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Abstract
Type 2 diabetes mellitus (T2DM) is a lifelong condition and a threat to human 
health. Thorough understanding of its pathogenesis is acutely needed in order to 
devise innovative, preventative, and potentially curative pharmacological 
interventions. MicroRNAs (miRNA), are small, non-coding, one-stranded RNA 
molecules, that can target and silence around 60% of all human genes through 
translational repression. MiR-155 is an ancient, evolutionarily well-conserved 
miRNA, with distinct expression profiles and multifunctionality, and a target 
repertoire of over 241 genes involved in numerous physiological and pathological 
processes including hematopoietic lineage differentiation, immunity, inflam-
mation, viral infections, cancer, cardiovascular conditions, and particularly 
diabetes mellitus. MiR-155 Levels are progressively reduced in aging, obesity, 
sarcopenia, and T2DM. Thus, the loss of coordinated repression of multiple miR-
155 targets acting as negative regulators, such as C/EBPβ, HDAC4, and SOCS1 
impacts insulin signaling, deteriorating glucose homeostasis, and causing insulin 
resistance (IR). Moreover, deranged regulation of the renin angiotensin aldo-
sterone system (RAAS) through loss of Angiotensin II Type 1 receptor downregu-
lation, and negated repression of ETS-1, results in unopposed detrimental 
Angiotensin II effects, further promoting IR. Finally, loss of BACH1 and SOCS1 
repression abolishes cytoprotective, anti-oxidant, anti-apoptotic, and anti-inflam-
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matory cellular pathways, and promotes β-cell loss. In contrast to RAAS inhibitor treatments that further decrease 
already reduced miR-155 Levels, strategies to increase an ailing miR-155 production in T2DM, e.g., the use of 
metformin, mineralocorticoid receptor blockers (spironolactone, eplerenone, finerenone), and verapamil, alone or 
in various combinations, represent current treatment options. In the future, direct tissue delivery of miRNA 
analogs is likely.

Key Words: Angiotensin II; Angiotensin II type 1 receptor; Arginase 2; L-type calcium channel; Mineralocorticoid receptor; 
MiRNA-155; Renin-angiotensin aldosterone system; Type 1/2 diabetes mellitus; Verapamil
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Core Tip: MicroRNAs (miRNA) are small, non-coding, one-stranded RNA molecules that can target and silence over 60% of 
human genes thereby effectively regulating huge genetic networks. MiRNAs are abundantly found in every human cell and 
their production is tightly controlled. They play critical roles in regulating almost every cellular pathway, numerous human 
diseases, and have been linked to the development of diabetes mellitus (DM) and the regulation of blood pressure. In this 
minireview, we comment on crucial miR-155 effects in type 2 DM (T2DM). Deeper mechanistical understanding of this 
miRNA’s permeating action may lead to innovative therapeutic approaches in T2DM.
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INTRODUCTION
Diabetes mellitus (DM), until recently considered a lifelong and irreversible condition, is a devastating burden to over 
half a billion people worldwide[1]. The overwhelming majority of diabetic patients-over 90%-suffer from Type 2 DM 
(T2DM) caused by an intricate interaction between lifestyle and genetics that through insulin resistance (IR) lead to 
metabolic syndrome, pre-diabetes, failure of insulin-secreting pancreatic β-cells and ultimately overt disease[2,3]. Un-
controlled T2DM eventually progresses to a myriad of severe health complications [among which cardiovascular disease 
(CVD), chronic renal failure, and hypertension (HT)], and to an early death[1]. The syndemic of coronavirus disease 2019 
and T2DM has affirmed the latter’s lethal effect[4]. Ominous future predictions estimate the number of DM-afflicted 
individuals to be over 800 million by 2045, up from the current 500 million[1]. Increased understanding of the T2DM 
pathogenesis is, therefore, acutely needed in order to devise innovative, preventative and potentially curative pharmaco-
logical interventions[5].

The pathophysiological role of the renin angiotensin aldosterone system (RAAS) and its major effector, Angiotensin II 
(Ang II) through the Ang II Type 1 receptor (AT1R), in the development of IR in T2DM have long been recognized[6]. 
Furthermore, convincing evidence exists advocating the use of RAAS inhibition, ACE inhibitors (ACEi) or AT1 receptor 
antagonists/blockers (ARB), in patients with T2DM, not only for proteinuria and HT, but also as a means to improve IR 
and glucose homeostasis[6].

