]. The role of aptamers has been explored in biomedical and pharmaceutical industries[167]. Aptamers are a group of 
short and single-stranded DNA or RNA molecules with the ability to bind with high affinity/specificity to a variety of 
proteins. DNA aptamers raised against AGEs bind and ameliorate AGE-associated effects[168]. These specific DNA 
aptamers can become novel therapeutic agents for AGE-related pathologies.

AGE–RAGE signaling blockers/RAGE antagonists
In vitro and in vivo studies have confirmed that AGE–RAGE axis is one of the major pathways for diabetic vascular 
complications. Therefore, it would be an ideal target to prevent the development and progression of complication in 
T2DM. Pharmacological agents that focus on the AGE–RAGE axis could function through different means such as 
inhibiting the RAGE expression, altering the AGE–RAGE signaling or by raising the blood level of soluble RAGE 
(sRAGE) to trap AGEs. sRAGEs are formed by alternative gene splicing of RAGE gene or proteolytic cleavage of 
membranous RAGE. Administration of sRAGE has shown to decrease albuminurea, glomerulosclerosis and diabetic CVD
[169,170]. Statin and thiazolindinediones have been shown to ameliorate RAGE expression in conjugation with increased 
sRAGE[171,172]. The proposed underlying mechanisms of statin and thiazolindinediones have also been described. 
Activation of peroxisome proliferator-activated receptor-γ can inhibit the phosphorylation of ERK1/2 and downregulate 
NF-кB, thereby lowering the expression of inflammatory cytokines and RAGE[173,174]. Other molecules such as 
glucagon-like peptide (GLP)-1 and its analog exendin also decrease RAGE expression through suppressing NF-кB and 
decreasing ROS production by inhibiting NADPH oxidase activity[175,176]. Studies have also reported the involvement 
of GLP-1 and exendin in reducing activation of the AGE–RAGE axis and its associated complications such as athero-
sclerosis and diabetic cardiomyopathy etc[177,178]. RAGE inhibitors FPS-ZM1 and PF-04494700 had neuroprotective 
effects against ischemic brain injury in a rat model and β-amyloid structures in clinical trials for Alzheimer’s disease[179,
180]. The effect of FPS-ZM1 as a RAGE inhibitor is associated with decreased inflammation and oxidative stress by 
targeting other ligands of RAGE such as S100, high-mobility group protein 1, and amyloid β-protein[180-183]. The 
promising effect of RAGE blockers such as FPS-ZM1 and PF-04494700 in neurodegenerative diseases provides the 
rationale to study their effects in T2DM patients.

AGEs and hypoglycemic drugs
The effects of many hypoglycemic drugs have also been studied in the context of decreasing AGE level and ameliorating 
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Figure 3 Anti-advanced glycation end product therapeutic strategies. Anti-AGE therapies target multiple pathways based on AGE-mediated effects in 
type 2 diabetes mellitus and associated complications. These include inhibitors of AGE formation, AGE crosslink breakers, and AGE–RAGE for AGE signaling 
blockers. The uses of phytochemicals having antioxidant and anti-inflammatory properties are also providing options to arrest the detrimental effects of AGEs by 
reducing peroxidative inflammatory reactions through carbonyl scavengers, protein glycation inhibitors and free radical scavengers which can reduce oxidative stress. 
RAGE: Receptor for advanced glycation end products; AGEs: Advanced glycation end products; sRAGE: Soluble RAGE.

the effects of AGE–RAGE axis. Prasad and Tiwari[169] have reported the effects of rosiglitazone in inhibiting the 
AGE–RAGE interaction and found elevated sRAGE levels[169]. Similar results have been reported in a randomized 
placebo-controlled study of 111 patients with T2DM CVD, where increased sRAGE and decreased inflammatory markers 
were reported after 6 mo of rosiglitazone treatment[184]. Effects of glimepiride beyond glycemic control have been 
reported in reduction of toxic glyceraldehyde-derived AGE levels and increased colony-stimulating factors to potentially 
repair tissue damage in T2DM patients[185]. Metformin treatment inhibits development of adverse myocardial structural 
and functional changes by inhibiting the production and accumulation of AGEs[186,187]. Metformin also inhibits the 
AGE-induced VSMC proliferation[188]. Animal and in vitro models have shown the efficacy of dipeptidyl peptidase-4 
inhibitors such as sitagliptin, cilizytin, vildagliptin and linalgliptin in inhibiting glycosylation, downregulating the levels 
of AGEs, RAGE and oxidative stress markers, and decreasing the expression of VCAM-1, PAI-1, and ICAM-1[189-192]. 
GLP analog liraglutide was also found to ameliorate atherogenesis by inhibiting AGE-induced expression of RAGE in a 
mouse model[193].

CONCLUSION
T2DM imposes both clinical and economic burdens on the healthcare system. Recent reports have confirmed that CVD 
represents a substantial burden on the treatment of T2DM at both patient and population level. The pathophysiology of 
hyperglycemia in T2DM is closely associated with AGEs formation, accumulation, and their deleterious effects. The 
adverse effects of AGE accumulation include many important biochemical reactions that are central to the development 
and progression of cardiovascular complications in T2DM. AGE-mediated cardiovascular complications show many 
pathological changes such as plaque formation, arterial stiffening, neointimal proliferation, vasoconstriction, oxidation of 
LDL, and endothelial dysfunction. The probable mechanisms through which AGEs exert their detrimental effects include 
increased ROS generation, oxidative stress development, decreased NO production and its inactivation, inflammation, 
adhesion molecule expression, crosslinking of proteins, and prothrombotic gene expression. AGE–RAGE interactions also 
alter the cellular properties by promoting proinflammatory and procoagulant pathways acting through modulation of 
signaling molecules such as ERK1/2, cdc42/rac, p21RAS, TNF-α, MAPK, NF-κB, and JAK/STAT that adversely affect the 
cardiovascular health in T2DM. The AGE–RAGE axis is also involved in modulating SMC properties and neointima 
expansion, where it mediates SMC proliferation, phenotype transformation of VSMCs into macrophages during 
cardiovascular pathology. Therefore, clinical and experimental research is now focused on AGEs as new biomarkers or 
therapeutic target to prevent the development and progression of diabetic vascular complications. Based on AGE-
mediated effects in pathogenesis of T2DM and its complications, pharmacological approaches are exploring combination 
therapies targeting multiple pathways based on inhibitors of AGE formation, AGE cross-ink breakers, free radical 
scavengers, and anti-inflammatory therapies, detoxifying the dicarbonyl intermediates and AGE–RAGE signaling 
blockers that may attenuate AGE-mediated effects in diabetic cardiovasculature. The use of phytochemicals with 
antioxidant and anti-inflammatory properties is promising for arresting the detrimental effects of AGEs. Also, there is a 
need to develop more specific and sensitive methods for the assay of circulatory AGEs. An epidemic of diabetes over the 
past half century has also been associated with increased consumption of modern heat-processed and highly palatable 
AGE-rich diet. Therefore, lifestyle modifications including dietary AGE restriction, regular exercise and cessation of 
smoking are some of the important interventions and practical ways to attenuate the effects of the AGE–RAGE axis and 
AGE-associated pathways.
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