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Abstract
Genomic instability and inflammation are considered to be two enabling charac-
teristics that support cancer development and progression. G-quadruplex 
structure is a key element that contributes to genomic instability and inflam-
mation. G-quadruplexes were once regarded as simply an obstacle that can block 
the transcription of oncogenes. A ligand targeting G-quadruplexes was found to 
have anticancer activity, making G-quadruplexes potential anticancer targets. 
However, further investigation has revealed that G-quadruplexes are widely 
distributed throughout the human genome and have many functions, such as 
regulating DNA replication, DNA repair, transcription, translation, epigenetics, 
and inflammatory response. G-quadruplexes play double regulatory roles in 
transcription and translation. In this review, we focus on G-quadruplexes as novel 
targets for the treatment of gastrointestinal cancers. We summarize the 
application basis of G-quadruplexes in gastrointestinal cancers, including their 
distribution sites, structural characteristics, and physiological functions. We 
describe the current status of applications for the treatment of esophageal cancer, 
pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and 
gastrointestinal stromal tumors, as well as the associated challenges. Finally, we 
review the prospective clinical applications of G-quadruplex targets, providing 
references for targeted treatment strategies in gastrointestinal cancers.
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Core Tip: G-quadruplexes are widely distributed in the human genome and have many functions. G-quadruplexes play 
double regulatory roles in transcription and translation. We focus on G-quadruplexes as novel therapeutic targets for 
gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their 
distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the 
treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and 
gastrointestinal stromal tumors, as well as the associated challenges. We review prospective clinical applications of G-
quadruplex targets, providing references for targeted treatment in gastrointestinal cancers.
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INTRODUCTION
Gastrointestinal cancers seriously affect the quality of life of patients and are among the cancers with the highest 
incidence and mortality worldwide. There currently remains a lack of effective therapeutic methods for these cancers, 
despite the development of many anticancer strategies. This is mainly because the etiology and molecular mechanisms 
associated with the occurrence and development of many cancer types are unclear, despite tumor immunotherapy and 
molecular targeted therapies having achieved promising results. In the multistep development of various human cancers, 
14 characteristics were summarized as the latest hallmarks of cancer: Sustaining proliferative signaling, evading growth 
suppression signals, avoiding immune destruction, enabling replicative immortality, tumor-promoting inflammation, 
activating invasion and metastasis, inducing or accessing the vasculature, genomic instability and mutation, resisting cell 
death, deregulating cellular metabolism, unlocking phenotypic plasticity, nonmutational epigenetic reprogramming, 
polymorphic microbiomes, and senescent cells[1]. Genomic instability and inflammation have been considered as the two 
enabling characteristics that allow cancer to acquire these hallmarks[2]. Importantly, inflammation itself can induce 
genomic instability[3]. The role of inflammation in the transformation of gastrointestinal cancers, such as gastric, 
intestinal and liver cancers, should not be ignored. Hence, in the future, anticancer strategies targeting genomic instability 
may have potentially broad applications for the treatment of cancer. The molecular and cellular elements affecting 
genomic instability may become effective anticancer targets.

In 1962, the unusual four-stranded helix structures of guanine-rich DNA sequences with a high tendency to self-
assemble into planar guanine quartets (G-quartets) were first reported and named as G-quadruplexes[4]. Afterwards, 
DNA G-quadruplexes were found in telomeres[5], oncogene promoters[6,7], microsatellite fragments[8], and additional 
regions. In 1992, tetraplex formation of nucleotide sequences in the 3’ terminus of the 5s RNA were found in Escherichia 
coli in the presence of K+ solution[9]. Subsequently, > 3000 RNA G-quadruplex component elements in the mRNA 3’ and 
5’ untranslated regions (UTRs)[10,11] and exons[12,13], as well as in other noncoding RNAs[14], were discovered in the 
human genome. As a nucleic acid secondary structure, a G-quadruplex differs from the typical A-, B-, C- or Z- of duplex 
DNA, conventional RNA, and was the supplement to nucleic acid structure type. The crystal or solution structures of 
various DNA or RNA G-quadruplexes have been increasingly resolved, with their physiological functions gradually 
clarified, especially their roles in various forms of cancers, such as breast cancer, osteosarcoma, and cervical carcinoma[3,
15-19]. G-quadruplexes can regulate DNA replication[20,21], repair[22], methylation[23], and gene transcription and 
translation[24], and correlate with genomic instability[3,25]. In this review, we summarize the literature on G-
quadruplexes and their ligands from 1962 to 2023 and describe G-quadruplex characteristics, including the existing sites, 
structural details, and physiological functions, and their potential applications in gastrointestinal cancer therapy. In 
addition, we summarize the challenges and prospects of targeting G-quadruplexes in digestive tumors to potentially 
prevent and treat gastrointestinal cancers.

BASIS OF THERAPEUTIC APPLICATIONS OF G-QUADRUPLEXES IN GASTROINTESTINAL CANCERS
The clinical application value of biological molecules is dependent upon their biological functions, which are affected by 
intracellular distribution, molecular structure and other properties. Therefore, such molecular characteristics form the 
basis for clinical application potential, as shown in Figure 1.

Potential G-quadruplex sites in humans
Potential G-quadruplex structures in the human genome can be predicted via computer analysis by retrieving the pattern 
sequences (G≥3N1-7G≥3N1-7G≥3N1-7G≥3)[26]. They can also be formed with less than three guanines contrary to this dogma
[27]. With the development of G-quadruplex-specific antibodies, fluorescent probes, sequencing technology, and genomic 
mapping, G-quadruplex structures are being increasingly detected and visualized in cells[28-33]. Currently, at least 
700000 potential G-quadruplex structures have been inferred to exist in humans[34-36]. Telomeric DNA was the first 
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Figure 1 Application basis of G-quadruplex targets in gastrointestinal cancers: G-quadruplex characteristics. From the inner ring to the outer 
ring, there are basic structure types, distribution sites and physiological functions of G-quadruplexes.

biologically-related G-quadruplex target investigated in detail[37] and was considered to have the highest abundance of 
potential G-quadruplex structures. The 5000-10000 bp of tandemly repeated sequence (TTAGGG) contained in telomeres 
can fold into a G-quadruplex to regulate telomere maintenance[38,39]. Maintaining its structural stability can help inhibit 
the activity of telomerase and thus prevent the unlimited proliferation of tumor cells[40]. In addition to telomeres, 
genome-wide sequencing analyses have suggested that more than 8000 potential G-quadruplexes are likely enriched in 
promoter regions spanning 1 kb upstream of the transcription initiation sites in humans[41,42]. In the past, close attention 
was paid to proto-oncogene promoter G-quadruplexes, including Kirsten rat sarcoma viral oncogene homologue (KRAS)
[43], HRAS[44], c-MYC[45], c-KIT[46], RET[47], MST1R[48], and others. G-quadruplexes in promoter regions of 
carcinoma-related genes were studied as well, such as B-cell lymphoma 2 (BCL2)[49], hypoxia inducible factor 1 subunit 
alpha (HIF1a)[50], vascular endothelial-derived growth factor (VEGF)[51], platelet-derived growth factor subunit A (
PDGFA)[52], PDGF receptor-β (PDGFR-β)[53], human telomerase reverse transcriptase (hTERT)[54], nuclear factor 
(erythroid-derived 2)-like 2[55], SMARCA4[56], and multidrug resistance protein 1[57]. Recent studies have indicated that 
G-quadruplexes also exist in promoter regions of MYH7β gene and are associated with various myopathies[58], as well as 
in CSTB gene, and are related to progressive myoclonus epilepsy type 1[59]. Moreover, there were G-quadruplex-forming 
sequences (GGGGCC) in intron 1 of the C9orf72 gene, which was the usual hereditary factor of amyotrophic lateral 
sclerosis and frontotemporal dementia[60]. Similar sequences were also found in other genes, for example, (GGCCT) in 
the first intron of NOP56 relevant to spinocerebellar ataxia (SCA36)[61], (CCCCATGGTGGTGGCTGGGGACAG) in the 
coding exon of the PRNP gene indicating Creutzfeldt–Jakob disease[62], TAGGGCGGGAGGGAGGGAA in the first 
intron of the N-myc gene[63], and (GGGT)4 in human microsatellites[8]. Additionally, abundant potential G-quadruplex 
formation sites exist in mRNAs (especially in the 5’ UTRs) or microRNAs. For instance, mRNA G-quadruplexes 
reportedly include VEGF[64], FMR1[65], MMP16[66], transforming growth factor-β (TGFβ2)[10], neuroblastoma RAS viral 
oncogene homolog (NRAS)[67], insulin-like growth factor 2[68], telomere repeat binding factor 2 (TRF2)[69], PIM1[70], 
beta-site amyloid precursor protein cleaving enzyme 1[71] and YY1[72]. G-quadruplex structures have recently been 
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explored in miR-92a[73], miR-1229[74] and miR-1587[75]. G-quadruplexes have also been discovered in immunoglobulin 
switches, microsatellites, and mitochondria genes. However, when and where the potential G-quadruplex structures can 
actually form and exert corresponding physiological functions in vivo depend on environmental conditions, which 
require further investigation.

