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Abstract
The earliest and most accurate detection of the pathological manifestations of 
hepatic diseases ensures effective treatments and thus positive prognostic 
outcomes. In clinical settings, screening and determining the extent of a pathology 
are prominent factors in preparing remedial agents and administering approp-
riate therapeutic procedures. Moreover, in a patient undergoing liver resection, a 
realistic preoperative simulation of the subject-specific anatomy and physiology 
also plays a vital part in conducting initial assessments, making surgical decisions 
during the procedure, and anticipating postoperative results. Conventionally, 
various medical imaging modalities, e.g., computed tomography, magnetic 
resonance imaging, and positron emission tomography, have been employed to 
assist in these tasks. In fact, several standardized procedures, such as lesion 
detection and liver segmentation, are also incorporated into prominent 
commercial software packages. Thus far, most integrated software as a medical 
device typically involves tedious interactions from the physician, such as manual 
delineation and empirical adjustments, as per a given patient. With the rapid 
progress in digital health approaches, especially medical image analysis, a wide 
range of computer algorithms have been proposed to facilitate those procedures. 
They include pattern recognition of a liver, its periphery, and lesion, as well as 
pre- and postoperative simulations. Prior to clinical adoption, however, software 
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must conform to regulatory requirements set by the governing agency, for instance, valid clinical association and 
analytical and clinical validation. Therefore, this paper provides a detailed account and discussion of the state-of-
the-art methods for liver image analyses, visualization, and simulation in the literature. Emphasis is placed upon 
their concepts, algorithmic classifications, merits, limitations, clinical considerations, and future research trends.

Key Words: Computer aided diagnosis; Medical image analysis; Pattern recognition; Artificial intelligence; Surgical simulation; 
Liver surgery
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Core Tip: Computerized imaging has a vital role in modern liver disease diagnosis and therapeutic intervention, including 
surgery. The scheme generally involves four elements, i.e., preprocessing, segmentation, modeling and simulation, and 
software development. This paper describes and discusses how this progressive multidisciplinary technology assists 
physicians, radiologists, and surgeons in carrying out their tasks effectively and efficiently, hence improving the postthera-
peutic outcomes of patients diagnosed with liver diseases.
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INTRODUCTION
It is estimated that there are 20 million new cancer cases worldwide and 10 million cancer-related deaths every year[1]. 
Among these cases, liver cancer is the third leading cause of cancer death. In 2020, 905700 people globally were diagnosed 
with liver cancer, and 830200 people died from the disease. Scientists have estimated that in 2040, approximately 1.4 
million people will be diagnosed with the disease, while 1.3 million people will die from it[2].

The vital function of the liver is filtering blood flow from the digestive tract before circulating the blood back to the rest 
of the body. Consequently, the liver is subject to various diseases, e.g., fascioliasis, cirrhosis, hepatitis, and alcoholic liver 
disease[3]. In particular, cancer is associated with increases in both the number and size of abnormal cells. If diagnosed 
early, it can be treated by interventional radiology, chemotherapy, radiation therapy, or a combination thereof. Among 
these treatments, liver surgery removing the tumors is efficient in preventing their recurrence and prolonging the life 
expectancy of the patient, especially those in primary and secondary stages[4]. Liver surgery is a complex and 
challenging procedure that requires comprehensive knowledge of the liver anatomy, blood supply, and tumor locations 
and characteristics. Consequently, preoperative imaging is necessary for its planning.

In recent years, there have been significant advancements in diagnostic and interventional imaging technologies, 
including the use of software equipped with artificial intelligence (AI), to enhance the accuracy of preoperative imaging. 
This comprehensive review, therefore, aims to offer an in-depth exploration of the latest progress and applications of 
imaging techniques. In particular, it highlights their pivotal role in improving the outcomes of diagnoses, preoperative 
planning, and interventional liver surgeries. The main topics discussed in the remainder of this paper cover liver 
segmentation, diagnostic imaging, preoperative planning and simulation, surgical and therapeutic intervention, and 
finally software as a medical device.

LIVER SEGMENTATION
The functional anatomy of a liver is considered in terms of its dual blood supply, as well as its venous and biliary 
drainage systems. It is divided into four sectors by the three hepatic veins, each of which drains into the inferior vena 
cava (IVC) and runs within its scissurae. This nomenclature system was famously described by Couinaud in 1957 and 
later amended at the Brisbane meeting in 2000. Its primary advantage is enabling anatomical resection of this seemingly 
almost asymmetrical organ. With this classification, each liver subdivision is self-contained in its artery and portal venous 
supply and biliary drainage[5,6].

Couinaud scheme
According to the Couinaud classification[5], the liver is divided into eight functionally independent segments, each of 
which has its own vascular in- and outflows, as well as biliary drainage (Figure 1). There are three major planes that 
divide the liver vertically: The right hepatic vein plane divides the right hepatic lobe into anterior and posterior segments; 
the middle hepatic vein divides the liver into right and left lobes; and the umbilical plane running from the falciform 
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Figure 1 Segmental anatomy according to the Couinaud classification. RHV: Right hepatic vein; MHV: Middle hepatic vein; LHV: Left hepatic vein; 
MPV: Main portal vein; IVC: Interior vena cava.

ligament to the IVC divides the left lobe into medial and lateral parts. The portal vein divides the liver into superior and 
inferior segments.

