
WJGO https://www.wjgnet.com 857 March 15, 2024 Volume 16 Issue 3

World Journal of 

Gastrointestinal 
OncologyW J G O

Submit a Manuscript: https://www.f6publishing.com World J Gastrointest Oncol 2024 March 15; 16(3): 857-874

DOI: 10.4251/wjgo.v16.i3.857 ISSN 1948-5204 (online)

ORIGINAL ARTICLE

Retrospective Study

Preoperatively predicting vessels encapsulating tumor clusters in 
hepatocellular carcinoma: Machine learning model based on 
contrast-enhanced computed tomography

Chao Zhang, Hai Zhong, Fang Zhao, Zhen-Yu Ma, Zheng-Jun Dai, Guo-Dong Pang

Specialty type: Oncology

Provenance and peer review: 
Unsolicited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): 0 
Grade C (Good): C 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Ozdemir HI, Turkey

Received: October 30, 2023 
Peer-review started: October 30, 
2023 
First decision: December 21, 2023 
Revised: December 26, 2023 
Accepted: January 29, 2024 
Article in press: January 29, 2024 
Published online: March 15, 2024

Chao Zhang, Hai Zhong, Guo-Dong Pang, Department of Radiology, The Second Hospital of 
Shandong University, Jinan 250033, Shandong Province, China

Fang Zhao, Department of Radiology, Qilu Hospital of Shandong University, Jinan 250014, 
Shandong Province, China

Zhen-Yu Ma, Department of Radiology, Linglong Yingcheng Hospital, Yantai 265499, 
Shandong Province, China

Zheng-Jun Dai, Department of Scientific Research, Huiying Medical Technology Co., Ltd, 
Beijing 100192, China

Corresponding author: Guo-Dong Pang, MD, PhD, Associate Chief Physician, Doctor, 
Department of Radiology, The Second Hospital of Shandong University, No. 247 Beiyuan 
Road, Tianqiao District, Jinan 250033, Shandong Province, China. pgd226@aliyun.com

Abstract
BACKGROUND 
Recently, vessels encapsulating tumor clusters (VETC) was considered as a 
distinct pattern of tumor vascularization which can primarily facilitate the entry 
of the whole tumor cluster into the bloodstream in an invasion independent 
manner, and was regarded as an independent risk factor for poor prognosis in 
hepatocellular carcinoma (HCC).

AIM 
To develop and validate a preoperative nomogram using contrast-enhanced 
computed tomography (CECT) to predict the presence of VETC+ in HCC.

METHODS 
We retrospectively evaluated 190 patients with pathologically confirmed HCC 
who underwent CECT scanning and immunochemical staining for cluster of 
differentiation 34 at two medical centers. Radiomics analysis was conducted on 
intratumoral and peritumoral regions in the portal vein phase. Radiomics 
features, essential for identifying VETC+ HCC, were extracted and utilized to 
develop a radiomics model using machine learning algorithms in the training set. 
The model’s performance was validated on two separate test sets. Receiver 
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operating characteristic (ROC) analysis was employed to compare the identified performance of three models in 
predicting the VETC status of HCC on both training and test sets. The most predictive model was then used to 
constructed a radiomics nomogram that integrated the independent clinical-radiological features. ROC and 
decision curve analysis were used to assess the performance characteristics of the clinical-radiological features, the 
radiomics features and the radiomics nomogram.

RESULTS 
The study included 190 individuals from two independent centers, with the majority being male (81%) and a 
median age of 57 years (interquartile range: 51-66). The area under the curve (AUC) for the combined radiomics 
features selected from the intratumoral and peritumoral areas were 0.825, 0.788, and 0.680 in the training set and 
the two test sets. A total of 13 features were selected to construct the Rad-score. The nomogram, combining clinical-
radiological and combined radiomics features could accurately predict VETC+ in all three sets, with AUC values of 
0.859, 0.848 and 0.757. Decision curve analysis revealed that the radiomics nomogram was more clinically useful 
than both the clinical-radiological feature and the combined radiomics models.

CONCLUSION 
This study demonstrates the potential utility of a CECT-based radiomics nomogram, incorporating clinical-
radiological features and combined radiomics features, in the identification of VETC+ HCC.

Key Words: Hepatocellular carcinoma; Vessels encapsulating tumor clusters; Intratumoral and peritumoral regions; Radiomics 
features; Nomogram
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Core Tip: Vessels encapsulating tumor clusters (VETC) is an independent risk factor for poor prognosis in hepatocellular 
carcinoma (HCC) and currently determined only on histologic examination after surgical resection. We evaluated 190 
patients with pathologically confirmed HCC and constructed a machine learning-based contrast-enhanced computed 
tomography radiomics model, performed canonical screening of features and multiple validations, and confirmed robustness 
on various data resources. The radiomics model showed remarkable performance in predicting the VETC subtype, and the 
results were reproducible, demonstrating that the approach may be applied to other patient samples. Radiomics could 
provide valuable information for assisting clinicians in pretreatment decision-making.

