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Abstract
Diabetes, one of the world's top ten diseases, is known for its high mortality and 
complication rates and low cure rate. Prediabetes precedes the onset of diabetes, 
during which effective treatment can reduce diabetes risk. Prediabetes risk factors 
include high-calorie and high-fat diets, sedentary lifestyles, and stress. 
Consequences may include considerable damage to vital organs, including the 
retina, liver, and kidneys. Interventions for treating prediabetes include a healthy 
lifestyle diet and pharmacological treatments. However, while these options are 
effective in the short term, they may fail due to the difficulty of long-term 
implementation. Medications may also be used to treat prediabetes. This review 
examines prediabetic treatments, particularly metformin, glucagon-like peptide-1 
receptor agonists, sodium glucose cotransporter 2 inhibitors, vitamin D, and 
herbal medicines. Given the remarkable impact of prediabetes on the progression 
of diabetes mellitus, it is crucial to intervene promptly and effectively to regulate 
prediabetes. However, the current body of research on prediabetes is limited, and 
there is considerable confusion surrounding clinically relevant medications. This 
paper aims to provide a comprehensive summary of the pathogenesis of pre-
diabetes mellitus and its associated therapeutic drugs. The ultimate goal is to 
facilitate the clinical utilization of medications and achieve efficient and timely 
control of diabetes mellitus.
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Core Tip: Addressing the global impact of diabetes, this review underscores the pivotal role of pre-diabetes as a precursor 
and the window of opportunity it offers for reducing diabetes risk. While interventions like lifestyle changes and pharmaco-
logical treatments prove effective in the short term, sustained implementation remains challenging. The review delves into 
the potential of medications, including metformin and other agents, shedding light on the current limitations in research and 
clinical confusion. By providing a comprehensive overview, the paper aims to enhance understanding, enabling more 
efficient and timely control of diabetes mellitus.
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INTRODUCTION
Prediabetes, also known as impaired fasting glucose or impaired glucose tolerance (IGT), is a condition that has affected 
approximately 213000 young individuals in the United States as of 2017, with an estimated 239000 individuals projected 
to be affected by 2060, based on current growth trends[1]. Timely management of prediabetes can reduce the incidence of 
diabetes, particularly type 2 diabetes[2]. Prediabetes refers to blood glucose levels that are higher than normal but below 
the glucose levels detected in patients with diabetes[3,4]. Moreover, individuals with prediabetes are in a sub-healthy 
state, somewhere between being healthy and clinically diabetic. Effective treatment of prediabetes can prevent the 
development of diabetes and help individuals to return to a healthy state.

Interventional therapy for prediabetes primarily includes lifestyle interventions and pharmacological treatments. 
Commonly used clinical drugs include metformin, glucagon-like peptide (GLP-1) agonists, sodium–glucose cotransporter 
2 (SGLT2) inhibitors, vitamin D supplements, and Chinese herbal medicines. In this review, we provide an overview of 
prediabetes and its therapeutic agents. The ultimate aim of this article is to offer insights into prediabetes and contribute 
to the development of effective treatment strategies.

PREDIABETES
Prediabetic contributory factors may include genetics and diets high in calories and fat[5]. Such diets contribute to excess 
fat accumulation and compensatory lipolysis within the body, resulting in an increased free fatty acid (FFA) content. The 
FFAs can disrupt cellular homeostasis, hinder cellular insulin response, reduce cellular uptake and utilization, increase 
the risk of insulin resistance in the liver, and damage muscles and the liver, ultimately leading to the development of 
diabetes[6].

The criteria for diagnosing prediabetes include a fasting plasma glucose level of 100-125 mg/dL (5.6-6.9 mmol/L), a 2-
h oral glucose tolerance test (OGTT; 75 g 2 h) result of 140-199 mg/dL (7.8-11.0 mmol/L), and a glycated hemoglobin 
(HbA1c) level of 5.7%-6.4% (39-47 mmol/mol)[7]. It is important to note that, among these criteria, the HbA1c test is only 
applicable to adults. IGT is a key diagnostic criterion for prediabetes; however, HbA1c and fasting blood glucose (FBG) 
levels are also used in the diagnosis, as shown in Table 1[8-11].

A clinical survey in the United States reported that the prevalence of prediabetes is as high as 30%, indicating that 
approximately one in three adults has a fasting glycemic index or HbA1c level that meets the criteria for prediabetes[12]. 
Meanwhile, in India, the number of individuals with IGT reached 25.2 million in 2019 and is expected to reach 35.7 
million by 2045[13]. The prevalence of prediabetes has notably increased from 15.5% in 2008 to 38.1% in 2018 in China 
(Table 2)[14-16].

Patients with prediabetes may exhibit characteristics associated with diabetes, including weight and blood glucose 
abnormalities and systemic insulin resistance. Systemic insulin resistance plays a key role in prediabetes, as it leads to 
decreased ability of the body to respond to insulin, resulting in an imbalance in glucose homeostasis which, in turn, leads 
to insulin resistance. The decreased ability of muscle cells to uptake and process glucose reduces the storage capacity for 
both glucose and triglycerides, resulting in abnormally elevated levels of free glucose and triglycerides in the blood, 
ultimately increasing the risk of developing diabetes[17,18].