MicroRNAs (miRNAs or miRs) are small (21-25 nucleotides), non-coding RNAs, able to translationally repress and 
downregulate gene expression[7]. Present abundantly in all human cells, miRNAs are endogenously biosynthesized 
through a strictly regulated process that will ultimately result in a mature miRNA, with a 2-8 nucleotide long seed 
sequence in its 5’untranslated region (UTR), that will bind to a target messenger RNA (mRNA). If the miRNA seed 
sequence binds perfectly to the corresponding 3’UTR of a specific mRNA, the latter will be recruited to be degraded by an 
RNA silencing complex. If the binding is incomplete, mRNA translational machinery will be blocked, thereby inhibiting 
protein translational efficiency, and repressing (silencing) gene expression[7]. As a specific miRNA can target multiple 
mRNA molecules, and equally, a single mRNA molecule can bind to multiple miRNAs, the host can modulate response 
feedback, through regulatory gene networks, in a concerted effort to control diverse aspects of cellular processes[7]. In 
this minireview, we present additional miRNA- modulated pathways that can modulate AT1R and Ang II effects that are 
of importance for the pathogenesis of IR, T2DM, and the development of cardiovascular and renal diabetic complications.

MiR-155 is of particular interest as it is intricately involved both in the pathogenesis of DM and the regulation of AT1R 
and Ang II effects (Figure 1)[6,8-12]. First identified in 1997, miR-155 is a highly conserved and ancient miRNA primarily 
expressed in the thymus and spleen. It exhibits unique expression profiles and multifunctionality but is minimally 
detected under normal physiological conditions[13]. With a target repertoire of over 241 genes, miR-155 plays critical 
roles in various physiological and pathological processes, such as hematopoietic cell line differentiation, inflammation, 
immunity (especially viral and parasitic infections), cancer, cardiovascular conditions, and notably, DM (Table 1)[5,8,12-
25].
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Table 1 Direct gene targets of microRNA-155 relevant to type 2 diabetes mellitus

Gene 
symbol Full gene name Action

AGTR1 Angiotensin II type 1 receptor 
gene

Repressed translation downregulates gene expression mediating endogenous AT1R antagonism[9,10,21]. 
Human in-vitro and in-vivo studies

ARG2 Arginase-2 Repressed translation prevents L-arginine depletion, supports dendritic cell maturation, and negates lung 
pathologies[22,23]. Human and mouse in-vitro and in-vivo studies

BACH1 BTB and CNC homology 1, 
basic leucine zipper 
transcription factor 1

Translational repression of BACH1 leads to potent anti-inflammatory, cytoprotective, antioxidant programs 
through Heme Oxygenase-1[12]. Review of human in-vitro and in-vivo studies

C/EBPβ CCAAT/enhancer-binding 
protein β

Repression downregulates Pyruvate Kinase 4 (PDK4) gene expression and negatively regulates Pyruvate 
kinase complex (PDC) activity, thereby improving glucose utilization [16]. Mouse in-vitro and human in-
vivo studies

ETS-1 E26 Transformation-specific 
Sequence-1

Translational repression averts Ang II effects involving gene regulation of vascular remodeling, 
angiogenesis, and inflammation[9,10,24]. Review of human in-vitro and in-vivo studies. Mouse in-vitro and 
in-vivo studies

HDAC4 Histone deacetylase 4 Its repression increases GLUT4 and enhances glucose uptake in insulin-sensitive tissues, i.e., skeletal muscle
[16]. Mouse in-vitro and human in-vivo studies

CACNA1C 
(Cav1.2)

L-type calcium channel subunit, 
LTCC

As a subunit of the L-type calcium channel, this pro-constrictive gene contributes to influx of calcium in 
vascular smooth muscle cells and reactive oxygen species production, thereby mediating the important 
components of vascular aging: Vasoconstriction and vascular oxidative stress[21]. Human in-vitro and in-
vivo studies