Citation: Zhang C, Zhong H, Zhao F, Ma ZY, Dai ZJ, Pang GD. Preoperatively predicting vessels encapsulating tumor clusters in 
hepatocellular carcinoma: Machine learning model based on contrast-enhanced computed tomography. World J Gastrointest Oncol 
2024; 16(3): 857-874
URL: https://www.wjgnet.com/1948-5204/full/v16/i3/857.htm
DOI: https://dx.doi.org/10.4251/wjgo.v16.i3.857

INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth most frequently diagnosed cancer and the third cause of cancer-related 
mortality worldwide[1,2]. HCC accounts for 75%-90% of primary liver cancers and constitutes a major global health 
problem[3]; moreover, HCC is difficult to treat. As therapeutic strategies, liver transplantation (LT) and surgical resection 
remain the effective modalities for HCC. However, the long-term outcomes of patients after curative resection show 
marked diversity, which remains a substantial challenge in clinical management. The 5-year recurrence rate was more 
than 50%, even up to 70%[4], vs 25%-35% with LT[5]. Early metastasis is responsible for frequent relapse and high 
mortality of HCC[6].

As a typical solid tumor, angiogenesis of HCC is closely related to recurrence and metastasis. The sinusoidal structure 
of the tumor vasculature in HCC increases the propensity for blood-borne metastases to neighboring or distant sites[7,8]. 
The epithelial-mesenchymal transition (EMT) has been considered a key pattern in migration and invasion of HCC[9]. 
Recently, Fang et al[6] for the first time further emphasized this distinct pattern of tumor vascularization that is 
independent of EMT, which was characterized by the presence of cluster of differentiation 34 (CD34)+ vessels encapsu-
lating tumor clusters (VETC) in pathological imaging. The VETC pattern plays a crucial role in enabling the entire tumor 
cluster to enter the bloodstream independently of invasion in HCC[10]. Several reports have shown that VETC is an 
independent risk factor for poor prognosis in HCC, and patients with VETC+ HCC show shorter overall survival and 
disease free survival and are more prone to progression and metastasis relative to patients with VETC- HCC[6,11,12]. In 
addition, Fang et al[13] indicated that the VETC pattern acts as a predictor of sorafenib benefit in patients with HCC. 
However, VETC is currently only determined only on histologic examination after surgical resection[14]. Therefore, 
preoperative diagnosis of VETC status in HCC is of great significance to help predict patient outcomes and decide on 
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therapeutic strategies in HCC.
Radiomics presents a noninvasive methodology and holds significant potential in terms of sensitivity, selectivity, and 

experimental viability for the diagnosis of diseases, staging tumors, and predicting prognosis[15,16]. Radiomics has 
found use in HCC, including preoperative prediction of pathological indicators[17], differential diagnosis[18], evaluating 
curative effect, and prognosis prediction[19]. Recently, Yu et al[20] applied gadolinium-ethoxybenzyl-diethylenetriamine 
pentaacetic acid-enhanced magnetic resonance imaging (MRI) radiomics approach to evaluate VETC in HCC, Dong et al
[21] attempted to develop deep learning radiomics model of dynamic contrast-enhanced MRI to predict VETC in HCC. 
As a routine examination method, the emergence of computed tomography (CT) has made a qualitative leap in the 
imaging diagnosis of liver cancer and driven the progress of liver surgery. CT images are clear and stable, and are used 
for routine diagnosis and follow-up examination of liver cancer after rehabilitation. We hypothesized that radiomics 
features based on contrast-enhanced CT (CECT) scans might provide a preoperative reference for accurate prediction of 
VETC status in patients with HCC. To our knowledge, no studies have determined whether CECT-based radiomics 
features can be used to predict VETC status with HCC patients. The objective of this study was to develop and validate a 
nomogram based on clinical-radiological and radiomics features from intratumoral and peritumoral regions for 
preoperative prediction of VETC+ HCC using data from a multicenter study.

MATERIALS AND METHODS
Study patients
We retrospectively included consecutive patients who received a histological diagnosis of HCC between January 2017 
and March 2023 for radiomics model construction, using two sample data sets from two separate hospitals: A training set 
and an internal test set from the Second Hospital of Shandong University (center 1), and an external test set from the Qilu 
Hospital of Shandong University (center 2). The institutional review board of the two centers approved this retrospective 
multicenter study and the requirement for informed consent was waived because of the retrospective data sets, IRB No. 
KYLL-2023LW044.