Structural characteristics of G-quadruplexes
Different from the Watson-Crick base pairing regulation of double-stranded DNA, three to four guanines assemble into a 
G-quartet by Hoogsteen hydrogen-bonding in a square planar platform. The G-quartets then further stack on top of one 
another to form G-quadruplexes, which remain stable by monovalent cations in the central ion channel[76]. Because of 
the different number and spatial arrangement of bases, G-quadruplex structures have obvious polymorphisms. X-ray 
diffraction and high-field nuclear magnetic resonance spectroscopy are two effective methods for understanding the 
crystal and solution structures, which can be categorized as intramolecular or intermolecular G-quadruplexes. An 
intramolecular G-quadruplex is unimolecular and previous studies have confirmed that there are three basic types 
according to the orientation of the G-quartet: Parallel structure, antiparallel structure, and hybrid structure[77]. These 
different structures have varying levels of stability, which may affect their respective functions. Because of the restrictions 
of the external environment and central cation, a G-quadruplex sequence may present multiple configurations. For the 
human telomeric sequence, crystal or solution structural elucidation revealed that in the presence of K+ solution, the G-
quadruplex had parallel, antiparallel, hybrid-2, and hybrid-1 configurations, with an intermediate of two-tetrad[18,78-
81]. However, in the presence of Na+ solution, one unfolded state and three G-quadruplex-related configurations are 
observed, and the structure can interconvert between these forms[82]. KRAS, c-MYC, VEGF, PDGFR-β and HIF1a 
promoter G-quadruplexes take on parallel structures in K+ solution[50,76], BCL2 promoter G-quadruplexes adopt the 
hybrid-2 or parallel conformation in K+ solution[76], and c-KIT promoter sequences can form a parallel or antiparallel G-
quadruplex[83,84]. G-quadruplex structures present in other sites, such as in mRNAs, also conform to these three basic 
structural types. For intramolecular G-quadruplexes, more than two unimolecular G-quadruplex sequences can assemble 
into intermolecular parallel G-quadruplexes[18,58,75].

Physiological functions of G-quadruplexes
G-quadruplexes and DNA replication: Current research supports two seemingly opposing views on how G-
quadruplexes can influence DNA replication: One view suggests that the G-quadruplex motif is necessary for replication 
initiation, while the other argues that a G-quadruplex is an obstacle to replication. Evidence supporting the former view 
is that 70%-90% of replication origins are preceded by a potential G-quadruplex-forming sequence, called the origin G-
rich repeated element, which is 250-300 bp upstream of the replication initiation site in the non-nucleosome region[72,85]. 
Either deleting these elements in several model origins or introducing point mutations that affect G-quadruplex stability 
may reduce replication initiation activity in cells[86]. In addition, G-quadruplexes can recruit replication activators to 
play a role in DNA replication[87]. The latter view also has strong evidence, including that small molecular ligands 
targeting G-quadruplexes can result in DNA damage[88]. Additionally, it was demonstrated that the helicase, chromatin-
remodeling protein ATRX, and human CTC1-STN1-TEN1 complex prevented replication defects by unwinding G-
quadruplexes[89-92]. There were two possible conclusions regarding this argument. First, a G-quadruplex structure 
preferentially formed in the firing origin rather than the licensing origin[93,94]. Second, the negative regulation of DNA 
replication mediated by G-quadruplexes mostly occurred under pathological conditions, such as in the presence of G-
quadruplex ligands or absence of ATRX. The negative effects of G-quadruplexes on DNA may be counteracted by 
unwinding proteins, such as helicase, in wild type cells under undisturbed situation[21].

G-quadruplexes and DNA repair: DNA damage can be triggered by exogenous stimuli, such as physical and chemical 
factors, or endogenous stress, which includes reactive oxygen species (ROS) production, replicative stress, and the 
formation of nucleic acid secondary structure. In addition to telomeres, promoters and transcriptional start sites, G-
quadruplexes are enriched in DNA double-strand break (DSB) sites during mitosis and meiosis, and G-quadruplex 
formation may induce DNA damage and negatively impact effective DNA repair mechanisms[22,95]. However, G-
quadruplexes can sometimes promote certain repair pathways under specific conditions. There are six main pathways 
involved with DSB repair over DNA replication: Homologous recombination (HR), nonhomologous end joining, base 
excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), and translesion synthesis (TLS). One 
model suggested that stabilization of G-quadruplexes can active HR, leading to bypass/repair of G-quadruplex-mediated 
DNA damage[22]. As a sensor for endogenous oxidative damage of DNA, G-quadruplexes may provide feedback to 
drive BER to promote genomic stability under oxidative stress[96]. Zoo1 could assist NER function and regulate the 
selection of DNA repair pathways near G-quadruplex structures[97]. MMR activation was not restricted when G/T and 
G-quadruplex mismatch were in close proximity[98], and the stable G-quadruplex structure could inhibit the activity of 
endonuclease of MutL and indirectly interfere with the MMR process[99].

G-quadruplexes and transcription and translation: Potential G-quadruplex forming-sequences are frequently enriched 
in DNA promoter regions and the 3’ or 5’ UTRs, providing an opportunity for regulation of transcription or translation. 
For highly expressed cancer-related genes, proteins such as nucleolin and small molecular ligands that promote G-
quadruplex formation can induce transcriptional repression. However, proteins that unwind G-quadruplexes such as the 
nucleoside diphosphate kinase NM23H2, poly ADP-ribose polymerase and RecQ family helicase can lead to transcrip-
tional activation of target genes[100,101]. Moreover, putative G-quadruplex-forming sequences were also found at the 
docking sites of transcription factors SP1 and c-MYC associated zinc-finger protein (MAZ), which may help recruit SP1 
and MAZ and facilitate transcription in cancer progression[102,103]. In noncancerous cells, studies have shown that G-
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quadruplexes can directly interfere with mitochondrial genome replication, transcription, and respiratory function[104]. 
Therefore, a G-quadruplex is a key factor that can regulate gene transcription. Similarly, RNA G-quadruplexes can 
control translation. For instance, oxymatrine inhibited the translation of VEGFA mRNA in human cervical cancer cells by 
selectively binding to the G-quadruplex structure in VEGFA 5’ UTRs[105]. Additionally, DEAH box polypeptide 36 
(DHX36) can bind to 5’ UTRs G-quadruplexes and control translation to promote muscle stem cell regeneration[106]. 
Thus, G-quadruplexes play significant roles in gene transcription and translation.

G-quadruplexes and epigenetic modifications: C-5 methylation of cytosine by DNA methyltransferase DNMT1, 
DNMT3A and DNMT3B is a key DNA epigenetic modification in mammalian development and disease. About 90% of 
CpGs can be highly methylated, but CpG islands (CGIs), found in dense guanine-cytosine-rich regions, largely lack 
methylation and are universally present in the promoter regions of genes[107]. CGIs can be progressively methylated 
during certain biological events, such as aging[108] and cancer[109], but the underlying regulatory mechanisms are not 
fully clear. Studies have shown that G-quadruplex structures are present in CGIs and are closely related to reduce levels 
of CGIs methylation in the human genome[110]. G4-chromatin immunoprecipitation sequencing (G4-ChIP-seq) analysis 
indicated that G-quadruplex structures were colocalized with DNMT1 and inhibited methylation by inhibiting activity of 
this enzyme[110]. Recent studies have shown that the methylation efficiency decreased with increasing G-quadruplex 
stability, and the degree of methylation can be controlled by adjusting the G-quadruplex topology[111].

In addition to DNA methylation, histone modification is also an important epigenetic regulation. The local conform-
ations and biological functions of G-quadruplexes can be regulated by their specific binding proteins. For example, RNA 
G-quadruplexes and RNA-binding proteins participate in telomere maintenance and transcriptional regulation through 
histone modifications. G-quadruplex RNA-binding proteins, such as translocated in liposarcoma/fused in sarcoma and 
TRF2, can promote the trimethylation of histone H3 at lysine 9 in telomere histones through G-quadruplex telomeric 
repeat-containing RNA (TERRA)[112,113]. G-quadruplex TERRA possibly regulates methylation and demethylation of 
histones in telomeric DNA, and can act as a noncompetitive inhibitor to suppress lysine specific histone demethylase-
mediated histone demethylation[114]. Polycomb repressive complex 2 (PRC2) interactions with TERRA can catalyze the 
trimethylation of histone H3 at lysine 27 (H3K27me3), and G-quadruplex RNA can specifically prevent PRC2 from 
interacting with genes in human and mouse cells to block methylation at H3K27[115]. These mechanisms work together 
to maintain telomere length and chromatin function.

G-quadruplexes and genomic instability: DNA is vulnerable to damage from various types of endogenous and 
exogenous stimuli. This can hinder DNA replication and induce genomic instability, which includes point mutations, 
insertions, deletions, inversions, translocations, expansions/contractions of repeated sequences, gross chromosomal 
rearrangements, aneuploidy and other characteristics. Such genomic instability is often observed in cancer and can be 
induced by G-quadruplexes. G-quadruplexes are enriched at regions of base substitutions, insertion-deletion mutations, 
and chromosome translocation breakpoints that are associated with a variety of human cancers, such as colon cancer, and 
is the main inducing factor of carcinogenic transformation[116-118]. The instability of potential G-quadruplex-forming 
sequences increases in a transcription-dependent manner, as transcription can provoke genomic instability of G-
quadruplexes by releasing single-stranded DNA, which is easy to fold into secondary structures[117,119].