SOCS1 Suppressor of cytokine signaling 
1

Repression prevents the degradation of IRS-1 (Insulin Receptor Substrate-1) protein that mediates the effect 
of insulin in muscle, liver, and adipose tissue. Supports the JAK2/Y343/STAT5 pathway through which the 
protective effects of EPO against ischemic injury are mediated[16,25]. Human in-vivo study. Mouse in-vitro 
and in-vivo study

AT1R: Angiotensin II Type 1 receptor; Ang II: Angiotensin II; LTCC: L-type calcium channel; EPO: Erythropoietin; ROS: Reactive oxygen species; JAK2: 
Janus kinase 2; STAT5: Signal transducer and activator of transcription 5.

In T2DM, miR-155 Levels in plasma, peripheral blood cells, platelets, and urine are significantly and consistently 
decreased, with surprising congruence between different ethnicities[8]. Ranging from obesity to IR to diabetic complic-
ations in T2DM, miR-155 Levels are progressively reduced[8,14,15,17]. MiR-155’s underlying molecular mechanism in 
enhancing insulin signaling, improving glucose homeostasis, and alleviating IR in T2DM, occurs partly through the 
coordinated repression of multiple negative regulators, such as CCAAT/enhancer-binding protein β (C/EBPβ), Histone 
Deacetylase 4 (HDAC4), and Suppressor of cytokine signaling 1 (SOCS1) (Table 1)[16]. MiR-155-mediated C/EBPβ repression 
downregulates Pyruvate Kinase 4 (PDK4) gene expression and negatively regulates Pyruvate kinase complex activity, 
thereby improving glucose utilization[16]. HDAC4 repression increases GLUT4 and enhances glucose uptake in insulin-
sensitive tissues, i.e., skeletal muscle, while SOCS1 repression prevents the degradation of Insulin Receptor Substrate-1 
(IRS-1) protein that mediates the effect of insulin in muscle, liver, and adipose tissue (Figure 1 and Table 1)[16].