The inclusion criteria were as follows: (1) CECT in the liver was performed within 1 wk before surgery or biopsy; (2) 
Testing of the CD34 level by immunohistochemistry (IHC); (3) If there were multiple lesions, we selected the largest one 
and included its corresponding immunohistochemical diagnosis in the study; and (4) Complete clinical data. The 
exclusion criteria were as follows: (1) Patients who had undergone prior treatments, including anti-tumor therapies, 
radiofrequency ablation, transcatheter arterial chemoembolization, and other similar procedures; (2) Images with 
noticeable artifacts affecting the imaging analysis; and (3) Massive necrosis (a significant area of necrosis in HCC, with 
few solid components present.

Radcloud platform (version 7.2; Huiying Medical Technology Co., Ltd, Beijing, China) was used to manage the 
imaging data and conduct subsequent analysis of radiomics statistics. Finally, a total of 153 patients with HCC (121 men 
and 32 women; 76 VETC+ and 77 VETC-) from center 1 were enrolled into a training set and an internal test set. To ensure 
appropriate sample distribution, the dataset was randomly split into a training set and an internal test set using a ratio of 
7:3 and a random seed of 39. Another cohort of 37 patients with HCC (32 men and 5 women; 18 VETC+ and 19 VETC-) 
from center 2 were enrolled into an external test set. For a visual representation of the patient recruitment process, please 
refer to Figure 1.

VETC measurement
The VETC pattern of all 190 patients in this study was determined by IHC performed on surgical histopathology samples. 
A 7-point baseline sampling protocol was applied to sample specimens to measure HCC[22]. The definition of the VETC 
pattern is the presence of vessels that form cobweb-like networks and that encapsulate and separate individual tumor 
clusters an explicit and continuous lining of CD34-positive endothelium[12]. Under light microscopy (100 ×), the five 
most intensely vascularized fields were selected, and the total number of individual tumor clusters that were completely 
surrounded by endothelium was evaluated. The index of VETC was presented by the average number of encapsulated 
tumor clusters per field[6]. According to previous studies, cases with VETC index ≥ 5% in whole or part of the HCC 
section by CD34 immunostaining were identified as VETC+, and those with VETC index < 5% were identified as VETC-
[23]. Two experienced pathologists, each with over 10 years of experience, conducted a qualitative and independent 
pathological assessment. Both the pathologists were blinded to the clinical, laboratory, and imaging results of the CECT. 
In cases where there was disagreement, a third pathologist was consulted, and the matter was discussed until a consensus 
was reached.

CT examination
Contrast-enhanced liver CT was performed using a 256-section (GE Revolution; both GE Healthcare) or a 128-section 
(Siemens Somatom Definition; Siemens) multidetector CT scanner. The following CT acquisition parameters were used: 
Tube voltage 120 kVp, tube current 240 mAs, rotation time 0.5 s, matrix size 512 × 512, slice thickness 5 mm. Nonionic 
contrast agent (300 mg of iodine per milliliter, 3 mL/s, 1.5 mL/kg body weight, Omnipaque, GE Healthcare) was 
administered as a bolus rapidly via the antecubital vein using a syringe pump. The arterial phase (AP), portal vein phase, 
and delayed phase images were obtained during suspended respiration at 15 s, 30 s, and 180 s respectively.
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Figure 1 Flow chart of patient recruitment pathway. HCC: Hepatocellular carcinoma; CT: Computed tomography; IHC: Immunohistochemistry; VETC: 
Vessels encapsulating tumor clusters; CD34: Cluster of differentiation 34.

Image segmentation and radiomics feature extraction
The Radcloud platform was used for image segmentation purposes. Two radiologists (reader 1, 8 years of liver imaging 
experience; reader 2, 10 years of liver imaging experience) who were blinded to the clinical and histopathologic data 
delineated in a slice-by-slice manner the volumes of interest (VOI) of HCC from the portal venous phase images to obtain 
a tumor segmentation[24]. When there was a disagreement between the two radiologists, a senior radiologist (reader 3, 15 
years of liver imaging experience) was consulted. Figure 2 provides an illustrative example of the tumor segmentation 
achieved through this process. To account for the peritumoral region, a topology algorithm was employed to dilate the 
region by a radius of 10 mm, as illustrated in Figure 2. In instances where the VOI extended beyond the liver parenchyma 
after the dilation, manual removal of the excessive portion was performed.