Image analyses of the liver
Diagnosis, treatment, and prognosis of diseases of the liver involve defining its anatomical boundary as well as charac-
terizing its pathologies, typically from computed tomography (CT) and magnetic resonance (MR) images. On an image 
plane, a liver is described by closed contours separating itself from the background. Conventionally, physicians must 
mentally reconstruct the whole liver and relevant structure in 3-dimension (3D) while navigating through its 
tomographic planes. However, recent advances in computing technology have enabled virtual 3D reconstruction, 
modeling, and simulation of the organ in vivo[7,8].

With these technologies, physicians can accurately calculate the hepatic volumetry. In addition, visualization of a 3D 
liver can also help locate its arteries, veins, and biliary tracts and, hence, determine its functional segments. In surgical 
planning, the spatial relationship between tumors and hepatic vasculature with a 3D model increases the precision of 
proposal resection over that with a 2D counterpart by up to 31%[9]. Last but not least, the use of such a model also 
reduces time and strain during surgical planning and intervention[10].

Modeling a liver from medical images first involves delineating its boundary from other connective tissues and 
adjacent organs[11]. One of the key challenges is that, as a complex organ, the liver comprises not only its parenchyma 
but also an extensive vascular network, as well as lesions in pathological cases. In addition, despite recent advances in 
tomographic imaging[12], liver images remain contaminated with noise of various distributions, depending on the 
modality. These problems call for the development of effective preconditioning and robust image analysis algorithms. 
This section, therefore, investigates state-of-the-art methods, as well as their features, limitations, and challenges. These 
approaches include data preprocessing and fully automatic and semiautomatic segmentation methods.

Data preprocessing
Medical images are often degraded by noise and artifacts during acquisition. Depending on their model assumptions, 
various noise reduction strategies are applied prior to image analyses[13]. The perturbation function due to noise is 
normally random and hence unknown, except for only their distribution. Therefore, in medical imaging, the most 
frequently assumed distribution models include Gaussian, Poisson, and Rician distributions for charge couple device, X-
ray, CT, and MR images, respectively. However, directly applying an inverse filter to reduce noise and possibly other 
inherent artifacts could adversely affect smaller features or abate anatomical boundaries, such as vasculature, 
calcification, and connective tissue. Instead, several applications adopt structural adaptive anisotropic[14], spatial 
frequency or wavelet[15], blind deconvolution[16], regularized diffusion[17] filters or, much more recently, those based 
on machine learning (ML) or AI models, e.g., convolutional neural networks (CNNs)[18,19].

On measuring their performance, the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are often 
considered. However, a recent study[20] revealed that although visual quality is clearly improved with advanced filters, 
correlations between PSNR and SSIM and application-specific performance, such as classification (i.e., based on area 
under the curve), are not clearly present. In fact, fine tuning neural network parameters to a particular noise model is 
recommended.

In practice, to balance complexity and intended analysis, a trivial anisotropic diffusion filter has been applied to 
denoise a T1-weighted MR image of a liver while enhancing its border[21] prior to 3D surface generation. Meanwhile, in 
some other studies, the least commitment principle[22] has been adopted with no preprocessing of an image other than 
adjusting its windows and levels, but taking noise into account during subsequent analyses[23]. Once preconditioned, a 
series of cross-sectional images proceeds to the next stage, in which the liver, its peripherals, and lesions are separated.
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Fully automatic segmentation
Since liver pixels appear very similar to those of other nearby organs, existing automatic schemes thus rely on auxiliary 
information, e.g., data-driven appearance models or empirical understanding of its morphology[23]. Accordingly, its 
main advantage is low inter- and intraobserver variability due to manual intervention. Recent extensive surveys on the 
topic are found in the literature[24,25]. Several early works were developed and validated based on a public dataset 
called SLIVER07[26]. They contained 3D CT liver images of 20 and 10 subjects for training and testing, respectively. These 
images had 512 × 512 pixels at 0.56 to 0.86 mm2 in-plane resolution and covered 64 to 502 slices with spacing between 0.7 
mm and 5 mm. Another recent dataset is 3D-IRCADb[27]. It contains CT images of 20 patients, three thirds of which 
contain hepatic tumors. Their voxel size and resolution are similar to those of its predecessor. Furthermore, each image is 
labeled with not only pathologies but also segmentation challenges. Based on these datasets, a number of computerized 
methods were proposed to delineate a liver and benchmarked. Examples of the recent results are summarized in Table 1
[28-34]. Note that these studies may employ different accuracy metrics, e.g., volumetric overlap error or dice similarity.

The most promising approach in this category is one based on modeling from pretrained data, both statistically[26,30,
33,35-37] and using CNNs[34,38-40]. The former iteratively deforms a liver model to fit underlying imaging features 
while imposing anatomically plausible constraints found in the training, e.g., the active appearance model. The latter 
learns from some segmented livers, their spatial architecture, and the relationship among their convolutional features, 
cascaded through a deep network, and fuses them with weighted nonlinear functions. Subsequently, pixels of an unseen 
image proceed through the same network and are labeled accordingly, resulting in the final segmentation. However, 
these methods require sufficiently large prelabeled samples and hence a substantial amount of computing power for 
model learning.

Semiautomatic segmentation
It is evident that various factors, e.g., nearby organs such as the stomach, pancreas, duodenum, and heart, as well as 
artifacts due to implants, could have adverse effects on segmentation quality. Currently, it remains challenging to 
incorporate computable elements to automatically address this issue. Therefore, user interaction is often involved but 
kept to a minimum, i.e., at initialization[23,41], during the process[42,43], in final adjustment[23], or with a combination 
thereof. The recent works are summarized in Table 2[21,28,41,43-46].