Most prediabetic states progress to diabetes mellitus, accompanied by complications including microvascular complic-
ations, retinopathy, and cardiovascular disease. Insulin resistance affects normal oxidative stress in nerves, leading to 
mitochondrial dysfunction, which causes retinopathy and drives neurological and vascular pathology. The incidence rate 
of retinopathy is approximately 8.2%-20.9% in prediabetic patients[19-22], while the risk of stroke increases by 0.74% 
compared to that in patients without diabetes[23]. Additionally, the prevalence of metabolic syndrome is approximately 
37.6% higher than that of normoglycemic patients, and the vascular risk ratio score is increased by 0.43[24,25]. Prediabetes 
is characterized by hyperglycemia and insulin resistance, partly due to the disruption of glucose homeostasis, primarily 
caused by the compromised function of pancreatic islet β-cells. Adenosine 5‘-monophosphate (AMP)-activated protein 
kinase (AMPK) is an insulin sensitizer that exists in the form of a heterotrimeric complex with major subunits comprising 
AMPKα, AMPKβ, and AMPKγ. As blood glucose levels transition from fasting to postprandial levels, the decline in 
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Table 1 American Diabetes Association diagnostic criteria

Indicator Numerical range Ref.

FBG 100-125 mg/dL (5.6-6.9 mmol/L)

IGT 140-199 mg/dL (7.8-11.0 mmol/L)

A1C 5.7%-6.4% (39-47 mmol/mol/L)

[8-11]

FBG: Fasting blood glucose; IGT: Impaired glucose tolerance value; A1C: Glycated hemoglobin.

Table 2 Prevalence of prediabetes in China (2008–2018)

Yr Prevalence in males Prevalence in female Total prevalence Ref.

2008 16.1% 14.9% 15.5% Wang et al[14]

2013 36.4% 35% 35.7% Wang et al[14]

2015-2017 – – 35.2% Wang et al[15]

2018 – – 38.1% Li et al[16]

phosphorylated AMPK levels within islets triggers the activation of AMPK phosphorylation, enhancing glucose-
stimulated insulin secretion (GSIS). This promoted glucose uptake in muscle tissues while reducing glucose production in 
the liver to maintain constant blood glucose levels. The activity of AMPK activity is lowest when ATP occupies the 
subunit site of AMPKγ under high-energy conditions. Liver kinase B1 (LKB1) is required to regulate AMPK activity 
through AMP/ADP or AMPK phosphatase inhibition. LKB1 primarily phosphorylates AMPKα by binding to Thr172, 
while LKB1 deficiency in β-cells inhibits the phosphorylation of Thr172 and AMPK target proteins. In contrast, the 
variable binding of the subunit to AMPKγ, phosphorylation of the downstream kinase Thr172, and impaired downstream 
dephosphorylation determine the degree of AMPK activation. This kinase in pancreatic β-cells may be protein 
phosphatase 1, which prevents the sustained activation of AMPK in the presence of high glucose, leading to GSIS failure 
and insulin resistance[26]. In damaged pancreatic β-cells, a sustained high-glucose environment results in sustained 
AMPK phosphorylation in the pancreatic β-cells, inhibiting GSIS and promoting insulin resistance.

Apart from hyperglycemia and insulin resistance, prediabetes also presents elevated endoplasmic reticulum (ER) stress 
levels and abnormal apoptosis of pancreatic islet β-cells. ER stress induces senescence of pancreatic β-cells due to the 
over-activation of the mammalian target of rapamycin (mTOR), a serine-threonine kinase, encompassing mTOR1 and 
mTOR2. mTOR1 is responsible for protein synthesis and ribosome genesis, while mTOR2 activates AKT-serine 473. 
Protein synthesis occurs in the ER.

The unfolded protein response (UPR) is activated when misfolded proteins accumulate in the ER. Over-activation of 
mTOR1 promotes excessive protein synthesis, increasing the likelihood of misfolded protein synthesis. This, in turn, 
sustains UPR activation, impairs cellular autophagy mechanism, and leads to pancreatic β-cell death. In patients with 
prediabetes, prolonged over-activation of the mTOR complex 1 signaling pathway in the β islets results in increased 
pancreatic β-cell numbers and inhibition of the β-cell autophagy protection mechanism, increasing the likelihood of 
apoptosis[27].

Insulin resistance and pancreatic islet β-cell apoptosis due to insufficient insulin secretion impedes the normal glucose-
lowering effect. Reduced insulin target cell receptor sensitivity leads to diminished insulin signaling, thereby decreasing 
glucose uptake and increasing extracellular free glucose. Furthermore, the body’s negative feedback leads to more insulin 
release, causing hyperinsulinemia and creating a vicious cycle. The resulting insulin resistance promotes the development 
of prediabetes. Additionally, excessive free extracellular glucose promotes glucose uptake by the cells, leading to an 
imbalance in blood glucose homeostasis[27].