Aging, obesity, sarcopenia, chronic RAAS activation, and IR, invariably predate the development of T2DM[26]. Shared 
miRNA signatures have been reported, highlighting the central role of miR-155 in the common pathogenesis of those 
conditions (Figure 1)[8,14,26]. One particularly important observation is the activation of the classical RAAS axis arm that 
involves Ang II/AT1R signaling in aging skeletal muscle and white adipose tissue (WAT), both fundamentally involved 
in T2DM pathogenesis[26,27]. In WAT, a chronically activated RAAS axis increases lipogenesis and reduces lipolysis, 
while in the aging skeletal musculature RAAS hyperactivity promotes protein degradation, and sarcopenia, altogether 
ultimately leading to oxidative stress, inflammation, fat accumulation, muscle atrophy, and IR[26,27]. In addition, RAAS’s 
protective arm, involving Ang 1-7/AT2R/MasR signaling, is inhibited at the same time, further augmenting an 
unfavorable AT1R/AT2R imbalance[26,27]. MiR-155, acting as a master regulator, is the key player in chronic RAAS/Ang 
II/AT1R activation, thereby, intricately associated with the development of IR[6]. Through its repression of the AGTR1 
(the gene that codes for the AT1R) miR-155 regulates the homeostasis of the AT1R receptor, its membrane presence, and 
thus the biological activity of Ang II (Table 1)[9,10,28-30]. Moreover, its regulation of the E26 Transformation-specific 
Sequence-1 (ETS-1) averts several detrimental vascular Ang II effects involving gene regulation of inflammation, prolif-
eration, remodeling, fibrosis, and angiogenesis (Table 1)[9,13,24]. Furthermore, its repressive effects on Arginase-2 (ARG2) 
prevent the depletion of l-arginine, the obligate substrate of endothelial nitric oxide (NO) synthase (eNOS), improving 
substrate availability and further increasing NO-production and NO-bioavailability that further support NO-dependent 
cardio- and renoprotection in T2DM (Table 1)[13,23]. From the sum of these actions, it is thus evident that the reported 
loss of miR-155 in T2DM has profound effects leading to persistent RAAS hyperactivity through chronic Ang II 
stimulation of the AT1R, thereby exerting its detrimental, pro-oxidant, pro-fibrotic, proliferative, and pro- inflammatory 
actions (Figure 1 and Table 1). Additional miR-155 effects through repressive actions on BTB and CNC homology 1, basic 
leucine zipper transcription factor 1 (BACH1) and SOCS1, synergistically enhance cytoprotective, anti-oxidant, anti-
apoptotic, and anti-inflammatory cellular pathways and promote a protective cellular milieu, which is subsequently lost 
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Figure 1 Schematic depiction of coordinated repression of multiple miR-155 targets relevant for T2DM. Translational repression of AGTR1, 
ARG2, CACNA1C, and ETS-1 reshapes RAAS towards cardio-, vasculo-, and renoprotective phenotypes. BACH1 and SOCS1 repression promotes cytoprotective 
phenotypes and preserves β-cell function. C/EBPβ, HDAC4, and SOCS1 repression improves glucose homeostasis, enhances insulin signaling, and reverses insulin 
resistance. Aging, obesity, sarcopenia, AT1R 1169C SNP, and ACEi/ARB treatment negatively impact miR-155 levels and/or function while MR antagonists, 
metformin, GLP-1 agonists, and verapamil exert beneficial effects. Red arrows or lines represent downregulation, lower Level, inhibition, repression. Green arrows or 
lines represent increased Level or stimulatory/beneficial action. ACEi: Angiotensin-converting enzyme inhibitors; AGTR1: Angiotensin II type 1 receptor gene; Ang II: 
Angiotensin II; ARB: Angiotensin II type 1 receptor blockers; ARG2: Arginase 2; AT1/2R: Angiotensin II type 1/2 receptor; BACH1: BTB and CNC homology 1, basic 
leucine zipper transcription factor 1; CACNA1C (Cav1.2): L-type calcium channel subunit; C/EBPβ: CCAAT/enhancer-binding protein β; eNOS: Endothelial nitric 
oxide synthetase; EPO: Erythropoietin; ETS-1: E26 Transformation-specific Sequence-1; GLP-1: Glucagon-like peptide 1; GLUT4: Glucose transporter type 4; HO-1: 
Heme oxygenase 1; HDAC4: Histone Deacetylase 4; IRS-1: Insulin receptor substrate-1; LTCC: L-type Calcium Channel; MasR: Mas Receptor; MicroRNA-155: MiR-
155; MR: Mineralocorticoid receptor; NO: Nitric oxide; RAAS: Renin-Angiotensin Aldosterone System; ROS: Reactive oxygen species; SOCS1: Suppressor of 
cytokine signaling 1; SNP: Single nucleotide polymorphism; T2DM: Type 2 Diabetes Mellitus.

following miR-155 downregulation (Table 1)[12,13]. Genetic variants that perturb miR-155’s action (such as in carriers of 
AT1R + 1166C-allele) or that increase its synthesis (such as in trisomy 21 and the rs767649 polymorphism of miR-155) 
biochemically and molecularly demonstrate this central significance of miR in a plethora of DM-associated pathological 
conditions[11,18,31-33]. Moreover, clinical data in obese individuals demonstrate that miR-155 Levels correlate with 
improved insulin sensitivity post-bariatric surgery and are critical in mediating the effects of endurance exercise[34,35].

While miR-155 is consistently reduced in serum and tissues in T2DM, it is reported to be upregulated in Type 1 DM 
(T1DM), highlighting T1DM’s autoimmune pathogenesis and miR’s crucial and differential role in autoimmunity and 
innate and adaptive immunity[8,36]. However, even if robustly elevated in newly diagnosed T1DM, miR-155 strikingly 
diminishes within 5 years of diagnosis[32].