G-quadruplex and inflammation: G-quadruplexes are correlated with inflammation. Studies have shown that there was 
a high frequency of potential G-quadruplex formation sequences in the promoter regions of many inflammatory factors, 
such as tumor necrosis factor, TGF-β, interleukin (IL)-6, IL-12, IL-17, the XC and TAFA family chemokines, and β-chain 
family cytokines[120]. G-quadruplexes are also distributed in the binding sites of transcription factors involved in inflam-
matory and immune processes, including nuclear factor nuclear factor kappa B1, interferon regulatory factor 5, 
transcription factor p65, transcription factor RelB, and nuclear factor of activated T cells 5[120]. In addition, genes 
containing G-quadruplex structures that can regulate and participate in inflammatory-related processes have been 
identified through experimental studies[121]. G-quadruplexes can trigger inflammatory reactions by upregulating 
proinflammatory cytokines, making these structures a marker of increased inflammation and a contributor to inflam-
matory diseases development[121]. However, another study suggested that G-quadruplexes can interfere with switch-
like recombination in B cells to alleviate allergic inflammation[122]. Collectively, this evidence suggests that G-
quadruplexes may be a potential target for treating inflammation-related diseases.

Ion and molecule recognition functions of G-quadruplexes: The stability of G-quadruplex structure needs to be 
maintained by the monovalent cations located in the central ion channel, allowing the G-quadruplex sequence to 
specifically recognize monovalent cations such as K+ and Na+. In addition, because the specific G-quadruplex-forming 
sequence can fold into a special conformation and the fluorescence emission of some small molecules is significantly 
enhanced after binding with G-quadruplexes, G-quadruplexes could be used to identify small molecular ligands 
(berberine, porphyrin, and more) or proteins (thrombin, nucleolin, and more) that can specifically bind to them[16,57,123,
124] or assist imaging. Therefore, G-quadruplexes have been widely used as recognition elements to construct biosensors 
for detecting targeting ions and molecules, such as tumor biomarkers, in tumor diagnosis, as well as targeting agents or 
drug carriers of anticancer drug delivery systems for tumor treatment[125,126]. In such applications, the G-quadruplex 
sequences are also called aptamers.
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APPLICATION OF G-QUADRUPLEX TARGETS IN GASTROINTESTINAL CANCER THERAPIES
The above complex biological functions of G-quadruplexes imply that they have broad application prospects for the 
diagnosis and treatment of gastrointestinal cancers. The role of a G-quadruplex as a recognition element in the molecular 
diagnosis of gastrointestinal cancers will not be discussed in this review. The application of G-quadruplexes in therapy is 
mainly discussed from two perspectives: (1) The therapeutic effect of small molecule ligands and biomolecules targeting 
G-quadruplexes to regulate gene transcription; and (2) The therapeutic effect of G-quadruplex sequences for molecular 
recognition functions.

Application of small molecule ligands or biomolecules targeting G-quadruplexes in the treatment of gastrointestinal 
cancers
Esophageal cancer: Esophageal cancer (EC) is a gastrointestinal disease with high mortality rates. Surgery is the first 
choice of treatment for resectable EC cases, but neoadjuvant chemotherapy can improve the 5-year survival rate without 
increasing postoperative complications. Targeting G-quadruplexes may provide a new perspective for treating EC, 
although relevant research on this is currently limited. The telomere is an early G-quadruplex target. The G-quadruplex 
ligand 2,6-bis[3-(N-piperidino) propionamido] anthracene-9,10-dione, which is also considered to be a telomerase 
inhibitor, can shorten telomeres and exert antiproliferative and proapoptotic effects in both BIC-1 and SEG-1 EC cell lines
[127]. A recent study found that zinc benzoate terpyridine complexes (1-6) in combination with G-quadruplex sequence 
(G2T4G2CAG2GT4G2T) resulted in various degrees of antiproliferative effects in the EC cell line Eca-109[128] (Table 1). 
Hence, further exploration of a G-quadruplex-related treatment strategy in EC is needed.

Pancreatic cancer: Pancreatic cancer (PC) is a refractory tumor disease with poor prognosis among cancers. About 97% of 
PC cases are accompanied by alterations of genes and 90% have KRAS oncogene mutations, which are essential for 
initiation of pancreatic ductal adenocarcinoma. Because KRAS can drive oncogene addiction, inhibiting gene mutation 
and downregulating gene expression are reasonable ways to block PC progression. Many attempts have been paid to 
target KRAS oncogenes, but clinically useful therapies are still limited. The mutant KRAS protein has attracted much 
attention, causing other approaches involving targeting KRAS transcription to not be fully explored. Additionally, 
telomere, heat shock protein 90 (HSP90), c-MYC, Bcl-2 and others are important genes that affect cancer cell fate. 
Therefore, inhibiting the transcription of PC-related genes may be effective. There are G-quadruplex configurations in 
telomere and the promoter regions of HSP90, KRAS, c-MYC and Bcl-2, that are potential targets. Stable G-quadruplex 
structure usually acts as an obstacle to gene transcription. Small molecular ligands that stabilize G-quadruplex 
conformation can exhibit clear anticancer effects in PC.

Naphthalene diimide compounds are part of an important ligand set. A series of tetrasubstituted naphthalene diimide 
ligands tended to make telomeric G-quadruplexes fold into a parallel conformation, preventing binding of human 
protection of telomeres 1 and topoisomerase IIIα with telomeric DNA, triggering cytotoxicity in multiple PC cell lines
[129]. Tetrasubstituted naphthalene diimide derivatives (compounds 3d) retain high affinity to human telomeric G-
quadruplexes, upregulate DNA damage responsive genes such as CDKN1A and DDIT3, downregulate telomere 
maintenance genes such as POT1 and PARP1, and induce cellular senescence[130]. Tetrasubstituted naphthalene diimide 
isomer ligands (compounds 2-5) are more inclined to stabilize telomeric G-quadruplex structure and improve antiprolif-
erative potency[131]. Tetrasubstituted naphthalene diimide derivative (MM41) combines with and stabilizes G-
quadruplex structure and downregulates expression levels of BCL-2 and KRAS to promote apoptosis and decrease tumor 
growth of MIA-Pa-Ca2 xenografts[132,133]. Tetrasubstituted naphthalene diimide derivative (CM03) causes DNA 
damage and promotes the presence of nuclear G-quadruplexes in PANC-1 cells; inhibits expression of GLI4, PLXNA1, 
PRKCZ and MAPK11; partitions PARD6A, and CBFA2T3 in MIA PaCa-2 and PANC-1 cells; and decreases tumor growth 
of MIA-Pa-Ca2 xenografts[133-135]. Tetrasubstituted naphthalene diimide derivative (SOP1812) was verified to have 
antiproliferative activity by combining with hTERT and telomere G-quadruplexes[135]. Another naphthalene diimide 
derivative (BMSG-SH3) decreases telomerase activity, inhibits HSP90 expression, and reduces tumor growth of MIA-Pa-
Ca2 xenografts by 50% through maintaining the stability of telomere and HSP90 promoter G-quadruplex structures[136].

Porphyrin compounds are part of another important ligand set. A cationic alkyl-substituted porphyrin compound C14 
binds to the KRAS promoter G-quadruplex, protoxidizes the guanines, suppresses gene expression and eventually leads 
to growth inhibition of PC cell line PANC-1 under photosensitive conditions[137]. Alkyl cationic porphyrins can promote 
apoptosis in vitro and restrict metabolism and tumor growth in vivo by targeting G-quadruplexes of KRAS and NRAS 
mRNAs[138]. Porphyrin derivative octaacetyl and tetrakis can both induce apoptosis and block metastasis by inhibiting 
epithelial to mesenchymal transition through stabilizing KRAS promoter G-quadruplexes and downregulating KRAS 
expression levels[139], while porphyrin derivative (5Me) may regulate cell proliferation and cell cycle progression by 
interacting with telomere, Bcl-2, c-MYC and KRAS G-quadruplexes[140]. Previous studies have shown that TMPyP4 can 
bind to intermolecular G-quadruplexes to arrest cell proliferation and induce both cellular senescence and apoptosis in 
MIA PaCa-2 cells[140].

Different from TMPyP4, telomestatin can bind to intramolecular G-quadruplexes and control cell proliferation, 
senescence and apoptosis in MIA PaCa-2 cells[141]. The benzophenanthridine alkaloid nitidine combines with the KRAS 
promoter G-quadruplex and stabilizes its structure, further downregulating KRAS expression levels and inducing 
cytotoxicity in AsPC-1, BxPC-3, MIA PaCa-2, and PANC-1 cells[142]. 4,11-bis(2-Aminoethy-llamino)anthra[2,3-b]furan-
5,10-dione(2a),11-bis(2-aminoethylamino)anthra[2,3b]thiophene-5,10-dione (2b) stabilizes KRAS RNA G-quadruplexes, 
inhibits its translation, and induces apoptosis and growth inhibition of PANC-1 cells[143]. Unsymmetrical bisacridines 
derivatives can inhibit the proliferation of cancer cells in vitro and in vivo by increasing the stability of telomere, c-MYC 
and KRAS G-quadruplexes[144]. Copper(ii) l/d-valine-(1,10-phen) complexes (complex 1a, 1b) induce cytotoxicity of 
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Table 1 Overviews of investigations on the effects of small molecule ligands or biomolecules based on G-quadruplex targets in 
esophageal cancer

Ligands/biomolecules Cell 
lines

Targeting 
gene/G-
quadruplex

Effects on G-
quadruplex

Effects on 
genes Anticancer phenotypes Ref.