The primary preventive measures for prediabetes include lifestyle interventions and pharmacotherapy (Table 3). These 
interventions primarily aim to reduce glycemic weight, improve insulin resistance, reduce pancreatic β-cell apoptosis, 
and reduce oxidative stress, thereby reducing islet resistance. Additionally, lifestyle interventions are intended to assist 
patients with prediabetes in improving unhealthy lifestyles and dietary habits, among others, while naturally reversing 
the imbalance in blood glucose homeostasis. An advantage of lifestyle interventions is their rapid effectiveness; however, 
lifestyle regulation is time-consuming[28-30]. Dietary and lifestyle changes can considerably improve the weight and 
blood glucose levels of individuals who have followed high-fat and-calorie diets over a long time. However, sustained 
improvement in blood glucose with weight loss may be minimal[30]. Additionally, maintaining a healthy diet over the 
long term may be challenging for individuals in the contemporary context. Pharmacological management is another form 
of prediabetes intervention that is remarkably more effective in controlling weight and blood glucose than dietary 
control. It is also adaptable to modern, high-stress, fast-paced lifestyles[31-36]. The main available drugs include 
metformin, GLP-1 receptor agonists, SGLT2 inhibitors, vitamin D supplements, and Chinese herbal medicine, among 
others.
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Table 3 Main intervention modalities for prediabetes

Intervention 
method

Cycle time, follow-
up time Effect Ref.

Lifestyle 
intervention

4 months, 1 yr follow 
up

Blood glucose and lipids can be effectively controlled Gokulakrishnan et al[28]

Lifestyle 
intervention

1 yr Effective reduction of disease risk in patients with prediabetes Hu et al[29]

Lifestyle 
intervention

1 yr Weight loss 34.1% higher than in the diatomic group Apolzan et al[30]

Metformin 10 yr Enhanced glycemic control to improve health outcomes Jonas et al[31]

Metformin 1 yr More effective in body weight reduction. 
Better results than life interventions

O’Brien et al[32]

Metformin 5 yr Weight loss 2.5% higher than life intervention group Apolzan et al[30]

Metformin 15 yr Compared with the placebo group, 17% lower incidence of 
diabetes

Diabetes Prevention Program Research 
Group[33]

GLP-1 
receptor agonist

3 yr Significant weight loss and improved blood sugar le Roux et al[34]

GLP-1 
receptor agonist

17 months Significant weight loss Wilding et al[35]

GLP-1 
receptor agonist

14 wk Significant reduction of body weight and improved relevant 
glucose tolerance indicators

Kim et al[36]

GLP-1: Glucagon-like peptide-1.

DRUGS FOR PREDIABETES TREATMENT
Metformin
Metformin is a primary hypoglycemic agent that can lower glucose levels by impeding glucose production and 
enhancing its uptake and utilization[37-39]. Metformin stimulates AMPK, considerably ameliorating abnormalities in 
glycolipid metabolism[40]. Metformin can promote AMPK phosphorylation, reduce oxidative stress in skeletal muscle, 
and reverse glucose intolerance, leading to a hypoglycemic effect on the body[41]. Ma et al[42] explored the relationship 
between metformin, presenilin enhancer 2 (PEN2), and AMPK by knocking down the PEN2 gene or reintroducing the 
PEN1 mutant gene into Cryptobacterium. They reported that metformin can bind PEN2, activate ATP6AP1 and AMPK, 
and initiate glucose metabolism-related signaling pathways, exerting its hypoglycemic effect[42].

AMPK acts as a cellular energy sensor[43,44] and is closely related to the body’s activity level. ATP decreases with 
strenuous exercise, and the ATP/ADP and ATP/AMP ratios subsequently decrease. The concomitant activation of the 
closely related AMPK positively regulates pathways that replenish the cellular ATP supply, including increasing glucose 
uptake, activating cellular autophagy, and promoting fatty acid oxidation, negatively regulating biosynthetic processes 
that consume ATP, including gluconeogenesis[45,46], cholesterol synthesis, protein synthesis, and fatty acid synthesis 
(Figure 1)[47].

Indeed, metformin effectively reduces the risk of developing diabetes during the prediabetic stage[2,48]. The American 
Diabetes Association states that metformin is the most effective drug for diabetes prevention and recommends its use for 
prediabetes intervention[2]. Long-term metformin administration results in marked weight loss in a few patients, with 
minimal gastrointestinal upset. Therefore, it is considered safe, effective, and well-tolerated for the treatment of patients 
with prediabetes and abnormally elevated fasting glucose and IGT levels[49].

Metformin is clinically prescribed at a starting dose of 500 mg, which can be increased to 1000 mg twice daily. The 
dosage varies according to the individualized requirements of the patient. Reported doses used during prediabetic 
interventions are listed in Table 4. In previous safety trials, patients exhibited symptoms of anemia after long-term use of 
metformin due to the diminished concentrations of vitamin B12[50]. Therefore, the Diabetes Prevention Program 
recommends that long-term metformin users should be tested for vitamin B12 levels, with B12 supplementation.

Metformin use has certain shortcomings, including gastrointestinal symptoms, such as abdominal pain and diarrhea, 
which occur in 30% of users. The incidence of such symptoms increases with the duration of use[49]. Metformin use may 
also cause lactic acidosis or even death in patients with severe renal impairment (estimated glomerular filtration rate < 30 
mL/min/1.73 m). Additionally, metformin is a biologically active molecule with a low environmental decomposition 
capacity and may cause aquatic environmental contamination[51].