At varying degrees of interaction, many methods can achieve reasonable accuracy without previously trained liver 
data. For instance, trivial thresholding with K-means clustering has been applied to CT angiography to separate the liver 
from the kidneys and ribs[47]. Similar methods automatically set these thresholds by learning the pattern of abdominal 
histograms[48,49] or that of textures[50]. However, they often require prior knowledge of the anatomy for initialization 
and postprocessing, e.g., manual editing or morphological operators, to remove oversegmented regions. Instead of 
defining pixel membership by thresholds, many researchers have expanded a region of interest accumulatively from 
seeding points. They then have exploited different strategies to control new inclusions, e.g., convex hulls[51], binary 
morphology and anatomical constraints[52], significant differences in boundaries[44,53], and anatomical priors[42].

In addition to region-based approaches, delineating contours around a liver has also attracted considerable interest. 
Initially, the active contour model and its variants were explored[54,55] based on gradient and curvature and later 
extended to the level set[43,56-59]. By these methods, starting contours were specified by a user or estimated by other 
segmentations. They were then implicitly driven by gradient and embedding surface curvature. Unlike its counterparts, 
any aberration would be regularized by geometric continuity on the hypersurface. Empirical and anatomical knowledge, 
e.g., distance to centroid, nominal contrast, and segmental and anatomical markers, were translated to computable 
conditions to assert the evolution of these contours.

Another approach poses the segmentation problem as that of graph optimization[60]. In liver imaging, the deviation of 
intensity at a pixel from a predefined distribution and its gradient strength are formulated as region and boundary cost 
functions, respectively[61]. Similar functions are obtained from texture images and supervoxels[32] or constrained by 
statistically trained shape[45] and intensity[32] models or initialized by CNN[46]. It was shown that automation of the 
remaining steps was possible if anatomical constraints (e.g., vena cava and tumor) were imposed for postprocessing[62].

DIAGNOSTIC IMAGING
It has been discussed previously that although the liver and its vasculature are clearly presented to a radiologist in 
medical images, mentally extracting them requires substantial knowledge and expertise regarding hepatic anatomy and 
physiology. Therefore, automating this process with algorithmic codes remains an open research challenge. Similarly, 
diagnosing a hepatic disease involves assessing liver damage and characterizing its lesions based on their vascularity and 
composition, as well as their implications on adjacent vessels[63,64]. A range of radiological and computerized imaging 
techniques can be utilized and are summarized as follows.

Anatomy of the vasculature
Arterial anatomy: Hepatobiliary surgery, liver transplantation procedures, and endovascular treatments can all benefit 
from information on anatomical variations in hepatic arteries. The existence of such variations may call for adjustment of 
surgical procedures to avoid unintentional vascular damage, hemorrhage, and biliary problems.

The Michels classification[65] and its modification by Hiatt et al[66] are the most frequently used categories for 
describing hepatic arterial variations in the literature. Approximately 55%-60% of people have the classic pattern of the 
common hepatic artery branching from the celiac artery, with the hepatic artery normally splitting off into the right and 
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Table 1 Selected fully automatic liver segmentation algorithms[28]

Ref. Key techniques Dataset Accuracy

Kumar et al[29], 2013 Region growing Proprietary 98% ± 1%

Chen et al[30], 2012 AAM, graph cut SLIVER07 93.5% ± 1.8%

Huang et al[31], 2016 Template matching (SBLDA) 3D-IRCADb 92.16% ± 2.95%

Wu et al[32], 2016 Linear clustering, graph cut SLIVER07 75.2%-71.4%

Mohamed et al[33], 2017 Bayesian model Proprietary 95.5%

Zheng et al[34], 2022 DL (CNN, C-LSTM) SLIVER07 82.5% ± 7.7%

Citation: Le DC, Chansangrat J, Keeratibharat N, Horkaew P. Symmetric Reconstruction of Functional Liver Segments and Cross-Individual 
Correspondence of Hepatectomy. Diagnostics 2021; 11: 852. Copyright ©The Author(s) 2021. Published by MDPI. The authors have obtained the permission 
for data using (Supplementary material).

Table 2 Selected semiautomatic liver segmentation algorithms[28]

Ref. Key techniques Dataset Accuracy

Chen et al[44], 2009 Quasi-Monte Carlo Proprietary NA

Yang et al[41], 2014 Level set SLIVER07 78.9% 

Liao et al[45], 2016 Graph cut SLIVER07 94.2% ± 3.3%

Lu et al[46], 2017 3D CNN, graph cut 3D-IRCADb 90.64% ± 3.34%

Chartrand et al[43], 2017 Deformable model SLIVER07 92.38% ± 1.35%

Le et al[23], 2021 Mixture model, graph cut SLIVER07 92.2% ± 1.5%

NA: Not available. Citation: Le DC, Chansangrat J, Keeratibharat N, Horkaew P. Symmetric Reconstruction of Functional Liver Segments and Cross-
Individual Correspondence of Hepatectomy. Diagnostics 2021; 11: 852. Copyright ©The Author(s) 2021. Published by MDPI. The authors have obtained the 
permission for data using (Supplementary material).

left hepatic arteries to supply the entire liver. Replaced and accessory left or right hepatic arteries are the most often 
found anatomical variants. In cases of transarterial embolization of traumatic liver injury or embolization of liver tumors, 
if the bleeding point or arterial feeders cannot be demonstrated on conventional hepatic angiogram, searching for these 
possible anatomical variants is crucial. Another example is when left hepatectomy is performed in a patient with a 
replaced or accessory left hepatic artery, ligation of the left hepatic artery at its origin in the left gastric artery is needed.