2,6-bis[3-(N-Piperidino) 
propionamido] anthrace- ne-9,10-
dione

BIC-1, 
SEG-1

Telomere Not detected Shortened 
telomeres

Inhibited telomerase activity, arrested 
cell proliferation, reduced colony 
number and size, and promoted cell 
apoptosis

[127]

Zinc benzoate erpyridine 
complexes (1-6)

Eca-
109

G2T4G2CA, 
G2GT4G2T

Bound with G-
quadruplex

Not detected Inhibited cell proliferation [128]

BxPC3 and AsPC1 cells from its affinity with telomeric G-quadruplexes[145]. CX-5461, the ligand of telomere, c-MYC and 
c-kit G-quadruplexes, also exhibits antiproliferative activity, and phase I/II clinical trials of CX-5461 as an anticancer drug 
have been launched[146,147]. A small molecular fluoroquinolone derivative CX-3543 (quarfloxin) can decrease tumor 
growth of MIA PaCa-2 xenografts by disrupting nucleolin/G-quadruplex complexes on rDNA and inhibiting rRNA 
synthesis[148,149]. FDA-approved antihelminthic pyrvinium pamoate inhibits mitochondrial RNA transcription and 
tumor growth by selectively binding to mitochondrial G-quadruplexes[150]. NSC 317605 and novel indoloquinolines 
derived from it show KRAS G-quadruplex-dependent cytotoxicity in PC cell lines[151]. Two sets of quinazoline-
pyrimidine derivative ligands have been shown to prevent tumor growth via targeting telomere, c-MYC, c-kit, KRAS and 
BCL-2 G-quadruplexes[152].

Some small molecules can play anticancer roles in PC mainly by stabilizing G-quadruplex structures to inhibit gene 
transcription. However, in addition, some proteins can promote PC progression by destabilizing G-quadruplexes to 
support gene transcription. For example, integrin linked kinase (ILK) can stimulate KRAS expression via destabilization of 
G-quadruplexes mediated by hnRNPA1 in the promoter. This in turn affected ILK expression levels, with transcriptional 
activation mediated by E2F1. This has been called the KRAS-E2F1-ILK-hnRNPA1 regulatory loop, which can result in 
aggressive phenotypes in the tumor microenvironment[153-155]. Under oxidative stress conditions, poly (ADP-ribose) 
polymerase 1 (PARP-1) is recruited and binds to KRAS promoter G-quadruplexes, which favors the recruitment of MAZ 
and hnRNPA1 to the KRAS promoter by activating a ROS-G-quadruplex-PARP-1 axis. This ultimately results in 
stimulation of KRAS transcription[156]. Different from this mechanism, the G-quadruplex-binding protein apurinic/
apyrimidinic endonuclease 1 can also bind to KRAS G-quadruplexes. However, it maintains the structural stability and 
recruits MAZ to promote KRAS upregulation in vivo and in vitro[157]. Moreover, polypurine reverse Hoogsteen hairpins 
(PPRHs) can suppress gene transcription and cell proliferation by promoting the formation of KRAS and c-MYC G-
quadruplexes in PC cells[158,159].

In summary, the G-quadruplex targets of PC include KRAS, KRAS mRNA, telomere, HSP90, hTERT, Bcl-2, c-MYC, and 
mitochondrial G-quadruplexes, the regulatory functions of which involve transcription and translation. Proteins that can 
promote oncogene transcription through G-quadruplexes are also expected to become potential anticancer targets. All 
details are described in Table 2.

Hepatocellular carcinoma: Different from the genetic pathogenesis of PC, specific mutations in proto-oncogenes that can 
induce hepatocellular carcinoma (HCC) have not been identified. However, anticancer strategies for HCC involving 
oncogene G-quadruplexes are still being explored. At present, G-quadruplex ligands targeting c-MYC, c-kit and HERC5 
have been synthesized and verified for potential application in HCC treatment. Platinum (II) complexes with tridentate 
ligands, prolinamide derivatives containing triazole, a series of novel 9-O-substituted-13-octylberberine derivatives and 
novel 9-N-substituted-13-alkylberberine derivatives were all tested and found to have good antiproliferative activities in 
HepG2 cells, mainly from their good affinity with c-MYC promoter G-quadruplexes and their improved structural 
stability[160-163]. A series of thiazole orange derivatives were synthesized to effectively bind to telomeric G-
quadruplexes, which can stabilize the structures and exhibit cytotoxicity in HCC cell lines[164]. The peptidomimetic 
ligands showed high affinity to c-kit1 G-quadruplexes also exhibit antiproliferative and proapoptotic properties in HepG2 
cells[165]. A 7,11-disubstituted quinazoline derivative HZ-6d targeting HERC5 G-quadruplexes showed anticancer effects 
in vivo and in vitro through downregulation of HERC5 expression[166].

Viral hepatitis is a primary cause of HCC. Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections can develop 
into chronic hepatitis and then cirrhosis, eventually leading to HCC. Therefore, early intervention is an effective strategy 
for delaying HCC progression. In recent years, G-quadruplexes have become a potential target for antiviral therapy. RNA 
helicase dead box polypeptide 5 can facilitate mRNA translation of STAT1 by unwinding the RNA G-quadruplex 
structure at the 5’ end of the 5’ UTR, subsequently stimulating the antiviral effects of interferon-α in HBV-infected 
hepatoma cells[167]. Additionally, cellular nucleolin can directly interact with viral core RNA G-quadruplexes, thereby 
suppressing the replication and expression of wild-type HCV[168]. All details are described in Table 3.

Gastric cancer: Gastric cancer (GC) ranked third worldwide in malignant tumor mortality rates in 2020. Most patients 
had late stage disease at diagnosis. For advanced GC, chemotherapy is the preferred option, but the associated adverse 
effects should not be ignored. It is necessary to seek new methods to treat GC, which could include targeted drug 
therapies based on G-quadruplexes. Small molecules selectively binding to c-kit, telomere and BCL-2 G-quadruplexes 
have been found to antagonize GC. For example, benzo[a]phenoxazines and quinazolone derivatives display cytotoxicity 
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Table 2 Overviews of investigations on the effects of small molecule ligands or biomolecules based on G-quadruplex targets in 
pancreatic cancer

Ligands/biomolecules Cell lines Targeting gene/G-
quadruplex

Effects on G-
quadruplex Effects on genes Anticancer 

phenotypes Ref.

Tetrasubstituted naphthalene 
diimide ligands

PANC-1, 
MIA PaCa-
2, HPAC, 
BxPc-3

Telomere Induced 
formation of a 
parallel G-
quadruplex

Inhibited the binding 
of hPOT1 and 
topoisomerase IIIα to 
telomeric DNA

Cytotoxicity [129]

Tetrasubstituted naphthalene 
diimide derivatives 
(compounds 3d)

MIA PaCa-2 Telomere Retained high 
affinity to 
human 
telomeric G-
quadruplex

Upregulated some 
DNA damage 
responsive genes, 
downregulated some 
telomere 
maintenance genes

Induced cellular 
senescence but did not 
inhibit telomerase 
activity

[130]

Naphthalene diimide isomer 
ligands (compounds 2-5)

MIA PaCa-
2, PANC-1

HSP90 Stabilized G-
quadruplex 
structure

Not detected Inhibited cell prolif-
eration

[131]

Tetrasubstituted naphthalene 
diimide derivative (MM41)

MIA PaCa-2 BCL-2, K-RAS Bound and 
stabilized G-
quadruplex 
structure

Downregulated 
expression of BCL-2, 
K-RAS

Promoted cell apoptosis, 
decreased tumor growth 
of MIA-Pa-Ca2 
xenografts

[132]

Tetrasubstituted naphthalene 
diimide derivative (CM03)

MIA PaCa-
2, PANC-1

Not detected Increased 
presence of 
nuclear G-
quadruplex

Induces DNA 
damage, downreg-
ulated expression of 
Gli4, PLXNA1, 
PRKCZ, MAPK11, 
PARD6A, CBFA2T3

Decreased tumor 
growth of MIA-Pa-Ca2 
xenografts

[133-135]

Tetrasubstituted naphthalene 
diimide derivative (SOP1812)

MIA PaCa-
2, PANC-1, 
Capan-1, 
BXPC-3

hTERT, telomere Had affinity 
with G-
quadruplex

Downregulated 
expression of 
WNT5B, DVL1, 
AXIN1, APC2, GLI1, 
MAPK11, BCL-2, 
hTERT

Inhibited cell prolif-
eration, reduced MIA 
PaCa-2 xenograft 
growth

[135]

Tetrasubstituted naphthalene 
diimide derivative (BMSG-
SH3)

MIA PaCa-2 HSP90 Stabilized G-
quadruplex 
structure

Not detected Reduced telomerase 
activity and HSP90 
expression, 50% 
decreased tumor growth 
of MIA-Pa-Ca2 
xenografts

[136]

Cationic alkyl-substituted 
porphyrin compound C14

PANC-1 KRAS Bound with G-
quadruplex and 
protoxidized 
the guanines

Downregulated 
expression of KRAS

Induced cell growth 
arrest

[137]

