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Abstract
BACKGROUND 
Gastric cancer (GC) is a deadly tumor with the fifth highest occurrence and 
highest global mortality rates. Owing to its heterogeneity, the underlying 
mechanism of GC remains unclear, and chemotherapy offers little benefit to 
individuals.

AIM 
To investigate the clinical outcomes of TP53 and CDH1 mutations in GC.

METHODS 
In this study, 202 gastric adenocarcinoma tumor tissues and their corresponding 
normal tissues were collected. A total of 490 genes were identified using target 
capture. Through t-test and Wilcoxon rank-sum test, somatic mutations, 
microsatellite instability, and clinical statistics, including overall survival, were 
detected, compared, and calculated.

RESULTS 
The mutation rates of 32 genes, including TP53, SPEN, FAT1, and CDH1 exceeded 
10%. TP53 mutations had a slightly lower overall occurrence rate (33%). The TP53 
mutation rate was significantly higher in advanced stages (stage III/IV) than that 
in early stages (stage I/II) (P < 0.05). In contrast, CDH1 mutations were 
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significantly associated with diffuse GC. TP53 is related to poor prognosis of advanced-stage tumors; nevertheless, 
CDH1 corresponds to a diffuse type of cancer. TP53 is exclusively mutated in CDH1 and is primarily affected by 
two distinct GC mechanisms.

CONCLUSION 
Different somatic mutation patterns in TP53 and CDH1 indicate two major mechanisms of GC.

Key Words: Gastric cancer; TP53 mutation; CDH1 mutation; Clinical outcome; Somatic mutation; Diffuse gastric cancer
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Core Tip: Mutational separation of TP53 and CDH1 in gastric cancer (GC) reveals their distinct mechanisms. TP53 
mutations are associated with advanced-stage tumors and poor prognoses, whereas CDH1 mutations are associated with 
diffuse GC. This study highlights the heterogeneity of GC and provides insights into potential targeted therapies based on 
specific mutation patterns. Understanding the mutational landscape of TP53 and CDH1 can contribute to personalized 
treatment approaches for patients with GC.
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INTRODUCTION
Gastric cancer (GC) is one of the most severe malignancies globally, with the fifth leading incidence and highest mortality 
rates[1]. Global Cancer Statistics in 2018 revealed that GC was the second most prevalent malignant tumor in China, with 
high morbidity and mortality rates and the third leading cause of cancer-related deaths globally after lung cancer[2,3]. 
Although it remains unclear, the pathogenesis of GC is caused by several factors, including genetic background and the 
external environment[4]. Although standardized treatment for GC is continually improving, its overall incidence and 
mortality rates remain high. The poor prognosis of patients with GC is attributed to limited therapeutic interventions[5,
6]. However, detecting hidden symptoms in the early stages is difficult; hence, most patients are diagnosed at advanced 
stages[7,8]. The current treatment for GC is primarily surgical resection combined with preoperative or postoperative 
adjuvant chemotherapy or radiochemotherapy[5,9]. Chemotherapy remains the primary method for postoperative 
treatment of advanced GC. D2 gastrectomy is the recommended treatment for GC, followed by postoperative adjuvant 
chemotherapy[10]. However, the tumor response rate to postoperative chemotherapy is low, and patients respond 
differently to chemotherapy[11,12]. This difference in the response to chemotherapy among patients occurs because GC is 
a heterogeneous disease that can manifest as differences in gene expression, biological features, and drug sensitivity[13]. 
Studies on the pathogenesis, biological markers, targeted sequencing, and treatment of GC are advancing given the rapid 
developments in molecular biology, genomics, bioinformatics, and high-throughput next-generation sequencing. 
Specifically, advancements in individualized treatment and precision medicine for tumors underscore the need to 
understand the biological characteristics of GC.