Although the anatomical variant classification has been widely accepted, not all variants are surgically significant. 
Furthermore, the course of the hepatic artery and its topographic relationship to the surrounding structures, such as the 
portal vein and bile ducts, are not taken into consideration[67].

Portal vein anatomy: There are numerous variations in the portal vein branching patterns. The classic anatomy, which is 
found in approximately 65% of patients, consists of the main portal vein branching into the right and left portal veins at 
the porta hepatis. The right portal vein later subdivides into anterior and posterior branches. Found in approximately 
35% of patients, the two most common variants are trifurcation of the portal vein trunk and a right posterior branch as the 
first branch of the portal vein trunk, with the latter being more common and known as the Z-type pattern[68,69].

Hepatic vein anatomy: Accurate perception of the hepatic vein anatomy before liver surgery is crucial. Inadvertent injury 
of the hepatic veins leads to a higher risk of bleeding and functional loss of the hepatic segment with a compromised 
venous outflow. Generally, there are three hepatic veins: The right hepatic vein drains segments V, VI, and VII, the 
middle hepatic vein drains segments IV, V, and VIII, and the left hepatic vein drains segments II and III. The classic 
anatomy of the hepatic veins, which form a common trunk between the left and middle hepatic veins, is found in approx-
imately 65%-85% of patients[70,71].

Biliary anatomy: The normal biliary anatomy found in approximately 58% of the population comprises the right hepatic 
duct draining the right hepatic lobe and the left hepatic duct draining the left hepatic lobe. The right hepatic duct divides 
into the right posterior sectional duct, coursing in a horizontal plane and draining segments VI and VII; the right anterior 
sectional duct, coursing in a vertical plane, drains segments V and VIII. The left hepatic duct divides into the left superior 
sectional duct and drains segment IVa, and the left inferior sectional duct drains segments II, III, and IVb[72]. The caudate 
lobe usually drains into the proximal left or right hepatic duct.

https://f6publishing.blob.core.windows.net/45822a3f-3992-4232-956c-b557ba5aab6f/WJGS-15-2382-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/45822a3f-3992-4232-956c-b557ba5aab6f/WJGS-15-2382-supplementary-material.pdf
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Preoperative evaluation of liver tumors
Generally, 20%-30% of patients have synchronous hepatic disease, while hepatic metastasis occurs in more than 50% of 
colorectal cancer patients[73]. Primary liver tumors, such as hepatocellular carcinoma (HCC), mass-forming cholangiocar-
cinoma, hepatic adenoma, or focal nodular hyperplasia, as well as liver metastasis, have distinct cellular components and, 
hence, unique imaging appearances. As such, they can be characterized by means of CT and MRI.

To date, the only treatment associated with long-term survival for both HCC and colorectal liver metastasis is surgical 
resection. Imaging studies are essential for identifying potential surgical candidates. Specifically, for the best outcome in 
the resection procedure, all lesions need to be removed, while a sufficient functioning liver must be preserved. One of the 
major challenges is that because metachronous hepatic metastasis can occur in over 50% of patients with colorectal cancer
[74,75], the imaging sensitivity should be sufficiently high to detect these lesions. Although CT is available worldwide 
and enables evaluation of extrahepatic disease and vascular structures, the modality has some limitations. These include 
an inferior ability to delineate the tumor margin, to perform tissue characterization, and to detect and characterize small 
lesions and associated radiation. Alternatively, MRI with hepatocyte-specific agents is currently the most accurate 
imaging modality to identify hepatic disease in patients with colorectal cancer[76-78]. Despite its sensitivity, additional 
metastatic foci can be found intraoperatively in up to 25% of patients after MRI[79,80]. Another drawback of MRI is that 
in patients with coexisting benign focal liver lesions, such as hemangioma, an ill-defined heterogeneous echoic nodule 
could lead to confusion during surgery. To resolve the ambiguity, contrast-enhanced ultrasound has increasingly been 
adopted intraoperatively as a complement. Table 3 summarizes the existing research related to the sensitivity of focal 
liver tumor detection[63,78,81-83].

Computer-aided diagnosis
The anatomy of both the liver and its peripherals has been extensively explored in the medical literature, and the most 
common patterns have been firmly established. Despite the highly deformable structure and large intersubject variability 
of this organ, it has been continually demonstrated that computerized methods can be applied to extract relevant objects 
with reasonable degrees of accuracy[24,26]. Thus far, pathological manifestations can result in irregular appearances of 
the interconnecting parts, undermining their merits in clinical and surgical practice[4]. In fact, with the recent advances in 
ML and AI, research focus has now been particularly directed toward identifying, delineating, and characterizing lesions 
from tomographic images. Prominent works in the field are summarized and discussed here.