GLP-1 receptor agonists
GLP-1, a large peptide hormone comprising 30 or 31 amino acids, is primarily secreted by distal enteroendocrine L cells, 
pancreatic α-cells, and the central nervous system. GLP-1 participates in regulating glucose homeostasis by acting on the 
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Table 4 Dosage schedule for metformin for treating patients with prediabetes

Trial 
population

Prescribed 
dosage Associated or not Treatment 

cycle Reversal rate Ref.

Adolescents 1000 mg/d Rosiglitazone (2 mg) 3.9 yr 80% improvement in glucose tolerance Zinman et al[137]

Adolescents 1000 mg/d No 6 months 45% increase in insulin sensitivity Srinivasan et al[138]

Adults 850 mg/d No 1 yr 7% reduction in the incidence of diabetes Andreadis et al[139]

Adults 2000 mg/d No 1 yr Increased insulin sensitivity (P < 0.01) Malin et al[134]

Adults 1500-2000 mg/d Exenatide 
(10-20 μg/d)

1 yr 64% improvement in prediabetes remission rates Tao et al[140]

Figure 1 Adenosine 5‘-monophosphate-activated protein kinase as an important regulatory center of cellular metabolism. AMP: Adenosine 
5‘-monophosphate; GLUT4: Glucose transporter type 4; GS: Glycogen synthase; BECN1: Beclin 1; AMPK: AMP-activated protein kinase.

GLP-1 receptor (GLP-1R). GLP-1R agonists (GLP-1RAS) approved for marketing in China primarily include the six types 
listed in Table 5.

GLP-1 is a type of entero-insulin, a hormone-stimulated and secreted by intestinal food and endothelial cells, res-
pectively, that acts via GLP-1R on pancreatic β-cells to generate more intracellular cyclic AMP and ATP, thereby 
promoting insulin release from pancreaticβ-cells. Additionally, GLP-1 can inhibit abnormal secretion of glucagon from 
pancreatic α-cells[52]. It regulates glucose abnormalities by lowering HbA1c concentration, promoting insulin secretion 
from pancreatic β-cells, reducing body weight, contributing to postprandial glucose regulation[53], and reducing 
glucagon secretion from pancreatic α-cells in a glucose concentration-dependent manner. This inhibitory function is 
achieved via the paracrine effect of the islets[54]. However, GLP-1 glucose regulation is limited due to its short half-life in 
plasma. Hence, GLP-1RAS was developed to achieve longer-lasting glucose regulation by extending the half-life.

GLP-1RAS promotes the uptake and utilization of glucose via several mechanisms[55]. GLP-1RAS can activate 
pancreatic β-cell GLP-1R by increasing the affinity of GLP-1 to GLP-1R or by binding directly to GLP-1R, promoting 
insulin secretion by facilitating the conversion of glucose to ATP, enhancing calcium ions inflow and inhibiting K+ 
outflow from cells (Figure 2)[56]. GLP-1RAS can inhibit glucagon secretion while promoting glucose-dependent insulin 
secretion owing to its high affinity and similarity to the natural GLP-1RAS and GLP-1, respectively, counteracting the 
increase in blood glucose caused by diet. The effect of maintaining blood glucose levels in a normal state is known as the 
entero-insulin effect[57].
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Table 5 Types of Glucagon-like peptide-1 receptor agonists currently approved for marketing in China and their recommended clinical 
dosage

Name Molecular formula Number of amino 
acids

Recommended initial 
dosage

Recommended dosage for 
prediabetes Ref.

Exenatide C149H234N40O47S 39 10 μg/day 10-20 μg/day Tavlo et al
[51]

Liraglutide C172H265N43O51 9 0.6-1.2 mg/day 3 mg/day le Roux et al
[34]

Dulaglutide C40H50N8O5 8 0.75 mg/week – –

Lixisenatide C215H347N61O65S 44 10 μg/day – –

Polyethylene glycol 
loxenatide

C210H325N55O69S(C2H
4O)2n

38 0.1 mg/week – –

Benarutide C149H225N39O46 29 0.3 mg/day – –

Figure 2 Glucagon-like peptide receptor agonist promotes insulin secretion. G6P: Glucose-6-phosphate; GLP-1: Glucagon-like peptide-1; GLU: 
Glucose; SGLT2: Sodium–glucose cotransporter 2.

Glucose metabolism is significantly improved after 68 wk of treatment with semaglutide[58]. Oral semaglutide therapy 
causes HbA1c levels and weight reduction[59]. Meanwhile, tirzepatide upregulates insulin sensitivity in the body and 
restores islet β-cell function[60]; tirzepatide and semaglutide reduce HbA1c levels[61]. Thus, GLP-1RAS notably aids the 
restoration of glucose homeostasis, improves islet function, enhances insulin sensitivity, and controls body weight.

Currently, the main adverse reactions associated with GLP-1RAS include nausea, vomiting, and gastrointestinal 
discomfort[62]. GLP-1RAS is a biomolecular formulation that can only be administered via dermal injection. Therefore, it 
lacks the portability and comfort of small-molecule drugs that can be orally administered.

SGLT2 inhibitors
SGLT 1 and SGLT2 play a prominent role in the reabsorption of filtered glucose by the glomerulus. SGLT2 inhibitors 
reduce SGLT2 activity and the efficiency of glucose uptake in the proximal tubules of the kidney, which increases the 
urinary glucose concentration and reduces blood glucose. The main SGLT2 inhibitors currently on the market are listed in 
Table 6[63-65].
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Table 6 Types of Sodium–glucose cotransporter 2 inhibitors and their recommended clinical dosage

Name Molecular 
formula Recommended initial dosage In China, Listed or not Recommended dosage 

for prediabetes Ref.