Alkyl cationic porphyrins MIA PaCa-
2, PANC-1

KRAS mRNA, NRAS 
mRNA

Bound G-
quadruplex

Downregulated 
expression of KRAS, 
NRAS only if 
photoactivated

Activated apoptosis, 
reduced the metabolic 
activity of pancreatic 
cancer cells and the 
growth of a PANC-1 
xenograft

[138]

Porphyrin derivative 
(Octaacetyl)

PANC-1, 
MIA PaCa-2

KRAS Bound and 
stabilized G-
quadruplex

Downregulated 
expression of KRAS

Cytotoxicity, induced 
apoptosis, blocked 
metastasis by inhibiting 
epithelial to 
mesenchymal transition

[139]

Porphyrin derivative (Tetrakis) PANC-1, 
MIA PaCa-2

KRAS Bound and 
stabilized G-
quadruplex

Downregulated 
expression of KRAS

Cytotoxicity, induced 
apoptosis, blocked 
metastasis by inhibiting 
epithelial to messen-
chymal transition

[139]

Porphyrin derivative (5Me) PANC-1 Telomere, Bcl-2, c-MYC
, KRAS

Bound and 
stabilized G-
quadruplex

Not detected Inhibited cell prolif-
eration, arrest G2/M 
phase cell cycle

[140]

TMPyP4 MIA PaCa-2 Intermolecular G-
quadruplex

Not detected Shortened telomeres Cytotoxicity, arrested 
cell proliferation, 
induced anaphase 
bridges, cellular 
senescence and 
apoptosis

[141]
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Telomestatin MIA PaCa-2 Intramolecular G-
quadruplex

Not detected Shortened telomeres Cytotoxicity, arrested 
cell proliferation, and 
induced cellular 
senescence and 
apoptosis

[141]

Nitidine AsPC-1, 
BxPC-3, 
MIA PaCa-
2, PANC-1

KRAS Bound and 
stabilized G-
quadruplex 
structure

Downregulated 
expression of KRAS

Cytotoxicity [142]

4,11-bis(2-Aminoethy- 
llamino)anthra[2,3-b]furan-
5,10-dione(2a),11-bis(2-
aminoethylamino) 
anthra[2,3b]thiophene-5,10-
dione (2b)

PANC-1 KRAS mRNA Bound and 
stabilized G-
quadruplex

Inhibited translation 
of KRAS

Induced apoptosis, 
inhibited cell growth 
and colony formation

[143]

Unsymmetrical bisacridines 
derivatives

PANC-1, 
MIA PaCa-
2, BXpC-3, 
AsPC-1, 
Capan-2

Telomere, c-MYC, 
KRAS

Bound and 
stabilized G-
quadruplex

Not detected Inhibited cell prolif-
eration, reduced PANC-
1 and MIA PaCa-2 
xenograft growth in vivo

[144]

Copper(ii) l/d-valine-(1,10-
phen) complexes (complex 1a, 
1b)

BxPC3, 
AsPC1

Telomere Had affinity 
with G-
quadruplex

Not detected Cytotoxicity [145]

CX-5461 (Pidnarulex) MIA PaCa-
2, PANC-1

Telomere, c-MYC, c-kit Bound with G-
quadruplex

Not detected Inhibited cell prolif-
eration

[146,147]

CX-3543 (Quarfloxin) MIA PaCa-2 Nucleolin/ribosomal 
DNA G-quadruplex 
complexes

Disrupts 
nucleolin/G-
quadruplex 
complexes on 
ribosomal DNA

Inhibited rRNA 
synthesis

Inhibited proliferation, 
inhibited Pol I 
transcription, induced 
apoptosis, decreased 
tumor growth of MIA 
PaCa-2 xenografts

[148,149]

Antihelminthic pyrvinium 
pamoate

PANC-1, 
Capan-1, 
HS766T, 
CFPAC, 
MIA PaCa-2

Mitochondrial DNA Bound G-
quadruplex

Inhibited 
transcription of 
mitochondrial RNA

Inhibited cell viability, 
mitochondrial 
pathways, tumor 
growth of MIA PaCa-2 
xenografts

[150]

NSC 317605 and novel indolo-
quinolines

AsPc1, 
PANC1, 
BxPc3, MIA 
PaCa-2

c-MYC, KRAS Bound and 
stabilized G-
quadruplex

Downregulated 
expression of KRAS

Cytotoxicity [151]

Quinazoline-pyrimidine 
derivatives

Tumor-
naïve 
pancreatic 
stellate cells

Telomere, c-MYC, c-kit, 
KRAS, BCL-2

Bound and 
stabilized G-
quadruplex

Not detected Inhibited tumor growth [152]

hnRNPA1 and integrinlinked 
kinase

AsPC-1, 
PANC-1, 
MIA PaCa-
2, Capan-2

KRAS Destabilized G-
quadruplex

Stimulated 
transcription of 
KRAS

Promoted KRAS-E2F1-
ILK-hnRNPA1 circuitry, 
tumor growth and 
aggressive phenotypes

[153-155]

Poly [ADP-ribose] polymerase 
1

PANC-1 KRAS Destabilized G-
quadruplex

Stimulated 
transcription of 
KRAS

Activated a ROS-G-
quadruplex-PARP-1 axis

[156]

Apurinic/apyrimidinic 
endonuclease 1

PANC-1, 
BxPc3, MIA 
PaCa-2

KRAS Bound and 
stabilized G-
quadruplex

Upregulated 
expression of KRAS

Did not sensitize 
pancreatic cancer cells to 
chemotherapeutic drugs 
in vitro and in vivo

[157]

Polypurine reverse Hoogsteen 
hairpins

AsPc-1, MIA 
PaCa-2

KRAS, c-MYC Bound and 
stabilized G-
quadruplex

Inhibited 
transcription of 
KRAS and c-MYC

Inhibited cell prolif-
eration

[158,159]

hPOT1: Human protection of telomeres 1; ILK: Integrinlinked kinase; BCL-2: B-cell lymphoma 2; KRAS: Kirsten rat sarcoma viral oncogene homologue; 
HSP90: Heat shock protein 90; hTERT: Human telomerase reverse transcriptase; NRAS: Neuroblastoma RAS viral oncogene homolog; ROS: Reactive 
oxygen species.

effects in HGC-27 cells by interacting with c-kit promoter G-quadruplexes and inhibiting gene transcription, while a 1,10-
phenanthroline derivative causes DNA damage, telomere dysfunction, autophagy, and antitumor effects in AGS cells by 
stabilizing telomere, c-kit and BCL-2 G-quadruplexes[169-171]. Use of G-quadruplex antibody confirmed that the 
targeting regulation could help suppress GC[172]. All details are described in Table 4.
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Table 3 Overviews of investigations on the effects of small molecule ligands or biomolecules based on G-quadruplex targets in 
hepatocellular carcinoma

Ligands/biomolecules Cell lines
Targeting 
gene/G-
quadruplex

Effects on G-
quadruplex

Effects on 
genes Anticancer phenotypes Ref.

Platinum(II) complexes with 
tridentate ligands

HepG2 c-MYC Bound and 
stabilized G-
quadruplex

Inhibited c-
MYC 
expression

Cytotoxicity [160]

Prolinamide derivatives 
containing triazole

HepG2 c-MYC Bound and 
stabilized G-
quadruplex

Inhibited c-
MYC 
expression

Cytotoxicity [161]

A series of novel 9-O-
substituted-13-octylberberine 
derivatives

HepG2, Sk-Hep-
1, Huh-7

c-MYC Bound and 
stabilized G-
quadruplex

Not detected Cytotoxicity, blocked cell 
cycle, induced apoptosis, 
inhibited tumor growth of H22 
xenografts

[162]

Series of novel 9-N-substituted-
13-alkylberberine derivatives

HepG2, Sk-Hep-
1, Huh-7, Hep3

c-MYC Bound and 
stabilized G-
quadruplex

Not detected Cytotoxicity, blocked cell 
cycle, induced apoptosis, 
inhibited tumor growth of H22 
xenografts

[163]

Thiazole orange derivatives HepG2 Telomere Bound and 
stabilized G-
quadruplex

Not detected Cytotoxicity [164]

Peptidomimetic ligands HepG2 c-kit1 Had high affinity 
with G-
quadruplex

Not detected Inhibited cell proliferation, 
induced apoptosis

[165]

A 7, 11-disubstituted 
quinazoline derivative HZ-6d

HepG2, SMMC-
7721

HERC5 Bound and 
stabilized G-
quadruplex

Inhibited 
HERC5 
expression

Inhibited cell growth, 
migration, induced apoptosis, 
suppressed tumor growth of 
SMMC-7721 xenografts

[166]

DDX5 HepG2, Huh7, 
Snu387, Snu423, 
HepaRG, 
HepAD38

STAT1 mRNA Unwound G-
quadruplex

Promoted 
translation of 
STAT1

Upregulated expression of 
STAT1 and enhanced IFN-α 
mediated antiviral effects

[167]

Nucleolin Huh7.5.1, Huh7.5 Viral core RNA, 
G-quadruplex

Directly 
interacted with 
G-quadruplex

Inhibited viral 
RNA 
replication

Suppressed wild-type viral 
replication and expression

[168]

IFN: Interferon.