ML algorithms have been widely employed in segmenting the tumoral liver. After a seed point was estimated within a 
lesion, fuzzy C-means (FCM) was used to expand the coverage toward its margin[29]. Likewise, a watershed was applied 
to CT images to extract supervoxels with similar characteristics. Subsequently, tumors were identified from the liver and 
other objects by merging those subregions with FCM and K-means clustering using their textural information[50], i.e., 
pixel intensities, directional derivative, local binary pattern, and local differences. Based on 22 trained and 22 tested 
instances, the highest classification accuracies of 95.64% to 98.88% were reported. K-means clustering was applied to 
approximate liver contours, which were later refined by Graph-Cut[62]. Once the vena cava had been detected and other 
segments had been discarded by anatomical templates, tumors were extracted by cavity filling. Note, however, that this 
assumption failed to identify those on the liver boundary. For percutaneous radiofrequency ablation (RFA) to remove 
inoperable primary or metastatic tumors, the ablation zone was first determined by max-flow min-cuts of a 3D spherical 
graph expanded from a seed point[84]. It was later automated by using FCM to extract the ablation zone and then cyclic 
morphology to refine one[85].

Meanwhile, with rapid development in AI and CNNs in particular, a number of network architectures have been 
adopted for diagnosing tumoral livers. Li et al[38] used 2D and 3D DenseUNets to extract within-slice features and to 
learn their spatial relationships between slices, respectively. The results from both networks were finally fused to produce 
labels of both liver and tumor pixels. Despite relatively high benchmark scores (i.e., 93.7%), their models took 30 h in total 
for training with only limited series. Another example[86] applied a simple 3D U-Net to first extract the liver. Super pixel 
blocks of tumors were localized by a multiscale candidate generation method. The exact regions of these candidates were 
defined and then refined by a 3D fractal residual network and active contour, which reached a 67% accuracy during 
evaluation. It was pointed out in another study that a main drawback of data-driven AI is the imbalanced proportion 
between healthy livers and those with pathologies[87]. As a result, many existing dice loss (DL) models tend to predict 
lesions as part of the liver or backgrounds. To address this issue, they tried to assemble cascade U-ResNets, each trained 
with a different loss function, i.e., weighted cross entropy, DL, weighted DL, Teverskry loss (TL), and weighted TL. With 
ensemble learning, tumors could be segmented with a 75% accuracy, compared to the approximately 65%-70% accuracy 
obtained by competing networks. The same accuracy of 74.5% was achieved by a 2.5D fully CNN whose loss function 
consisted of cross-entropy, a similarity coefficient, and a novel boundary loss function[88]. The latter was prescribed 
based on the boundary between segmented objects by means of logical morphology. Alternatively, using a two-stage 
densely connected network, where a liver was first localized by an encoder-decoder CNN, tumors were detected with 
attention modules at a 72.5% accuracy[89].

Since these methods recognize tumors by their features, implicitly learned by examples, the irregularities found on the 
boundaries of lesions are not precisely traced, while adjacent lesions are sometimes merged. Thus, postprocessing by 
another empirical model or manual processing by radiologists is often needed. In fact, some studies have shown that, as a 
baseline, even skilled human raters could achieve only a 78% accuracy.
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Table 3 Sensitivity (in percent) of focal liver tumor detection

Ref. CT MRI CEUS

Langella et al[81], 2019 - 75.1 94.5

Huf et al[82], 2017 - 91.4 90

Niekel et al[83], 2010 83.6 88.2 -

Kessel et al[78], 2012 69.9 85.7 -

Yang et al[63], 2010 83.2 - -

CT: Computed tomography; MRI: Magnetic resonance imaging; CEUS: Contrast-enhanced ultrasound.

PREOPERATIVE PLANNING AND SIMULATION
Conducting a virtual liver resection prior to the live procedure is highly beneficial. For example, the right portal pedicle 
divides into anterior and posterior branches, each of which further splits into two segments (i.e., V and VIII, and VI and 
VII, respectively). The left portal pedicle has a longer and more horizontal extrahepatic course. This allows the surgeon 
access and exposure to the relevant areas, for instance, during biliary system reconstruction. Moreover, segmental 
branches arise from the left portal pedicle supplying segments II, III, and IV. The ligamentum venosum, a fibrous 
remnant of the ductus venosum in the fetus, which connects the left portal vein to the left hepatic vein at the IVC, serves 
as a distinctive landmark for gaining access to the left portal pedicle and the left hepatic vein, whose terminating 
discharge is often merged with the middle hepatic vein and thus can be challenging to identify and control during a left 
hepatectomy.

Upon estimating potential risks of the surgical procedure, liver cirrhosis and portal hypertension (which are usually 
associated with liver cancer, particularly HCC), must be diagnosed preoperatively. To this end, multidisciplinary teams 
consider any evidence of advanced cirrhosis or inadequate liver function while devising an appropriate management 
plan, e.g., by using the Child-Pugh scoring system[90,91]. Specifically, for patients having cirrhosis and meeting certain 
criteria, liver resection and transplantation address an underlying field change that predisposes the parenchyma to tumor 
recurrence. Options for patients who are not candidates for those procedures include RFA, microwave ablation, trans-
arterial chemoembolization, and other locoregional therapies[92].

Liver volumetry and future liver remnant
Surgical resection is a primary curative treatment for patients with primary and metastatic liver tumors. Unfortunately, 
fewer than 25% of patients are suitable for surgery[93,94]. With a better understanding of hepatic anatomy and surgical 
technique refinements, the extent of liver sections that can be surgically removed is expanding. However, a tendency 
toward more aggressive liver resections in patients with preexisting liver disease requires thorough evaluation of hepatic 
function, especially the amount and quality of the postoperative future liver remnant (FLR).