Canagliflozin C24H25FO5S 100 mg/day No – –

Dapagliflozin C21H25CIO6•C3H8O2 5 mg/day Listed 10 mg/day Lundkvist et al[63]

Empagliflozin C23H27CIO7 10 mg/day No 10 mg/day Lee et al[64]

Ipragliflozin C21H21FO5S 50 mg/day No – –

Luseogliflozin C23H30O6S 2.5 mg/day No – –

Tofogliflozin C22H26O6 5 mg/day No 40 mg/day Pafili et al[65]

SGLT2 is an important member of the cotransport protein family. SGLT2 is mainly expressed in the proximal renal 
tubule, where it facilitates the reabsorption of glucose in the primary filtrate and converts it into ATP or glycogen 
(Figure 3)[66]. Under normal circumstances, the amount of glycosuria produced by the body after consuming a large 
quantity of carbohydrates is extremely small, mainly attributed to the filtering and reabsorption ability of SGLT2. SGLT2 
inhibitors are a class of hypoglycemic drugs that inhibit the activity of sodium–glucose transport proteins on the luminal 
surface of the proximal tubule of the kidney, preventing glucose and Na+ from normally entering the cells in the 
proximal tubule. In addition to lowering blood glucose and body weight, SGLT2 inhibitors improve insulin sensitivity 
and enhance pancreatic β-cell function, among other effects[39,67-69].

Dapagliflozin and empagliflozin reduce HbA1c by an average of 0.66%[70]. SGLT2 inhibitors delayed the development 
of diabetes in four randomized trials involving 5655 patients with prediabetes[71]. Moreover, dapagliflozin adminis-
tration to obese and overweight individuals resulted in weight loss and marked reductions in blood lipids and glucose, 
including associated OGTTs[72]. These findings show that SGLT2 inhibitors are highly effective in preventing diabetes.

However, the increased glycosuria level caused by SGLT2 inhibitors increases the risk of fungal infections. In eight 
clinical trials, 3.5% of SGLT2 inhibitor users experienced ketoacidosis. SGLT2 inhibitors may also accelerate the loss of 
minerals from bone, thereby increasing the risk of fracture. Additionally, SGLT2 inhibitors facilitate Na+ excretion and 
may cause adverse effects, such as acute kidney injury and renal function impairment[73,74].

Characteristics of metformin, GLP-1 receptor agonists, and sodium-glucose cotransporter 2 inhibitors use
Prediabetes is treated with medications similar to those used for treating diabetes. Table 7 summarizes the dosages, main 
results, and related conclusions of the use of metformin, GLP-1 agonists, and SGLT2 inhibitors in individuals with 
prediabetes, non-diabetic individuals, and individuals with obesity.

Vitamin D
Vitamin D plays an important role in maintaining Ca2+ and phosphorus homeostasis, enhancing bone strength[75], 
increasing bone growth[76], reducing body weight[77], participating in cell differentiation[78], supporting immune 
function[79] (Figure 4), and delaying the progression of diabetes by lowering blood glucose and maintaining glucose 
metabolism homeostasis[80,81]. Randomized double-blind and placebo human trials have found that increasing and 
maintaining serum vitamin D levels reduce the risk of diabetes[82,83].

Recent research indicates that vitamin D reduces the risk of diabetes and its related conditions via various mechanisms
[84,85]. First, vitamin D promotes insulin synthesis and secretion by improving the function of pancreatic β-cells[86]. 
Second, vitamin D reduces insulin resistance and improves sensitivity by modulating insulin’s target sites (liver, muscle, 
and adipose tissue)[87].

Research indicates a marked reduction in the insulin resistance index (HOMA-IR) in a vitamin intervention group 
compared with a placebo group[88]. Additionally, a considerable improvement was found in the glycemic index with 
dosages of vitamin D > 2000 IU/d.

A study of baseline serum vitamin D concentrations in more than 6000 patients with abnormal blood glucose levels 
found that individuals with high levels of serum vitamin D have a considerably reduced prevalence of elevated blood 
glucose and associated complications compared with those with serum vitamin < 25 nmol/L[89]. Another study in 2423 
individuals with prediabetes identified the lowest risk of diabetes in individuals with serum vitamin D levels of ≥ 125 
mmol/L; serum vitamin D levels of 100-124 mmol/L reduced the risk of developing diabetes in some individuals[90]. 
Furthermore, 43 randomized controlled trials have reported that high doses of vitamin D (≥ 1000 IU/d) markedly 
reduced the risk of developing diabetes in 55936 individuals with prediabetes[91]. Four trials, including 896 participants, 
have found that vitamin D supplementation effectively reduces the risk of prediabetes progressing to diabetes[83,92].