AT1R substrate modulation (ACEi) and/or receptor inhibition (ARBs) may improve glucose homeostasis[6]. However, 
strategies to increase an ailing miR-155 production in T2DM could prove to be a more appropriate course of action 
(Figure 1). Metformin with ACEi/ARB improves HbA1c goals[6]. Metformin and the newer Glucagon Like Peptide 1 
(GLP-1) analogs have been shown to repress SOCS1 and 3 and increase IRS-1[37]. Metformin mediates miR-155 increases 
that repress SOCS1 and reduce NF-κB (nuclear factor κB), thereby disrupting NF-κB-mediated high-fat induced inflam-
matory effects in T2DM[38,39]. The clinical effects of GLP-1 analogs on miR-155 in humans are, to date, unknown, and 
additional research is needed, but miR-155 has been shown to promote GLP-1 production in the murine pancreas[40]. 
Moreover, in the resistance vessels of aging humans, elevated expression of mineralocorticoid receptor (MR) is accom-
panied by a decrease in miR-155 Levels and an upregulation of miR-155 targets such as the CACNA1C (Cav1.2) gene [a 
subunit of the L-type calcium channel (LTCC)], and the AGTR1 gene. These alterations in gene expression play a role in 
promoting vasoconstriction and oxidative stress in aging mice (Table 1)[21]. MR inhibition reverses and reinstates the 
significantly low basal serum miR-155 Levels in the aging blood vessels and blocks two interactive steps involving LTCC 
and AGTR1 that underlie the pathogenesis of HT[13]. A correlation between improved blood pressure response to 
therapy with MR antagonists and changes in miR-155 Levels in older individuals has been reported[21]. Moreover, the 
use of MR-antagonists (spironolactone, eplerenone, finerenone) has shown renal and cardiovascular benefits in T2DM[41-
43]. LTCC blockade per se, through verapamil alone, or in combination with MR antagonists/metformin, will offer 
additional therapeutic options in T2DM[44]. Besides improved blood pressure regulation and cardio-renal protection, 
verapamil demonstrates additional benefits while avoiding many of the common adverse effects associated with ACEi/
ARB[45]. Verapamil’s mode of action is of particular interest in diabetes[46]. Apart from being present in cardiomyocytes, 
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LTCCs are also present in pancreatic β-cells and participate in insulin homeostasis[47]. In the heart and the pancreas, 
effective pharmacological LTCC blockage can inhibit the expression of pro-apoptotic thioredoxin-interacting protein, a 
significant contributor to pancreatic β-cell dysfunction and a key gene regulated in response to hyperglycemia, thereby 
promoting the survival and proper functioning of β-cells and improving glucose homeostasis[46,48]. Verapamil has, thus, 
the potential not only to enhance β-cell survival and function, but also improve and even prevent overt diabetes of both 
types[48,49]. In a recent study, verapamil combined with metformin, significantly improved glycemic control in T2DM
[49]. Finally, a drawback in the use of monotherapy as ACEi/ARBs (in conditions that already are associated with low 
miR-155 Levels) is that they significantly further decrease already reduced miR-155 Levels[50,51]. RAAS inhibition could, 
thus, theoretically deprive T2DM patients of additional miR-155-engendered favorable immunological and cytoprotective 
effects and potentially explain ACEi’s modest and ARBs’ non-existent effects in preventing CVD or improving glycemic 
indices in DM and HT (Figure 1)[13,50-53].

CONCLUSION
The data presented above strongly support the role of miR-155 as a major player in the pathogenesis of T2DM and 
complications, by triggering IR and β-cell loss as well as through RAAS modulatory effects (Figure 1)[5,8]. Large 
multicenter trials are required to establish this role of miRNA as a reliable biomarker and potential therapeutic target in 
DM. Then, as increased mechanistic knowledge regarding miR-155 becomes available, novel miRNA-modulating 
approaches with miR-155 as a target are likely in T2DM. Even though these therapeutic modalities are still in their 
infancy and might yet be far from the clinic, research must address this knowledge gap in order to devise how to 
effectively deliver specific, synthetic miRNA mimics (T2DM, aging, obesity, sarcopenia) or inhibitors-antagomiRs (T1DM, 
cancer), to a specific tissue, in the diabetic patient, as miR-155 actions are tissue-sensitive[54]. In addition, a better 
understanding is needed on how several miRNAs work synergistically on the same mRNA targets and how miRNA 
networks function. As disease-specific miRNA expression pattern is ubiquitous in all related tissues, it can prove 
challenging in a complex disease like DM to accomplish precise delivery to certain tissues/organs and avoid adverse off-
target effects in others[5].
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