The activation of oncogenes or inactivation of tumor suppressor genes caused by somatic gene mutations modulate the 
development of malignant tumors, as shown by in depth research on the molecular basis of GC[14]. Therefore, 
identifying potential driver genes and mutations associated with GC is key to understanding the mechanism of GC 
occurrence and development, as well as in formulating a follow-up treatment scheme. In this study, target-capture 
sequencing was used to sequence 490 genes from 202 gastric adenocarcinoma (GAC) cases and adjacent tissue samples to 
detect somatic mutations.

MATERIALS AND METHODS
Samples
This study enrolled 202 patients with GAC comprising 135 and 67 male and female patients, respectively, who underwent 
surgery at the Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, China, between 
January 1, 2014, and December 31, 2015. Primary GAC tumor tissues and matched non-cancerous (NC) tissues located at 
least 5 cm away from the tumor core were obtained after surgical resection, immediately processed, and stored for 
subsequent use. None of the recruited patients received chemotherapy or radiotherapy before surgery. Histopathological 
diagnosis was performed preoperatively and confirmed surgically based on the World Health Organization Classification 
of Tumors[15]. Tumor stage was defined according to the eighth IASLC (international association for the study of lung 
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cancer)/AJCC (American joint committee on cancer) staging system[16]. Written informed consent was obtained from 
each patient prior to surgery. This study was approved by the Research Ethics Committee of Central South University 
(NO. 2023087), China. All specimens were handled and anonymized according to ethical and legal guidelines.

Experiments
DNA was extracted from the cancer and NC tissues using a customized panel from Roche NimbleGen, Inc. The 
customized panel included the exons and hotspots of 490 genes, with a total length of 1 Mb. An  10 sequencer (Illumina 
Inc.) was used for sequencing in the PE150 mode. All patients underwent curative resection; 27 IA-stage patients did not 
receive comprehensive treatment, 22 IB-stage patients received S1 chemotherapy, and patients with stage II and above 
received SOX chemotherapy. After treatment, the patient follow-ups were conducted via phone calls and online contact.

Sequencing data analysis
Mapping and somatic mutation calling: quality control was performed on raw sequencing data using FastQC[17]; and the 
sequences were trimmed for adapters and low-quality bases using Trimmomatic, version 0.38, HEADCROP:3 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36[18]. The trimmed reads were then aligned to GRCh37/
hg19 using BWA-MEM version 0.7.17[19]. PICARD[20] was used to add read groups and mark the duplicates. The 
Genome Analysis Toolkit version 3.8[21] was used for realignment of the indel area and base quality recalibration. The 
Genome Analysis Toolkit was also used for germline and somatic variant calling with Haplotype Caller and MuTect2, 
respectively. The variants were annotated using ANNOVAR[22].

Microsatellite instability (MSI) detection: Five commonly used MSI sites, BAT25, BAT26, NR21, NR24, and MONO27, 
were used for detection. MSI-high (MSI-H) and MSI-low (MSI-L) were selected if at least two loci between the cancer and 
NC tissues was correspondingly unstable.

Statistical analysis
All statistical analyses were performed using the SPSS software package (version 23.0 (SPSS Inc., Chicago, IL, United 
States) and R [R Core Team (2018). R: Language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL: https://www.R-project.org/.]. Quantitative data are presented as mean ± SD. 
Pearson's Chi-squared test was used to compare the difference among ranked data, whereas the one way analysis of 
variance test was performed to compare the differences among quantitative data. Survival analyses were performed 
using the Kaplan–Meier method and compared using the Wilcoxon log-rank test. P < 0.05 indicated statistically 
significant differences. For survival analysis, overall survival (OS) was defined as the period from the date of pathological 
diagnosis to the date of death or last follow-up. The cause of death in this study was the aggravation of GC.

RESULTS
Sample and sequencing statistics
The average age of the cohort was 55.53 ± 10.25 years, range 26–82 years. Tumor diameters were < 5 cm in 158 patients 
and ≥ 5 cm in 44 patients. There were 39 and 163 cases in the medium-to-high and low differentiation groups, 
respectively. In terms of TNM stage, 94 and 108 patients were classified with stage I/II and III/IV disease, respectively. 
Local lymph node metastasis was detected in 127 patients, and no metastasis was observed in 75 patients.