Vitamin D use for therapeutic interventions may cause hypercalcemia[93]. Vitamin D is present in the body mainly as 
vitamins D2 or D3, which are not biologically active. The inactive forms are catabolized and metabolized in the liver to 
25-hydroxyvitamin D (ossified diol) and the kidney to 1,25-dihydroxy vitamin D (ossified triol), with both metabolites 
being biologically active[94]. Osteotriol is the main metabolite of vitamin D in the body and mediates Ca2+ and 
phosphorus uptake. Excessively elevated osteotriol levels can lead to hypercalcemia and hyperphosphatemia, which 
increases the risk of vascular calcification. Therefore, phosphate levels should be strictly monitored with vitamin D 
intervention.
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Table 7 Types of Sodium–glucose cotransporter 2 inhibitors and clinical research results

Name Ref. Participants Grouping and 
dosage Result Conclusion

Metformin O’Brien 
et al[32]

92 Metformin group (850 
mg/daily), standard 
diet group

Compared with the standard diet group, the 
metformin group lost an average of 1.1% body 
weight, and a normal blood glucose ratio of 
28.7% was restored

Reduces weight and restores 
normal blood glucose levels in 
prediabetics

Metformin Tavlo et 
al[51]

183 1500-2000 mg/d over 12 
wk

The impaired glucose tolerance remission rate 
was 32%

Improves postprandial insulin 
secretion

Metformin + 
exenatide

Tavlo et 
al[51]

183 Metformin: 1500-2000 
mg/d; exenatide: 10-20 
μg/d over 12 wk

The impaired glucose tolerance remission rate 
was 64%

Combined administration of 
drugs is more effective in 
alleviating glucose tolerance 
compared with monotherapy

Exenatide Tavlo et 
al[51]

183 10-20 μg/d over 12 wk Impaired glucose tolerance remission rate of 56% Improves postprandial insulin 
secretion

Liraglutide le Roux et 
al[34] 

749 Placebo group (n = 749), 
liraglutide group (n = 
1505, 3 mg/d) over 160 
wk

4.2% weight loss and 2.7 times longer onset of 
diabetes in the liraglutide group than the placebo 
group

3 mg liraglutide reduces weight 
gain and diabetes risk

Liraglutide Pi-
Sunyer et 
al[141]

3731 Placebo (n = 1244), 
liraglutide (n = 2487, 3 
mg/d) over 56 wk

Body weight in the liraglutide group decreased 
by 36.1%; glycated hemoglobin, fasting blood 
glucose, and fasting insulin were reduced; and 
the prevalence of diabetes was reduced, 
compared with the placebo group

3 mg liraglutide may reduce the 
incidence of urine disease

Dapagliflozin Veelen et 
al[142]

30 Dapagliflozin (2 mg/d) 
vs placebo, over 10 wk

The plasma glucose level was reduced in the 
dapagliflozin group compared with the placebo 
group, and no extensive changes were observed 
in the glycogen and lipid content of the liver

Dapagliflozin improves fat 
oxidation and exhibits a marked 
hypoglycemic effect

Figure 3 Sodium–glucose cotransporter 2 inhibitors block the glucose reabsorption process. G6P: Glucose-6-phosphate; GLP-1: Glucagon-like 
peptide-1; GLU: Glucose; SGLT2: Sodium–glucose cotransporter 2.
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Figure 4 Vitamin D contributes to the maintenance of normal bodily functions.

Patients may also include vitamin D-enriched foods in their daily dietary regimen, such as those listed in Table 8[95].

Chinese herbal medicine
The use of herbal medicine for treating diabetes and prediabetes dates back to the Qin Dynasty (approximately 221 BC). 
Currently, herbal medicines are considered useful for preventing and treating diabetes and its complications[96]. The 
herbs used for diabetes and prediabetes generally have multiple effects, including counteracting hypoglycemia, reducing 
insulin resistance, reducing oxidative stress, lowering lipids, and regulating intestinal flora. Numerous Chinese herbal 
medicines are currently used for treating prediabetes, including Huanglian, Qingqianliu, Mulberry [Morus alba (M. alba)] 
leaf, Astragalus, Guajia, Lady’s mantle, Dendrobium, Dry lotus, Ginseng, Wolfberry, Pentaphyllum, and Sanguisorba
[97]. The functions and mechanisms of action of the herbs, including berberine, safranin, cyanotis, M. alba leaf, and 
Astragalus, in alleviating diabetes and prediabetic symptoms are briefly discussed here.

Berberine, a main active ingredient in Huanglian used in treating diabetes and prediabetes, plays crucial roles in 
treating hypoglycemia and other aspects. It positively affects mucin increase and promotes the improvement of intestinal 
mucosal morphology. Additionally, berberine can down-regulate the expression of Toll-like receptor 4, nuclear factor 
kappa B (NF-κB), and tumor necrosis factor-α, alleviating the chronic inflammation caused by diabetes. Furthermore, it 
counteracts the reduction of intestinal microbial diversity caused by IGT; reduces FBG and HOMA-IR; improves liver and 
kidney function; reduces cholesterol, blood lipid, and high-density fatty acid levels; and increases the number of cupped 
cells and villi length in IGT rats[98,99]. Berberine induces accelerated closure of KCNH6 K+ channels, decreases KCNH6 
currents, prolongs glucose-dependent cell membrane depolarization, and promotes insulin secretion[100]. However, it 
exhibits an IC50 of 713.57 mg/kg in acute toxicity tests in rats[101]. Therefore, the use of berberine as an alkaloidal 
constituent of Coptis chinensis should be approached with due consideration of its toxicity.