Colorectal cancer: Colorectal cancer (CRC) is a digestive tract disease with high morbidity and mortality. KRAS 
mutations are present in about 50% of CRC patients. Gene-targeted therapy is a promising direction for treating CRC. 
Currently, the potential G-quadruplex gene targets being studied in CRC include telomere, c-MYC, KRAS and c-kit. For 
the telomeric G-quadruplex ligands, BRACO-19 leads to rapid growth inhibition of flavopiridol-resistant cells[173]; 3,11-
difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]-acridinium methosulfate (RHPS4), as well as RHPS4-derivatives, induces 
DNA damage and antiproliferative activity, stabilizes topoisomerase (TOPO) I, and displays cytotoxic and synergistic 
anticancer effects with TOPO1 inhibitors in CRC cell lines[174-177]. A series of anthracene derivatives substituted with 
one or two 4,5-dihydro-1H-imidazol-2-yl-hydrazonic groups stabilize G-quadruplexes to different degrees, inhibit 
telomerase activity, and mediate cytotoxicity[178]. EMICORON cause telomere damage and block cell proliferation and 
tumor growth of a patient-derived tumor xenograft model[179,180]. Chromene derivatives, the binders of TERRA G-
quadruplexes, have cytotoxic effects in HT29 cells[181]. For the ligands targeting c-MYC G-quadruplexes, TMPyP4-
mediated stabilization of the mutated G-quadruplex reinstate c-MYC G-quadruplex structure and inhibit its gene 
expression[182]. CX3543 (quarfoxin) exhibit proapoptotic and antiproliferative effects by downregulating c-MYC and 
CCAT1 expression levels in vivo and in vitro[183]. CX-5461 (pidnarulex) induces DNA damage and inhibits tumor growth 
in vivo by binding to telomere, c-MYC and c-kit G-quadruplexes[184]. Dihydrochelerythrine and its derivatives improve 
the stability of c-MYC and c-kit G-quadruplexes and inhibit HCT116 cell proliferation[185]. Unsymmetrical bisacridines 
derivatives stabilize c-MYC and KRAS G-quadruplexes and induce cytotoxicity, apoptosis and senescence in HCT116 cells
[144,186]. Additionally, the ligands 7-carboxylate indolo[3,2-b] quinoline tri-alkylamine derivatives targeting KRAS and 
HSP90A promoter G-quadruplexes also show anti-CRC activity by decreasing KRAS and HSP90A expression levels[187]. 
3-[2-(Diethylamino)ethyl]-12-methyl-6-oxo-2,3,6,12-tetrahydro-1Hbenzo[4,5]imidazo [1,2-a] imidazo[1’,2’:1,6]pyrido[2,3-
d]pyrimidin-14-ium bromide inhibits cell proliferation by interacting with KRAS G-quadruplexes[188]. In addition to 
those common cancer-related genes, G-quadruplexes of other functional genes have been shown on anticancer drug 
research and development. A naphthalene diimides compound T5 was shown to inhibit CRC cell growth by decreasing 
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Table 4 Overviews of investigations on the effects of small molecule ligands or biomolecules based on G-quadruplex targets in gastric 
cancer

Ligands/biomolecules Cell 
lines

Targeting 
gene/G-
quadruplex

Effects on G-
quadruplex Effects on genes Anticancer phenotypes Ref.

Benzo[a]phenoxazines HGC-
27

c-kit Bound with G-
quadruplex

Inhibited c-MYC 
transcription

Cytotoxicity [169]

Quinazolone derivatives HGC-
27

c-kit Stabilized G-
quadruplex

Inhibited c-kit 
transcription

Cytotoxicity [170]

3-(4-(1H-imidazo[4,5-f][1,10]phenan-
throlin-2-yl)-3-(ptolyl)-1Hpyrazol-1-yl)-
N,N-dimethylpropan-1-amine (13d)

AGS Telomere, c-kit, 
BCL-2

Stabilized G-
quadruplex

Induced telomere 
dysfunction, DNA 
damage response

Inhibited cell proliferation, 
migration, and invasion, 
promoted cell apoptosis and 
autophagy by blocking the 
Akt/mTOR pathway

[171]

G-quadruplex antibody AGS G-quadruplex Not detected Inhibited 
transcription of 
hTERT and BCL-2

Inhibited cell proliferation, 
migration, invasion and 
expression of hTERT and BCL-2, 
induced apoptosis, blocked cell 
cycle

[172]

BCL-2: B-cell lymphoma 2; hTERT: Human telomerase reverse transcriptase; mTOR: Mammalian/mechanistic target of rapamycin.

RNA polymerase I (Pol I)-mediated transcription by targeting ribosomal DNA G-quadruplexes[189]. Thiosugar 
naphthalene diimide conjugates exhibit cytotoxic effects by targeting telomere, c-MYC and KRAS G-quadruplexes[190]. 
The natural product gallic acid was found to selectively recognize and stabilize G-quadruplexes of rDNA and c-MYC, 
inhibit their associated mRNA expression, and subsequently suppress tumor growth in vitro and in vivo[191].

The functional protein or oligonucleotide molecules regulating CRC progression based on special G-quadruplexes 
have also been explored. For example, hnRNPA1 destabilizes TRA2B promoter G-quadruplexes and stimulates its mRNA 
and protein expression levels, which facilitates proliferation of HCT116 cells[192]. Small nuclear ribonucleoprotein 
polypeptide A consistently modulates translation of BAG-1 and inhibits HCT116 cell proliferation[193,194]. PPRHs 
induces c-MYC G-quadruplexes and inhibits proliferation of SW480 cells[159].

The LMNAV6 promoter region forms multiple G-quadruplexes, which increases its transcriptional activity, promotes 
Lamin A/C protein expression, and induces CRC cell proliferation[195]. FLJ39051, a highly expressed long noncoding 
RNA in CRC, contains G-quadruplexes. It combines with the RNA helicase DHX36 and promotes CRC cell migration
[196]. At present, small molecular ligands or proteins targeting LMNAV6 and FLJ39051 G-quadruplexes have not been 
reported. All details are described in Table 5.

Gastrointestinal stromal tumors: Gastrointestinal stromal tumors (GISTs) are soft tissue sarcomas originating from Cajal 
interstitial cells. They mostly frequently occur in the stomach, small intestine, and colorectum, but rarely occur in the 
esophagus, mesentery, omentum and retroperitoneum. GISTs are characterized by aberrant expression of c-kit oncogene, 
CD117 and CD34. The kinase inhibitor imatinib is an effective drug, but resistance to imatinib induced by active-site 
mutations has become a practical challenge that cannot be fully addressed by second and third-generation inhibitors. 
There are two G-quadruplex-forming sequences (c-kit1 positioned between -12 and -33 bp, c-kit2 positioned between -64 
and -83 bp) upstream of the transcription initiation sites of the human c-kit promoter. There are also potential binding 
sites for transcription factors SP1 and AP2, providing an opportunity for c-kit-targeted therapy. A series of 6-substituted 
indenoisoquinolines and N,N’-Bis[2-(pyrrolidin-1-yl)ethylamino]-2,6-bis[2-(pyrrolidin-1-yl)ethylamino]-1,4,5,8-
naphthalenetetracarboxylic acid diimide have been confirmed to stabilize c-kit promoter G-quadruplexes, mediate 
cytotoxicity, and downregulate c-kit protein expression levels in GIST cell lines[197,198]. The latter can also stabilize BCL-
2 promoter and mRNA G-quadruplexes to promote cytotoxicity and inhibit BCL-2 protein expression[198]. All details are 
described in Table 6.

In summary, targeting G-quadruplexes of cancer-related genes in cancer cells and inducing cytotoxic effects by 
regulating gene transcription may be an effective strategy for preventing and treating various gastrointestinal cancers. An 
overview of the advancement of potential drugs that target G-quadruplexes in gastrointestinal cancers is shown as 
Figure 2.

Application of G-quadruplex in the treatment of gastrointestinal cancers
As anticancer agents: In addition to acting as a target of ligands or proteins, G-quadruplexes can serve as anticancer 
agents. They can recognize specific biomacromolecules with a high degree of specificity, regulate their biological 
function, and interfere with cancer progression. The G-quadruplex formed by the G-rich sequence T-22AG can compet-
itively bind to nuclear protein, inhibit its combination with KRAS G-quadruplex, and thus inhibit gene transcription and 
proliferation of Panc-1 cells[199]. AS1411 was an earlier discovered G-quadruplex sequence with antiproliferative activity 
by targeting nucleolin in a variety of cancer cells, such as PC, GC and CRC[200]. The sequences TBA and its derivatives 
exhibit antiproliferative effects in HCT 116p53−/− cells via the G-quadruplex structure; the target of which may be uL3
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Table 5 Overviews of investigations on the effects of small molecule ligands or biomolecules based on G-quadruplex targets in 
colorectal cancer

Ligands/biomolecules Cell lines
Targeting 
gene/G-
quadruplex

Effects on G-
quadruplex Effects on genes Anticancer phenotypes Ref.