It has been established that an inadequate liver volume following surgery is a robust, independent predictor of 
postoperative hepatic dysfunction and complications[95]. Generally, the FLR per total liver volume (TLV) ratio must be 
25%-30% to minimize postoperative complications[96,97]. Patients with hepatotoxic chemotherapy or hepatic steatosis 
should have an FLR ratio of greater than 30%, whereas those with cirrhosis should maintain an above 40% ratio. 
Likewise, in living donor transplantation, the donor’s liver volume has to be 30%-35% more than that of the recipient[98], 
or 40% in cases with hepatic disease[99].

Computerized imaging for FLR
Volumetric CT has currently become the gold standard for determining whether hepatectomy can be performed[100]. To 
this end, computer software is employed to reconstruct a 3D liver and estimate the ratio of FLR to nontumorous TLV. 
Normally, the latter is measured directly by CT. Alternatively, it may be estimated from the patient’s body surface area
[101]. These methods are called mTLV and eTLV, respectively. It was found in some studies[4,102] that eTLV could 
identify cases where mTLV was previously underestimated. In addition, there have been a number of recent 
advancements in automated liver volumetry by medical image computing.

Unlike image segmentation, where whole liver boundaries are traced on an underlying volumetric image, functional 
segmentation or resection involves estimating its composition of independently functional segments, each of which has 
its own vascular in- and outflow, according to Couinaud’s scheme. MeVis LiverAnalyzer™ (MeVis Medical Solution, 
Germany) and Synapse Vincent™ (Fujifilm, Japan) are currently standard software programs for virtual liver resection 
that rely on the surgeon’s judgment[103]. Common practice involves the user’s interactive tracing of the segments with 
respect to their major vascular tracks. Not only are individual experiences and skills needed, but the process is also 
tedious and time-consuming, as well as inducing large inter- and intraobserver variability. Meanwhile, many novel 
imaging algorithms have also been continuously developed to assist or complement this task and have rapidly become an 
emerging area of investigation.

Provided that portal and hepatic veins are extracted, liver segments are defined with respect to voxel distances to 
specific branches[104,105], voxel projections onto vascular intersections[106], or categorical search by Voronoi diagram
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[107-109]. However, these methods suffer from computationally intensive voxel sorting. Moreover, the topology of voxel 
aggregation is neither validated nor rectified. Alternatively, to accelerate computation and ensure surgically plausible 
resection, an extracted liver volume is first converted to a surface and subdivided, based on vasculature and salient 
anatomical landmarks, by differential geometry[110-115]. Thus far, manual correction is often inevitable. Otherwise, 
additional anatomical constraints, e.g., from a statistically trained deformable atlas[116], are necessary.

Unfortunately, not every method was able to segment all eight Couinaud segments nor was it always validated on the 
same liver dataset. Thus, a recent study[115] compared some prominent algorithms only according to their volumetric 
ratios, i.e., at lobe and sectional levels. The average values are listed in Table 4[11,106,108,112,113,115]. Since these 
methods rely on accurate extraction of the hepatic vasculature and liver boundary, future directions worth exploring are 
advanced pattern recognition (PR) of the gastrointestinal structures and integration of other imaging modalities.

Once the resection is made, removal of pathological segments could be planned, and FLR could hence be estimated. 
One of the most widely utilized 3D software programs in preoperative liver surgery is Synapse Vincent™ (Fujifilm, 
Japan)[103]. It helps automate liver segmentations and their volumetric assessment. However, with recent surgical 
techniques, liver resection is no longer limited to only right hepatectomy. Several surgical plans have been devised or 
tailored for an individual, i.e., patient-specific strategies. Therefore, FLR should be resilient to variations in such planning. 
In addition, other volumetric assessments are also equally important posttherapy, e.g., graft regeneration after 
transplantation and responses to cancer treatment[117].

Liver function
In addition to resected volumetry, liver function also needs to be evaluated. In fact, technical limitations of resection and 
its safety have been exceeded by continually developed procedures, aiming at increasing FLR in patients with insufficient 
liver volume by utilizing its regeneration in response to blood flow, also known as flow modulation. Among the most 
often chosen procedures is portal vein embolization (PVE), where the portal vein on the opposite side of the FLR has a 
catheter radiologically inserted and is then embolized with vascular plugs, coils, particles, or glue[117]. Consequences of 
a diseased liver parenchyma in terms of liver function may be analyzed by biopsy, performed on the living donor liver 
prior to transplantation[118]. In patients who may need PVE to enhance the FLR ratio, these anatomical and functional 
criteria are also relevant, given the proper context. Comprehensive assessment of liver conditions is required prior to any 
therapy because livers with such as cirrhosis and steatosis, for instance, demand a significantly greater FLR than a healthy 
liver[119].

The indocyanine green (ICG) clearance test, asialoglycoprotein receptor scintigraphy using 99mTc-galactosyl human 
serum albumin, and serum hyaluronic acid level assessment are prominent methods that can be used to evaluate the 
residual liver's ability to function[120,121]. Injection of ICG, a tricarbocyanine dye, causes it to bond with albumin and be 
carried throughout the body via the circulatory system. Elimination of ICG occurs solely through biliary excretion. Thus, 
serum blood tests or an optical sensor on the finger can reveal the excretion level. ICG levels in the blood should be below 
10% at 15 min after injection (ICG-R15). Therefore, blood samples taken at 5-min intervals postinjection can be analyzed 
to determine the plasma disappearance rate of ICG (ICGK), which is calculated by using linear regression of the plasma 
ICG concentration[122].