Phellodendrin (PAL) is an active constituent of Phellodendron that improves blood glucose and insulin resistance levels 
in rats with IGT. Furthermore, PAL ameliorates the defective insulin secretion in insulinoma cells induced by chondroitin 
(PA) via the c-Jun N-terminal kinase signaling pathway. It also extensively inhibits PA-induced cell-induced β-cell 
apoptosis[102]. However, PAL elicits toxic effects with an IC50 of 1533.68 mg/kg in acute toxicity tests in rats[101]. 
Accordingly, attention to dosage is required in PAL use for prediabetes prophylaxis[103].

Cycads have various therapeutic properties, including hypoglycemic, hypolipidemic, hypotensive, anticancer, anti-
fatigue, and antioxidant effects[104,105]. Cyanus was used in ancient times to treat diabetes[106-108]. Cyanidin improves 
insulin secretion by reducing apoptosis of pancreatic β-cells, reducing excessive oxidative stress in the pancreas, and 
maintaining the balance of glucose and lipid metabolism in the liver, thereby regulating blood glucose and lipid 
regulatory homeostasis[109]. Cryptococcus can also relieve hyperglycemic symptoms by modulating the intestinal 
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Table 8 Selected vitamin D-rich foods and their vitamin D content

Food Vitamin D content

Fresh shiitake mushrooms (0.0992 kg) 600-1000 IU D2

Sun-dried shiitake mushrooms (0.0992 kg) 600-1000 IU D2

Egg yolk 20 IU D3, 0.2-0.8 μg 25-(OH)D

Cod liver oil (0.006 kg) 400-1000 IU D3

Beef liver (0.4536 kg) 0-2500 IU D3, 0.3-3.5 μg 25-(OH)D

Beef muscle (0.4536 kg) 0-180 IU D3, 0.1-2.6 μg 25-(OH)D

Pork muscle (0.4536 kg) 10-250 IU D3, 0-31.4 μg 25-(OH)D

IU: International Unit; D2: vitamin D2; D3: vitamin D3.

microflora[110,111]. Cyclocarya paliurus is a traditional medicinal plant with various active effects; however, its safety 
issues should not be overlooked. Rats have shown good tolerance in acute toxicity studies; however, adverse changes in 
hematology, serum chemistry, urinalysis parameters, organ weights, and histopathology occur. Currently, C. paliurus is 
regarded as safe for use in the treatment of prediabetes[112].

M. alba is an Asian medicinal plant with roots, fruits, and seeds used to lower glucose levels, reduce liver damage, and 
improve oxidative stress[113,114]. Flavonoids, polysaccharides, and alkaloids are key active components in M. alba leaves 
that alleviate symptoms of hyperglycemia. M. alba leaf extract intervention in mice with IGT reduces insulin resistance 
and IGT while improving glucose uptake in a hepatocyte islet resistance model[115]. M. alba extract considerably 
improves glucose lipid levels, islet function, and insulin resistance index. It also substantially inhibits PA-induced 
apoptosis and markedly activates the AMPK/mTOR signaling pathway, inducing islet cell autophagy and improving the 
functional utilization of islet cells[115,116]. The aqueous extract of M. alba downregulates the expression levels of relevant 
inflammatory factors, ameliorating chronic inflammation. Additionally, M. alba eliminates oxidative stress caused by IGT 
by modulating the advanced glycation end-products (AGEs)/receptor of AGEs/NADPH oxidase 4/NF-κB signaling 
pathway[117]. Importantly, ensuring the safety of M. alba leaves is crucial due to the abundance of biologically active 
phytochemicals and their many beneficial components. Acute toxicity, subacute toxicity, and genotoxicity studies in rats 
have shown no mortality or abnormal behavioral changes; no parameter changes in blood, biochemistry, or 
histopathology; and no mutagenic activity in the Ames assay. These findings weaken the claim that the aqueous extract of 
M. alba leaves may induce chromosomal aberrations or sperm abnormalities[118]. Therefore, the medicinal use of the 
aqueous extract of M. alba leaves is considered safe.

Astragalus membranaceus (A. membranaceus) has a long history of medical applications in China, including tonifying qi, 
lowering lipid and blood pressure levels, nurturing the heart, and regulating blood glucose[119,120]. Moreover, 
flavonoids of A. membranaceus regulate intestinal microflora, reduce FBG, and improve brain damage caused by IGT[121]. 
Water-soluble A. membranaceus polysaccharides considerably reduce blood glucose levels and the insulin resistance index. 
They enhance glucose intolerance; improve insulin resistance in mice; and reduce oxidative stress, inflammation, and 
liver injury, while increasing the concentration of short-chain fatty acids in the intestinal flora. Notably, they augment the 
levels of Allobaculum, Lactobacillus, Akkermansia, Faecia, Akkermansia, and Faecalibaculum in the intestinal flora of mice with 
IGT[122,123]. These functions have positive implications for alleviating symptoms associated with diabetes[124]. Unfortu-
nately, studies on the toxicity of A. membranaceus are limited, and toxicology tests are required before considering it as an 
intervention for prediabetes.