BRACO-19 HCT116, 
Flavopiridol-
resistant HCT116

Telomere Stabilized G-
quadruplex

Not detected Rapid inhibition of cell growth [173]

RHPS4 (3,11-difluoro-6,8,13-
trimethyl-8H-quino[4,3,2-
kl]acridinium methosulfate) and 
RHPS4-derivatives

HT29, HCT116 Telomere Bound with G-
quadruplex

Induced DNA 
damage

Stabilized TOPO1, cytotoxicity, 
inhibited cell proliferation, had 
synergistic anticancer effects 
with TOPO1 inhibitors

[174-
177]

A series of anthracene derivatives 
substituted with one or two 4,5-
dihydro-1H-imidazol-2-yl-
hydrazonic groups

LoVo Telomere Induced G-
quadruplex 
structures, bound 
and stabilized G-
quadruplex

Induced DNA 
damage

Cytotoxicity, telomerase 
inhibition

[178]

EMICORON HT29, HCT116, 
A90 colon 
epithelial tumor 
cell line

Telomere Bound with G-
quadruplex

Increased telomere 
damage

Cytotoxicity, inhibited cell 
proliferation and tumor 
growth of patient-derived 
tumor xenograft

[179,
180]

Chromene derivatives HT29 Telomere RNA Bound with G-
quadruplex

Not detected Cytotoxicity [181]

TMPyP4 SW480, SW620 c-MYC Stabilized the 
mutated G-
quadruplex 
structure

Inhibited c-MYC 
expression

Silenced c-MYC expression [182]

CX-3543 (quarfloxin) HT29 c-MYC Not detected Inhibited c-MYC 
expression

Reduced CCAT1 expression, 
promoted cell apoptosis, 
inhibited cell proliferation and 
tumor growth of HT29 
xenografts

[183]

CX-5461 (pidnarulex) HT-29, DLD-1, 
CT26

Telomere, c-
MYC, c-kit

Bound with G-
quadruplex

Caused DNA 
damage

Inhibited tumor growth of 
CT26 xenografts

[184]

Dihydrochelerythrine and its 
derivatives

HCT116 c-MYC, c-kit Stabilized G-
quadruplex

Not detected Inhibited cell proliferation [185]

Unsymmetrical bisacridines 
derivatives

HCT116 c-MYC, KRAS Bound and 
stabilized G-
quadruplex

Not detected Induced cytotoxicity, apoptosis 
and senescence

[144,
186]

7-carboxylate indolo[3,2-b] 
quinoline tri-alkylamine 
derivatives

HCT116, SW620 KRAS, 
HSP90A

Stabilized G-
quadruplex

Decreased KRAS 
and HSP90 mRNA 
expression, and 
KRAS transcription

Inhibited cell proliferation and 
protein expression of KRAS 
and HSP90A, promoted 
apoptosis

[187]

HCT116 KRAS Bound and 
stabilized G-
quadruplex

Decreased KRAS 
mRNA expression

Inhibited cell proliferation [188]

Naphthalene diimides compound 
T5

Colorectal cancer 
cell

rDNA Had high affinity 
with G-quadruplex

Impaired RNA Pol 
I elongation, 
inhibited Pol I 
transcription

Inhibited cell growth by 
inducing a rapid inhibition of 
Pol I transcription, nucleolus 
disruption, proteasome-
dependent Pol I catalytic 
subunit A degradation and 
autophagy

[189]

Thiosugar naphthalene diimide 
conjugates

HT29 Telomere, c-
MYC, KRAS

Bound and 
stabilized G-
quadruplex

Not detected Cytotoxicity [190]

Gallic acid rDNA, c-MYC Bound and 
stabilized G-
quadruplex

Inhibited 
expression of 
rDNA and c-MYC

Cytotoxicity, inhibited tumor 
growth of SW480 xenografts

[191]

HnRNPA1 HCT116 TRA2B 
promoter

Destabilized G-
quadruplex

Stimulated TRA2B 
transcription

Promoted cell proliferation and 
expression of TRA2B

[192]

Inhibited 
translation of BAG-

SNRPA HCT116 BAG-1 mRNA Bound with G-
quadruplex

Inhibited cell proliferation [193,
194]



Han ZQ et al. Application of G-quadruplexes in gastrointestinal cancers

WJGO https://www.wjgnet.com 1161 July 15, 2023 Volume 15 Issue 7

1

PPRHs SW480 c-MYC Bound and 
stabilized G-
quadruplex

Inhibited 
transcription of c-
MYC

Inhibited cell proliferation [159]

PPRHs: Polypurine reverse Hoogsteen hairpins; TOPO: Topoisomerase; KRAS: Kirsten rat sarcoma viral oncogene homologue; HSP90: Heat shock protein 
90.

Table 6 Overview of investigations on the effects of small molecule ligands based on G-quadruplex targets in gastrointestinal stromal 
tumor

Ligands/biomolecules Cell lines
Targeting 
gene/G-
quadruplex

Effects on G-
quadruplex

Effects on 
genes

Anticancer 
phenotypes Ref.

6-Substituted indenoisoquinolines GIST882 c-kit Stabilized G-
quadruplex

Inhibited c-kit 
transcription

Cytotoxicity, inhibited 
expression of c-kit 
protein

[196]

N,N’-Bis(2-(pyrrolidin-1-yl)ethylamino)-2,6-bis(2-
(pyrrolidin-1-yl)ethylamino)-1,4,5,8-naphthalen-
etetracarboxylic acid diimide

GIST882, 
GIST48, 
GIST62

c-kit, BCL-2, BCL-
2 mRNA

Stabilized G-
quadruplex

Not detected Cytotoxicity, inhibited 
expression of c-kit and 
BCL-2 proteins

[197,
198]

BCL-2: B-cell lymphoma 2.

Figure 2 G-quadruplex targets and the targeting small molecule ligands and biomolecules in six gastrointestinal cancer types. EC: 
Esophageal cancer; PC: Pancreatic cancer; HCC: Hepatocellular carcinoma; GC: Gastric cancer; CRC: Colorectal cancer, GIST: Gastrointestinal stromal tumor; 
PPA: 2,6-bis[3-(N-Piperidino) propionamido] anthrace-ne-9,10-dione; PP: Antihelminthic pyrvinium pamoate; ILK: Integrinlinked kinase; PARP1: Poly (ADP-ribose) 
polymerase 1; APE1: Apurinic/apyrimidinic endonuclease 1; PPRHs: Polypurine reverse Hoogsteen hairpins; DDX5: Dead box polypeptide 5; RHPS4: (3,11-difluoro-
6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate) and RHPS4-derivatives; SNRPA: Nuclear ribonucleoprotein polypeptide A; BCL-2: B-cell lymphoma 2; 
TRA2B: Transformer-2 protein homolog beta; KRAS: Kirsten rat sarcoma viral oncogene homologue; HSP90: Heat shock protein 90; hTERT: Human telomerase 
reverse transcriptase.
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[201]. Similarly, the G-quadruplex sequences INT-B (T30175) and its derivatives, along with d(GGGT)4 and its analogs 
also inhibit HCT 116p53−/− cell proliferation, but the specific target remains unclear[202,203]. All details are described in 
Table 7.

As an assistant in anticancer agents: G-quadruplex sequences mainly have two functions. In the research and 
development of anticancer drugs, G-quadruplex sequences were often used as the carriers of drugs or targeted agents in 
delivery systems to improve the delivery efficiency and targeting of anticancer drugs[204]. The carried molecules have 
included such chemotherapeutic drugs as paclitaxel, docetaxel, doxorubicin, triptolide, epirubicin, gemcitabine, 
thymoquinone, TMPyP4 and 5-fluorouracil, targeting cancers like HCC, PC and CRC[205,206]. As an important 
component of anticancer agents, G-quadruplex sequences can also help produce or improve anticancer efficacy. For 
example, the G-quadruplex dependent intracellular self-assembly device can continuously produce ROS to enhance 
antitumor effects of 5-aminolevulinic-acid in EC cells[207]. The parallel G-quadruplex configurations boost the cellular 
uptake of 5-fluoro-20-deoxyuridine oligomers, which stimulate cytotoxicity in 5-fluorouracil resistant CRC cells[208].

CHALLENGES OF ANTICANCER STRATEGIES BASED ON G-QUADRUPLEX TARGETS
Although many small molecular ligands or biomolecules targeting G-quadruplexes have been found to have anticancer 
activity in vitro and in vivo, it is still uncertain whether they can achieve such effects in humans. Unfortunately, many 
promising drugs have not passed clinical trials in the past, as biological systems are complex and many internal and 
external factors can affect drug effectiveness. The application of G-quadruplex targets in the treatment of gastrointestinal 
cancers will also face some challenges.

Dual role of G-quadruplexes in transcriptional and translational regulations
At first, G-quadruplexes were simply described as an obstacle to the transcription of cancer-related genes, leading to 
increased efforts to design and develop small molecule ligands as anticancer drugs targeting G-quadruplex structure, 
which attracted widespread attention[209]. However, evidence has shown that G-quadruplexes can regulate gene 
transcription at multiple levels, including through epigenetic modification and chromatin structure[210]. Because of the 
complexity of gene expression regulation, G-quadruplexes can play dual roles in gene transcription: Blocking polymerase 
to inhibit gene transcription; and recruiting transcription factors to promote gene transcription[117]. Under certain 
conditions, G-quadruplexes can trigger opposing effects on the same target[211]. The regulation of translation by RNA G-
quadruplexes also has two sides. G-quadruplexes can prevent ribosome entry under conditions of cap-dependent 
translation, but can also prompt ribosome entry under conditions of cap-independent translation[212]. With both DNA G-
quadruplex-mediated regulation of transcription and RNA G-quadruplex-mediated regulation of translation, the final 
effects depend on the specific environment. Further research is required to investigate if ligands targeting G-
quadruplexes in the tumor microenvironment can result in the predicted anticancer effects and if they can affect normal 
cells.