Although there is accurate automated anatomical liver volumetry and identification of its biomarkers, there is 
currently no computer software with biomarker mapping that can precisely delineate the area of residual functioning 
liver. A multidisciplinary approach is therefore recommended to determine both the liver volume and function. The 
selection of the surgical plane, feasibility of resection, visualization of the tumor and its extent, etc., all rely on maintaining 
an ongoing interaction between the surgeon and radiologist, as well as reliable, though probably not the most precise, 
imaging software.

Postoperative risk assessment
The risk of postoperative hepatic failure is substantially associated with the extent of liver resection. Although this is 
logical and simple to assess, the volume of the liver that remains present is more indicative and must be precisely 
determined. Additionally, because the segmental anatomy and its volume significantly vary among patients, only 
determining the segmental numbers is inconclusive. Specifically, the right side of the liver accounts for more than half of 
the TLV in most people, but its variations extend from 49% to 82%, while those of the left side range from 17% to 49%
[123]. Therefore, a formal radiologic volumetric assessment is necessary to ensure accurate FLR, especially when planning 
a major liver resection.

SURGICAL AND THERAPEUTIC INTERVENTION
CT or MRI is typically performed to characterize lesions and devise preoperative planning[21]. Consequently, FLR is 
estimated from the planned resection outlines by sequential marking on respective cross-sectional images, given slice 
thickness and voxel dimensions. It has been shown that both the intended and actual FLR as well as their actual surface 
and volumes are highly correlated radiographically[124,125]. As such, additional tests are not required during the 
procedure.

For patients with an insufficient FLR who are being considered for hepatic resection, FLR augmentation by PVE via 
interventional radiography is most widely used. With this procedure, the portal vein (with or without segment IV 
branches) is embolized. Usually, the procedure is performed with percutaneous vascular access[117]. Subsequently, those 
who exhibit more than 2.0% growth per week on repeated volumetry have no risk of liver failure during the periop-
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Table 4 Average proportion (in percent) of functional segment groups[115]

Lobe level Sectional level
Ref.

Left Right Lateral Medial
Anterior Posterior

Huang et al[106], 2008 39 61 14.1 24.7 39.3 21.9

Ruskó et al[112], 2013 32 68 12.2 20 40.2 27.6

Chen et al[108], 2016 45 55 26.7 18.1 23.3 32

Butdee et al[113], 2017 40 60 17.9 22.1 29.4 30.6

Le et al[11], 2021 32 68 13.3 19.2 30 37.5

Citation: Le DC, Chansangrat J, Keeratibharat N, Horkaew P. Functional Segmentation for Pre-operative Liver Resection Based on Hepatic Vascular 
Networks. IEEE Access 2021; 9: 15485-15498. Copyright ©The Author(s) 2021. Published by IEEE. The authors have obtained the permission for data using (
Supplementary material).

erative phase following hepatectomy[126].

Liver resection
An anatomic resection involves the removal of a Couinaud segment by selective ligation of the main HPV and portal 
triad. With this approach, there is a higher chance of obtaining disease-free margins because it resects areas distal to the 
tumor that are at risk for vascular micrometastasis. Alternatively, nonanatomic resection or parenchymal transection 
disregards those segmental planes; it is often employed for benign tumors, debulking treatment, or when attempting to 
preserve the residual parenchyma. A microscopic margin negative (R0) resection must be performed to minimize local 
recurrence. It has been shown that a resection margin of 1 cm or smaller is safe[127].

Standard anatomic hepatectomy involves controlling both vascular inflow and outflow prior to parenchymal 
transection. Accordingly, removal can be performed without affecting adjacent hepatic segments. Generally, intraop-
erative ultrasonography is utilized to determine the presence of vascular structures and to assess the location and size of 
the tumor as well as their relation to the surrounding vasculature.

Minimally invasive surgery
The development of computerized imaging techniques to further enhance minimally invasive liver surgery has rapidly 
progressed[128,129]. For instance, near-infrared fluorescence is adopted in laparoscopic and robotic camera systems, 
allowing the identification of different preoperatively injected dyes (e.g., indocyanine green). This contrast agent 
propagates through the biliary tree while illuminating the structure after being metabolized mostly by hepatocytes. 
Recently, this modality has been exploited to differentiate between well- and inadequately-perfused hepatic parenchyma 
to guide parenchymal dissection following vascular control[130-132].

Computer-assisted surgery
It has been established that computer-based 3D reconstruction of liver tumors could improve the accuracy of their 
localization and the precision of surgical planning[9]. Thus far, 2D/3D image reviewing during surgery on a traditional 
picture archiving and communication system in the operating room has been found to be distracting. Therefore, real-time 
localization of lesions and the identification of arteries and biliary structures by using intraoperative ultrasonography are 
usually preferred. Nevertheless, similar to what was pointed out in another survey on tumor surgery[133], the need for 
additional port sites to interpret 2D images and hence to mentally recreate the 3D anatomy with respect to the orient-
ations of ultrasound probes has restricted its wider adoption in minimally invasive surgery.