In all tumor and NC samples, the average sequencing base was 2.17 Gb and 1.19 Gb, and the mean sequencing depths 
were 829 × and 457 × respectively. In the target area, each pair of samples exhibited a mean somatic mutation of 23.1. 
Among all mutations, point mutations constitute the majority[23], of which missense mutations account for the largest 
fraction[24]. Small indels primarily comprise of frameshift mutations. Among the point mutations, the order of mutation 
type sorted by proportion was C > T, followed by T > C, and T > G. Simultaneously, the ratio of C > T mutations is 
related to age. Older patients had a larger ratio of C > T mutations, possibly because of somatic methylation and lifespan. 
All sites were stable between tissues and the samples were microsatellite-stable (MSS).

MSI and mutations
Among the 202 samples, nine MSI-H, 19 MSI-L, and 172 MSS were detected, whereas the MSI states of the remaining two 
samples could not be determined[25-28]. Two MSS samples were filtered out for all single-nucleotide variants under 
standard criteria (variation quality: PASS, location: exon, and mutation frequency > 0.01); thus, 200 samples were used for 
mutation-related analysis.

The tumor mutation burden (TMB) was calculated as the total number of somatic mutations divided by the capture 
size in Mb[29]. The TMB values in the MSI-H and MSI-L samples were significantly higher than those in the MSS samples 
(Wilcoxon rank-sum test, both P < 0.01) (Figure 1). The TMB values were 19.0 and 55.0 in the MSS and MSI samples, 
respectively, with an average of 52.5 and 56.1 for MSI-H and MSI-L, respectively. Nevertheless, no significant difference 
was noted in TMB values between the MSI-H and MSI-L groups[30,31]. The proportion of somatic point mutations in MSI 
samples was significantly higher than that in MSS samples, which is consistent with previous findings[32]. The increase 
in somatic mutations caused by MSI was not statistically significant according to pathological classification (Lauren 
classification) or clinical stage (TNM stage).

Nearly all patients harbored somatic mutations in the target area. The most commonly mutated gene was TP53, as 
previously discovered; however, the mutation rate of TP53 was 33%, which is far lesser than that reported in other studies
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Figure 1 The distribution of tumor mutation burden in microsatellite instability-high, microsatellite instability-low, and microsatellite 
stable groups. Tumor mutation burden (TMB) in both microsatellite instability-high (MSI-H) and microsatellite instability-low (MSI-L) groups were higher than that in 
the microsatellite stable group (p < 0.01), whereas no difference was noted between the MSI-H and MSI-L groups. TMB: Tumor mutation burden; MSI-H: 
Microsatellite instability-high; MSI-L: Microsatellite instability-low; MSS: Microsatellite stable.

[23,26,27,33,34]. In total, 32 genes had mutation rates > 10%, and 10 of these genes (including KMT2B, SPEN, and LRP1B) 
had mutation rates > 20% (Figure 2). Among the MSS and MSI samples, 31.8% (54/170) and 42.8% (12/28), respectively, 
had somatic mutations in TP53, whereas the difference was not significant between the groups (P < 0.3). Moreover, no 
obvious differences in the ratio of gene mutations were noted in the tumor differentiation levels or pathological types.

After co-analyzing the top 15 somatically mutated genes, TP53 did not co-mutate with other genes but was exclusively 
mutated with CDH1. TP53 was the most frequently mutated somatic protein in the GAC and modulated tumorigenesis. 
Co-analysis results suggested that TP53 mutations may be a special molecular type that does not interact with other genes 
during GC occurrence (Figure 3). CDH1 is an important gene associated with GAC. Therefore, further investigations were 
necessary because mutated TP53 and CDH1 may indicate two distinct patterns in the pathogenesis of GAC. Additionally, 
all genes, including FAT1, MGA, and ZFHX3, were co-mutated, except for TP53 and CDH1. Mutations in TP53 and CDH1 
may present different patterns (Figure 4).