Biological factors affecting G-quadruplex formation
Chromatin and DNA modifications: The formation of G-quadruplexes in vivo is the result of the comprehensive action of 
various factors within its cell environment, including chromatin. Although a previous study indicated that transcriptional 
activation increased the instability of potential G-quadruplex-forming sequences, ChIP-seq research confirmed that 
promoter G-quadruplex formation preceded transcription rather than depending on transcription. Additionally, 
chromatin compaction led to a loss of RNA polymerase II (Pol II) and promoter G-quadruplexes[213]. Different types of 
DNA modifications can directly influence the formation of G-quadruplexes. For example, the stability and kinetic associ-
ations of G-quadruplex structures were increased by cytosine methylation (in addition with 5mC), which did not directly 
act on the Hoogsteen bonding[214]. Guanine bases in nucleic acids can be oxidized to 8-oxo-7,8-dihydroguanine (8-
oxoguanine), which can destroy the G-quadruplex structure in cancers[215]. Oncogene promoter regions are prone to 
hypomethylation, while those of tumor suppressor genes are prone to hypermethylation. These factors may indirectly 
impact the formation of G-quadruplexes and the resulting regulatory effects.

G-quadruplex-binding proteins: G-quadruplexes play various regulatory functions by interacting with proteins. G-
quadruplex-binding proteins indirectly participate in biological processes such as DNA replication, gene transcription 
and telomere maintenance via G-quadruplexes. The influence of binding proteins on the formation of G-quadruplexes 
mainly involves two aspects: Unfolding G-quadruplex structures and stabilizing G-quadruplex structures. Helicases are 
important binding proteins that can unwind G-quadruplexes and interfere with their regulatory functions. Such proteins 
are mainly classified as canonical helicases, including the RecQ-like and DEAD box or DEAH box helicase families. In 
vitro, these three helicases have been reported to bind to the 3’ tail of the DNA substrate and subsequently repetitively 
catalyze 3’-5’ unfolding of G-quadruplexes in an ATP-independent manner[216]. In addition, nonhelicase binding 
proteins, such as G-rich RNA sequence binding factor 1 and cellular nucleic acid-binding protein, can sequester the 
unfolded G-quadruplex form[216-218]. In contrast, there are also binding proteins that can support the G-quadruplex 
structure, such as nucleolin and RNA-binding protein 4[168,219]. Additionally, RNA-binding proteins are important 
influencing factors of RNA G-quadruplexes. G-quadruplex-binding proteins are also potential targets for cancer 
treatment because their effects contribute to G-quadruplex functions[220]. Significantly, the specific effects of these 
binding proteins on the targeted G-quadruplexes depend on their specific intracellular environments.
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Table 7 G-quadruplexes as anticancer agents

Tumor 
model

G-
quadruplex 
name

Sequence (5’-3’) Protein 
target Cells Anticancer phenotype Ref.

T-22AG GGAGGGGGAGAAGGGAGAAGGG Nuclear 
protein

Panc-1 Reduces cell growth [199]Pancreatic 
cancer 

AS1411 GGTGGTGGTGGTTGTGGTGGTGGTGG Nucleolin PANC-1 Inhibited cell proliferation [200]

Gastric 
cancer

AS1411 GGTGGTGGTGGTTGTGGTGGTGGTGG Nucleolin KATOIIIe, 
HGC27

Inhibited cell proliferation [200]

AS1411 GGTGGTGGTGGTTGTGGTGGTGGTGG Nucleolin HCC 2998, HT-29, 
KM12, HCT-116, 
SW620, HCT-15, 
LS174T

Inhibited cell proliferation [200]

TBA GGTTGGTGTGGTTGG

L-TBA GGTTGGTGTGGTTGG

LQ1 GGTTGGTGTGGTTGG

LQ2 GGTTGGGTGTGGTTGG

LQ3 GGTTGGGTGTGGTTGG

uL3 HCT 116p53-/- Impaired ribosomal RNA 
processing, leading to the accumu-
lation of pre-ribosomal RNAs, 
arrested cells in the G2/M phase 
and induced early apoptosis

[201]

INT-B 
(T30175)

GTGGTGGGTGGGTGGGT

INT-BS2 GSGGTGGGTGGGTGGGT

INT-BS5 GTGGSGGGTGGGTGGGT

INT-BS9 GTGGTGGGSGGGTGGGT

INT-BS13 GTGGTGGGTGGGSGGGT

INT-BS17 GTGGTGGGTGGGTGGGS

TT-INT-B TTGTGGTGGGTGGGTGGGT

Not 
detected

HCT 116p53-/- Inhibited cell proliferation [202]

Qnat GGGTGGGTGGGTGGGT

QS4 GGGSGGGTGGGTGGGT

QS8 GGGTGGGSGGGTGGGT

QS12 GGGTGGGTGGGSGGGT

Colorectal 
cancer

QS16 GGGTGGGTGGGTGGGS

Not 
detected

HCT 116p53-/- Inhibited cell proliferation [203]

Inflammatory cytokines: Inflammatory cytokines produced during inflammation reactions can support the production of 
ROS and nitrogen species (RONS), which may cause DNA damage. RONS can remove an electron from DNA bases and 
generate an electron hole, then transfer it to a base with a lower ionization potential. Guanine has the lowest ionization 
energy among the four DNA bases, making it particularly vulnerable to oxidative damage[221]. The most significant 
oxidative damage involves hydroxyl free radicals interacting with guanine to induce 8-oxoguanine, which can pair with 
adenine bases, and induce a G>T conversion during replication[3]. The degree of DNA damage depends on the position 
of the oxidized guanines and G-quartets.

Lack of selectivity of G-quadruplex ligands
At present, the design of small molecules is mainly based on the specific G-quadruplex configurations. As mentioned 
previously, there are three basic configurations for G-quadruplexes, and different nucleic acid sequences may form the 
same G-quadruplex configuration. Therefore, one small molecule ligand may have similar binding stabilities with the G-
quadruplex structures of different genes, which may reduce the targeting of gene therapy. For example, berberine can 
combine with the parallel structures of the KRAS and c-MYC promoters[6,16]. This inhibits KRAS and c-MYC expression 
and induces cytotoxicity in various cancer cells that express these oncogenes. Further work is needed to determine if this 
drug can cause negative effects in normal cells.
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PROSPECTS
G-quadruplexes are widely distributed throughout the human genome and are key aspects of gene transcription and 
translation regulation. Therefore, G-quadruplexes can be the drug targets against multiple human diseases, such as viral 
infection[222], bacterial infection[223], muscular atrophy[60] and cancer, especially gastrointestinal cancers. However, 
there are some uncertainties with this application that should be explored further. Firstly, G-quadruplex-mediated 
regulation of transcription and translation in gastrointestinal tissues require more investigation, especially during tumori-
genesis. The development of high-throughput sequencing and single nucleotide polymorphism detection may provide 
new opportunities to establish specific gene therapy strategies for gastrointestinal cancers based on G-quadruplexes. 
Secondly, the transcriptional activation function of G-quadruplexes is needed in some normal physiological processes, 
raising the concern that anticancer therapies targeting G-quadruplexes may interfere with normal cellular activities. Fully 
understanding the roles of G-quadruplexes in different biological processes, especially in various diseases, is helpful for 
addressing this challenge. Thirdly, G-quadruplexes can both inhibit and promote gene transcription and translation, with 
the final effects depending on the intracellular environment. This ultimately directly affects the treatment outcome. With 
the progress of molecular diagnosis technology, it may be necessary to specifically evaluate the patient’s internal 
environment before treatment. Fourthly, small molecule ligands and biomolecules may simultaneously target genes with 
the same G-quadruplex configurations, resulting in a need for improved selectivity or targeting. Fifthly, the formation of 
a G-quadruplex is affected by a variety of biological factors. Whether these factors can interfere with a G-quadruplex-
targeted therapy requires further study. Sixthly, clinical trials are needed to verify the efficacy of such small molecule 
ligands and biomolecules.

CONCLUSION
In addition to telomeres, G-quadruplexes are widely present in the promoter regions of oncogenes as well as cancerous 
genes, and can regulate various biological processes, especially gene transcription and translation, laying a good 
foundation for G-quadruplexes to become anticancer targets from the perspective of gene regulation. Multiple genes 
regulating EC, PC, HCC, GC, CRC and GIST have been found to contain G-quadruplex structures, including the key 
regulatory gene KRAS for PC and CRC, and c-kit for GC and GIST. Many small molecular ligands or biomolecules based 
on the G-quadruplex of these genes have been designed, synthesized, or discovered, and preclinical studies have shown 
that these molecules have good anticancer effects. Therefore, G-quadruplexes as targets against gastrointestinal cancers 
have broad application prospects. However, due to the diversity of G-quadruplex functions and the complexity of the 
biological internal environment, the application of G-quadruplex as a target of anticancer drugs still faces some 
challenges, which requires further exploration and research. We hope this work will provide references for anticancer 
strategies based on G-quadruplex targets in gastrointestinal cancers.
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