Currently, an augmented reality (AR) endoscopic overlay of the patient-specific anatomy with associated virtual reality 
(VR) models has attracted considerable attention as it could increase the surgical efficiency in real-time with intelligent 
operative guidance[134-136]. With this approach, 3D reconstructed data can be precisely overlaid onto the operated area. 
Effectively, cognitive strain conventionally imposed on the surgeon could be lessened. For uterine myomectomy, it has 
been shown that spatial recognition based on AR could improve the localization accuracy[137].

To adopt VR and AR in hepatobiliary surgery, one has to confront the technical challenges of continuously coregis-
tering the computer-generated models to a mobile liver with significant tissue deformation. To address this issue, a recent 
study[28], for example, applied conformal parameterization to an extracted liver surface. With this technique, the triangle 
mesh of genus-0 of the surface was mapped onto its topological homeomorphism[138]. Given a set of landmarks on a 
liver surface, representing the resection paths according to Couinaud’s definition, a deformation that bijectively maps a 
liver and its section onto another instance with minimal distortion could be realized. However, since the liver is morpho-
logically diverse, it was suggested that localized alignment should be the focus. In fact, to ensure physiologically 
plausible correspondence within or across subjects, statistical deformable models[30,43] are incorporated. Additionally, 
clinical management aspects, e.g., tumor board evaluations, preoperative strategy, and intraoperative access, also need to 
be considered.

https://f6publishing.blob.core.windows.net/45822a3f-3992-4232-956c-b557ba5aab6f/WJGS-15-2382-supplementary-material.pdf
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SOFTWARE AS A MEDICAL DEVICE
Since the early 1990s, Digital Imaging and Communication in Medicine (DICOM) developed by the American College of 
Radiology and the National Electrical Manufacturers Association has been a gold standard for archiving, transferring, 
and presenting imaging data among acquiring and processing devices[139] in radiological practices[140]. It features a 
unique structural content[141], consisting of not only an imaging matrix and its encoding but also relevant medical data, 
e.g., patient information and study details, as well as a scanning protocol. In a typical liver examination, for instance, its 
DICOM structure contains a series of multislice CT images in the axial direction, covering the upper abdomen, and each 
image is numbered and labeled with physical geometry, thickness, and resolution, and perhaps suggested window-level 
settings. This information is vital for accurately reconstructing a whole 3D liver for diagnostic and intervention purposes. 
Hence, most current medical image computing software does support this standard by default. In addition, the 
Neuroimaging Informatics Technology Initiative (NIfTI)[142] has been specifically designed and developed by 
neuroimaging scientists to resolve physical orientation objects within a brain image. Nonetheless, this data format is also 
adopted in other fields, where geometric information is needed.

Presently, computer software has increasingly been integrated into digital platforms that serve medical purposes. 
Software that is a medical device in its own right is called Software as a Medical Device (SaMD)[143]. It is to be distin-
guished from software in a medical device and that used in manufacturing or maintaining a medical device. Specifically, 
the International Medical Device Regulators Forum (IMDRF) defines SaMD as “software intended to be used for one or 
more medical purposes (e.g., to make clinical decisions) that performs these purposes without being part of a hardware 
medical device.” With its unique features, a working group by IMDRF as the representative of regulators worldwide 
developed a common framework aiming to support innovation and timely access by both patients and providers to safe 
and effective SaMD.

In liver imaging, SaMD, regardless of its computing platforms, may be used for diagnoses both in vivo and in vitro, 
prevention, screening or monitoring, and treatment or alleviation of liver diseases. A manufacturer who intends to make 
SaMD available for use under their name would be subject to regulations, not only throughout its software engineering 
life cycle (e.g., ISO/IEC 14764:2006 Software Engineering) but also postmarket surveillance and any subsequent updates, 
in which risk identification and countermeasures are established[144].

To maintain regulatory compliance, the roles of an SaMD and its deployment in clinical environments must be 
declared. Its recommendation for intended uses (i.e., diagnosing or treating a disease and informing or driving clinical 
management) with potential adverse consequences (i.e., critical, serious, and nonserious situations or conditions) must be 
classified. Most importantly, software evaluation (according to established protocols)[145], clinical evaluations, and 
relevant evidence must be attached. Finally, its linguistic design and instructions must conform to standard medical 
terms. Other considerations include technology and sociotechnical system, environment, and information security with 
respect to safety.

CONCLUSION
This paper has provided an extensive review on computerized imaging in both current and emerging clinical practices 
and when integrated with state-of-the-art algorithms. The vital roles of this modality include the diagnosis of liver disease 
and its curative planning, treatment, and surgical intervention. It has been demonstrated in the recent literature that, 
depending on the data condition, prior knowledge, and amount of user interaction involved, various computer 
algorithms yield reasonable diagnostic and simulation accuracies. Nonetheless, it is worth noting that while these 
algorithms perform particularly well for functional segment classification of normal or slightly pathological livers, their 
performance on hepatic lesion characterization remains to be much further improved.

Although ML and AI strategies have rapidly become the main players in liver imaging and thus far have exhibited 
promising results, it remains challenging to acquire sufficiently large and heterogeneous datasets with labeled ground 
truth for training. This issue has been partly addressed in many less critical applications by using, for instance, big and 
crowdsourced data.

Finally, with advances in medical imaging, many computer algorithms will be adopted and implemented in SaMD. 
Therefore, researchers, digital health manufacturers, and physicians should be made aware of relevant regulatory 
requirements and guidelines to ensure the safety of patients.
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