Driver genes
The driver genes were identified using OncodriveCLUST in maftools[35], followed by strict additional filtering criteria to 
focus on top driver genes (Figure 3). A total of 59 genes (false discovery rate < 0.05) were detected, of which only seven 
genes, including KMT2B, SPEN, FAT1, MGA, MED12, KIF1B, and ERBB2, overlapped with the top 20 somatically mutated 
genes. Most of the top driver genes, including HOXB13, AKT3, CHEK1, FGFR3, and CALR, were not included in the list of 
somatically mutated genes. Meanwhile, the top mutated genes, including TP53 and CDH1 were not important in the 
driver gene clusters because more regional clusters were identified based on the positions of the gene mutations. Low 
HOXB13 expression is responsible for poor tumor differentiation, metastasis[36], and poor prognosis of GC. AKT3, which 
has a somatic mutation frequency of 7.5%, is an important driver gene. AKT3 is an isoserine/threonine protein kinase that 
regulates TP53 activity through acetylation. CHEK1 (also known as CHK1), a gene involved in the DNA damage 
checkpoint pathway, cooperates with mismatch repair (MMR) deficiency to trigger chromosomal instability in MMR-
deficient colorectal cancer cells[37]. Among the eight samples with CHEK1 mutations, the numbers of MSI-H, MSI-L, and 
MSS were two, two, and four, respectively, which were significantly different from those in the whole cohort (P < 0.05). 
High CALR expression was observed in 20 of 30 patients with GC and was responsible for positive serosal invasion, 
lymph node metastasis, perineural invasion, and poor survival[38,39]; it is a good biomarker of prognosis in GC[40].

Survival analysis
The OS of patients with MSS tumors was not significantly better than that of patients with MSI tumors (P = 0.215), 
whereas in patients with early GC (pT1), the OS of MSS was significantly longer than that of MSI (P = 0.034). The non-
significant difference in OS between patients with MSI tumors and those with MSS tumors conflicts with the findings of 
previous reports. Several GC studies have suggested a positive relationship between MSI-H phenotype, mismatch repair 
deficiency, and better prognosis[41-43]. Although the outcome was not statistically significant, the survival analysis of 27 
patients with stage IA suggested that patients with MSI tumors had a better prognosis than those with MSS tumors, 
whereas the MSS group had a better prognosis than patients with stage IB disease. Retrospective Asian studies confirmed 
the hypothesis that patients with MSS tumors benefit from adjuvant 5-fluorouracil-based chemotherapy, whereas those 
with MSI-H stage II or III GC do not[44-47]. Postoperative adjuvant chemotherapy was administered to patients with 
stage IB and advanced stages. Therefore, we speculated that adjuvant chemotherapy contributed to the differences in OS 
between patients with MSS and those with MSI at different stages.

Survival analysis revealed that somatic mutations in TP53 were significantly correlated with a 5-year OS rate of 52.34% 
and a median survival time of 60.00 mo. Specifically, samples with TP53 somatic mutations had a significantly lower 5-
year OS rate than those without TP53 somatic mutations (39% vs 58%, P = 0.01; Figure 5A). The samples were successfully 
classified based on pathological stage, and TP53 did not affect the OS rate in the early (I/II) or middle-late (III/IV) stages 
(Figure 5B and C). Thus, the TP53 mutation ratio was not associated with the pathological type, and a decrease in the OS 
rate was associated with a high mutation rate of TP53 in middle-late stage cases. The mean OS rate of samples with TP53 
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Figure 2 The mutation type and frequency of the top 20 mutated genes in samples clustered by microsatellite instability groups. TP53 was 
the top mutated gene in gastric adenocarcinoma. MSI: Microsatellite instability; MSI-H: Microsatellite instability-high; MSI-L: Microsatellite instability-low; MSS: 
Microsatellite stable.