BEHAVIORAL INTERVENTION
In addressing prediabetes, obesity is a key factor. To delay diabetes onset, increasing exercise intensity and duration is 
crucial. For prediabetic patients, a weekly increase of 150 min in exercise or 30 min daily can significantly lower the 
fasting glycemic index[125]. Six months of high-intensity exercise effectively improves oral glucose tolerance[126], and 20 
wk of sustained exercise normalizes blood glucose levels[127]. A Meta-analysis confirms that both aerobic and resistance 
training, individually or combined, benefit insulin resistance and glycemic control in prediabetic patients[128].

Enhancing behavioral interventions requires a comprehensive, adaptable strategy that accounts for patient preferences, 
risks, and comorbidities, ensuring long-term adherence. This strategy should include building supportive relationships 
that encourage healthy behaviors, timely plan adjustments based on patient progress, and incorporating incentives for 
sustained motivation and adherence[129].
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DIETARY INTERVENTION
A high-calorie diet contributes to prediabetes development. Epidemiologic evidence supports increasing intake of non-
starchy vegetables, fruits, and whole grains[130], while limiting added sugars to effectively reduce glycated HbA1c, 
fasting glycemic index, serum insulin, insulin resistance, cholesterol levels, body weight, and body mass index[131]. This 
approach also lowers type 2 diabetes risk[132]. Early time-restricted feeding, involving a 6-h eating window ending by 3 
p.m., improves insulin sensitivity, β-cell responsiveness, blood pressure, oxidative stress, and appetite within 5 wk, 
aiding diabetes prevention[133]. This study aims to concisely highlight the importance of dietary protein and fiber in 
mitigating prediabetes.

PHARMACOLOGICAL AND LIFESTYLE INTERVENTIONS
Pharmacologic and lifestyle interventions can be combined for the prevention of diabetes. Metformin is the most 
commonly used drug in combination with lifestyle interventions. The administration of metformin (500-2000 mg/d) 
combined with exercise has improved insulin sensitivity in prediabetic patients[134]. However, this combination does not 
offer an advantage[135] and may even diminish the glucose-lowering effects of exercise[136] compared with metformin 
alone (1000 mg twice daily) and exercise training alone.

DISCUSSION
Diabetes has a high incidence with a low reversal rate[137]. Prediabetes, a common precursor often accompanied by 
microvascular complications like retinopathy, cardiovascular disease, and other issues, underscores the importance of 
effective intervention and management to slow or even prevent the development of diabetes.

Unhealthy lifestyles play a pivotal role in prediabetes development. Achieving complete remission of prediabetes 
necessitates the long-term maintenance of a healthy lifestyle. A combination of a nutritious diet and increased physical 
activity plays a crucial role in preventing or delaying the onset of diabetes and its complications. While lifestyle 
interventions are effective in the short term, their long-term efficacy is limited. Therefore, pharmacological interventions 
become necessary. These interventions can correct glucose homeostasis dysregulation, delay diabetes progression, and 
control glucose and lipid metabolism disorders. Common pharmacological interventions for prediabetes include 
metformin, GLP-1RAS, SGLT2 inhibitors, vitamin D, and Chinese herbal medicine[138-142]. These drugs have 
multifaceted effects, including blood sugar regulation, improved insulin sensitivity, and reduced insulin resistance.

Current treatments for prediabetic patients predominantly consist of lifestyle and pharmacological interventions. 
However, patient adherence to lifestyle interventions is often challenging to maintain in the long term, and a single 
lifestyle change is typically insufficient to extensively improve glycemic regulation. In contrast, a single pharmacological 
intervention can promptly lower blood glucose levels and enhance insulin sensitivity, yet prolonged use may lead to 
drug resistance over time. Combining lifestyle interventions with appropriate medication, as opposed to monotherapy, 
can yield a more favorable therapeutic outcome by promoting sustained weight loss, normal blood glucose control, 
pancreatic islet cell repair, and improved insulin sensitivity. Integrating lifestyle and pharmacological interventions is 
likely to be more acceptable to prediabetic patients and aligns with current treatment trends. Furthermore, the prevention 
and management of prediabetes take precedence over treating diabetes. Regular monitoring of daily blood glucose, 
weight, and medical parameters enables timely diabetes detection and disease progression control. Safe and effective 
interventions for prediabetes remain a necessity. Future efforts should focus on improving standardized prediabetes 
diagnosis to facilitate early detection, management, and treatment of prediabetic patients. The integration of pharmaco-
logical and lifestyle interventions is poised to become a new direction in prediabetes treatment.

CONCLUSION
This paper provides a comprehensive overview of the mechanisms behind prediabetes development and its associated 
therapeutic drugs. Prediabetes is significantly influenced by unhealthy lifestyles. To achieve complete remission, it is 
crucial to maintain a healthy lifestyle, including a balanced diet and regular physical activity. These practices are key in 
preventing or delaying the onset of diabetes and its complications. While lifestyle changes are effective short-term, their 
long-term efficacy is limited, making pharmacological treatments essential. Treatments such as metformin, GLP-1RAS, 
SGLT2 inhibitors, vitamin D, and Chinese herbal medicine play a pivotal role in regulating glucose homeostasis, 
decelerating diabetes progression, and controlling glucose and lipid metabolism disorders. They also help regulate blood 
sugar levels, improve insulin sensitivity, and reduce insulin resistance.
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