Figure 3  Driver genes identified by OncodriveCLUST in maftools.

mutations was lower in diffuse GC than in those without TP53 mutations (30.87 vs 37.49, Wilcoxon P = 0.064). In contrast, 
CDH1 somatic mutations were not significantly associated with OS (63.83% vs 49.36%, P = 0.33; Figure 5D). Among 
patients without TP53 mutations, those with CDH1 mutations appeared to have higher survival rates; however, this 
difference was not significant. Moreover, those with both TP53 and CDH1 mutations had the worst 5-year OS rates (P = 
0.02; Figure 5E). Nine patients had both TP53 and CDH1 mutations, of which one case had the highly differentiated 
intestinal type, whereas the other eight cases had Lauren diffuse GC.

Further investigation of the poorly differentiated diffuse cases led to the identification of 38 TP53 and 36 CDH1 
mutations. Low-differentiation and diffuse GC had a higher percentage of CDH1 somatic mutations, which was 
significantly different from other types of GC. Survival analysis revealed an overall poor prognosis in patients with 
poorly differentiated diffuse GC; the presence of P53 mutations resulted in the worst prognosis, whereas that of CDH1 
had no significant effect.
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Figure 4 The co-occurrence and exclusion mutation relationships from the top 15 mutated genes in the samples. TP53 and CDH1 were 
exclusively mutated with P < 0.1, suggesting two different patterns in the pathogenesis of gastric adenocarcinoma. aP  0.05; bP  0.1.

DISCUSSION
This study analyzed surgical cases between January 2014 and December 2015 at Xiangya Hospital and evaluated survival 
time after treatment. These results are similar to those of other epidemiological studies of GC in China. However, there is 
a lack of large-scale molecular genetic research on GC in China, because most existing studies have obtained specimens 
from Europe, America, Korea, and Vietnam. Our study revealed approximately 24.1 somatic mutations on average in the 
1M capture area of GC samples, corroborating previous studies[23,26,27,33,34]. MSI is associated with a number of 
somatic mutations but may not be directly related to the pathological type and prognosis. The mutation frequencies of 32 
genes, including TP53, KMT2B, SPEN, FAT1, and CDH1, in GC exceeded 10%. Our study provides molecular genetic data 
on Chinese patients with GC.

Our analysis of driver genes differed from that of previous studies in that TP53 and CDH1 were not identified as 
important driver genes. Driver gene mutations are typically increase the net cell growth under specific microenviron-
mental conditions in cells in vivo. TP53 and CDH1 did not co-mutate with other genes, showing unique biological features 
in GC samples.

Other studies have suggested that TP53, a crucial gene associated with GC development, has a somatic mutation rate of 
approximately 50%[27,33,34]. In this study, the overall mutation rate of TP53 was 33%; however, it was significantly 
higher in stages III/IV (41%) than in stages I/II (23%; P < 0.01). The mutation type of TP53 was consistent with that 
reported in previous studies[25-27], mainly single nucleotide mutations, such as C/T and T/C. Mutations located in exon 
5 accounted for approximately 36% of all TP53 mutations, consistent with other studies, hence the overall lower TP53 
mutation rate may be due to the composition of the clinical samples. Somatic mutations occur exclusively in TP53 and 
CDH1. TP53 did not co-mutate with other genes. Therefore, TP53 mutations may represent a unique type of GC tumori-
genesis. Notably, the number and probability of lymph node metastases in patients with P53 mutations have increased, 
which may promote a high incidence of TP53 mutations in stage III/IV GC. Consequently, TP53 mutations modulate 
lymph node metastasis.

CDH1 is closely associated with GC and is the causative gene of diffuse hereditary lung cancer. In diffuse GC, the 
CDH1 mutation rate (25%) was higher than that in the non-diffuse type (11%; P < 0.05), which was consistent with 
previous findings. In contrast to TP53 mutations, CDH1 mutations play an important role in the development of diffuse 
GC through distinct mechanisms. As there is a clear connection between TP53 and tumor development, tumors with poor 
prognosis may be more likely to be in advanced stages. Although they have no direct effect on prognosis, the CDH1 
mutation is a substantial contributor to diffuse GC. TP53 and CDH1 mutations may indicate two different types of GC at 
the molecular level, which warrants further investigation. The Cancer Genome Atlas had 23.5 mutations in this area[23]. 
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Figure 5 Survival analysis revealed that somatic mutations in TP53. A: Patients carrying the TP53 somatic mutation had significantly lower 5-year 
overall survival (OS) than those without the mutation; B and C: TP53 did not affect the OS rate in the early (Ⅰ/Ⅱ, B) or middle-late (Ⅲ/Ⅳ, C) stages; D: CDH1 somatic 
mutation was not significantly related to the OS; E: Patients with both TP53 and CDH1 mutations had the worst 5-year OS rate. OS: Overall survival.
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Moreover, the types and composition of mutations were similar to those reported in previous studies[26,27]. the results 
reported in previous studies[48,49].

CONCLUSION
GC is the third most common malignant tumor in China, and its incidence is much higher than that in Western countries. 
This study provides crucial molecular data on GC in Chinese patients because large-scale Chinese genetic evidence is 
lacking. This study revealed that TP53 and CDH1 mutations affect two important pathways in the occurrence and 
development of GC. The pathogenesis of GC in the Han Chinese population (in the middle and lower reaches of the 
Yangtze River), as well as the diagnosis and treatment of GC, would benefit from our findings. The proportion of MSI 
samples was consistent with that in previous research[30]. The prevalence of MSI-H GC in Asians is commonly < 10% of 
all GC cases[31], which is lower than most of the occurrence rates reported in Western studies.

ARTICLE HIGHLIGHTS
Research background
Gastric cancer (GC) is the third most common malignant tumor in China, and its incidence is much higher than that in 
Western countries. This study provides crucial molecular data on GC in Chinese patients because large-scale Chinese 
genetic evidence is lacking. This study revealed that TP53 and CDH1 mutations affect two important pathways in the 
occurrence and development of GC. The pathogenesis of GC in the Han Chinese population (in the middle and lower 
reaches of the Yangtze River), as well as the diagnosis and treatment of GC, would benefit from our findings.

Research motivation
One of the challenges to the design of effective treatments for GC is heterogeneity, its poses an obstacle for the uniform 
therapy plan irrespective of specific subtypes of tumors in clinical practice.

Research objectives
TP53 and CDH1 have been reported to be closely related to GC; therefore, we aimed to investigate the clinical outcomes 
of TP53 and CDH1 mutations in GC.

Research methods
Two hundred and two primary GC tissues and matched non-cancerous (NC) tissues were sampled via surgery. After 
DNA extraction for cancer tissue and NC tissue, DNA was captured using customized panel from Roche NimbleGen Inc. 
The customized panel included the exons and hotspots of 490 genes with a total length of 1 Mb  10 sequencer (Illumina, 
Inc.).

Research results
The mutation rates of 32 genes exceeded 10% including TP53, SPEN, FAT1, and CDH1 etc. We found that TP53 mutations 
had a slightly lower overall occurrence rate (33%), whereas the mutation type was similar to that reported in other 
studies. The TP53 mutation rate was significantly higher in the advanced stages (stage III/IV) than that in the early stages 
(stage I/II) (P < 0.05). In contrast, we also found that CDH1 mutation is significantly related to diffuse GC. TP53 is related 
to the poor prognosis of advanced-stage tumors; nevertheless, CDH1 corresponds to a diffuse type of cancer. Moreover, 
TP53 was exclusively mutated to CDH1, which is the major reason for the two different GC mechanisms.

Research conclusions
Different somatic mutation patterns of TP53 and CDH1 indicate two major mechanisms underlying GC.

Research perspectives
Understanding the mutational landscape of TP53 and CDH1 would positively affect the pathogenesis of GC in the Han 
Chinese population (in the middle and lower reaches of the Yangtze River), as well as guiding the diagnosis and 
treatment of GC.
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