Following the segmentation of VOI-1 from intratumoral regions and VOI-2 from peritumoral regions, radiomics 
features were extracted using the Radcloud platform. Subsequently, a total of 3376 quantitative imaging features were 
extracted, including first-order statistics, 3D shape features, gray-level co-occurrence matrix features, gray-level run 
length matrix features, gray-level size zone matrix features, neighboring gray tone difference matrix features, and gray-
level dependence matrix features. Notably, although shape features were solely derived from the original images, the 
remaining features could also be extracted after applying various filters such as wavelet, square, square root, gradient, 
logarithm, exponential, local binary pattern in 2D (lbp-2D), and lbp-3D. To obtain textural features, the preprocessed CT 
images underwent wavelet filtering. This involved the use of a built-in stationary wavelet transform employing high or 
low-pass filters in the X-, Y-, and Z- directions. Moreover, the lbp-3D image type consisted of three subcategories. One of 
these subcategories was the kurtosis map (lbp-3D-k), whereas the other two were calculated using varying levels of 
spherical harmonics, namely lbp-3D-m1 and lbp-3D-m2. All these radiomics features adhered to the image biomarker 
standardization initiative[25]. In addition, the values of these radiomics features were normalized using the z-score 
method.

Dimension reduction techniques were used to select relevant features and mitigate potential issues such as overfitting 
and bias during construction of the radiomics signature using the training set data. The workflow for the radiomics 
analysis is visually depicted in Figure 2. To assess interobserver reproducibility, two radiologists (reader 1 and reader 2) 
independently repeated the segmentation process on 30 randomly selected lesions after a one-month interval. The 
radiomics features demonstrating good agreement [interclass correlation coefficient (ICC) > 0.8] between the two readers 
were included in subsequent analyses. Moreover, a variance threshold of 0.8 was applied to further refine the feature 
selection process. Subsequently, SelectKBest, a univariate analysis method, was used to select features with P values less 
than 0.05 for further analysis. Finally, the optimal feature subset was constructed using the least absolute shrinkage and 
selection operator (LASSO). Regularization parameter (alpha) tuning was performed through 10-fold cross-validation, 
and features with non-zero coefficients were selected for subsequent radiomics analysis.
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Figure 2  Flowchart of radiomics.
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Development of radiomics feature and nomogram
We selected relevant features extracted from intratumoral, peritumoral, and combined intratumoral and peritumoral 
regions. Subsequently, a radiomics score (Rad-score) was computed for each patient by using LASSO logistic regression 
(LR) on the features, where the coefficients were utilized for weighting (refer to Figure 3B). Multiple machine learning 
algorithms, including LR, support vector machine (SVM), decision tree (DT), and random forest (RF), were employed to 
establish radiomics models for intratumoral, peritumoral, and combined regions. The model demonstrating the highest 
predictive performance among these algorithms was chosen to construct a radiomics nomogram in conjunction with the 
independent clinical-radiological feature.

Establishing the clinical-radiological feature model
The study recorded clinical and laboratory data, which included age, sex, history of hepatic virus infection [negative, 
history of hepatitis B virus (HBV), HCV, or HBV and HCV], history of cirrhosis (absent, present), alanine aminotrans-
ferase, aspartate aminotransferase, gamma-glutamyl transferase, and alpha-fetoprotein. The radiologists (reader 1 and 
reader 2) also reviewed radiological feature descriptors of each lesion, such as main tumor size, single lobe involvement, 
non-smooth tumor margin, intratumor necrosis, intratumor hemorrhage, AP hyperenhancement, washout, and well-
defined capsule; occasional cases with discrepancies were referred to reader 3, were resolved by consensus. After 
multiple LR analysis, significant risk factors were used to build a clinical-radiological feature model.

Statistical analysis
Statistical analyses were carried out with the R software (version 4.2.1; https://www.r-project.org/). The Mann-Whitney 
U test was employed to assess the differences in clinical and radiological data among the three groups. Inter-group 
comparisons were performed using either the χ2 test or one-way analysis of variance (ANOVA). Calibration curves were 
constructed based on 1000 iterations of bootstrap resampling, and the Hosmer-Lemeshow goodness-of-fit test was 
applied to evaluate the model calibration. To compare the estimated values of the area under the curve (AUC) for 
different prediction models, the non-parametric Delong test was utilized. All statistical tests were two-sided, and a 
significance level of P < 0.05 was considered statistically significant for the entire duration of the study.

RESULTS
Patient characteristics
The imaging of 190 preoperative patients with HCC was collected from two independent institutions in China. The 
training set included 106 patients from the center1 {male, 78%; median [interquartile range (IQR)] age 58.5 (51, 65.75)}, 
and the internal test set included 47 patients [male, 81%; median (IQR) age 56 (51.5, 67.5)]. The external test set came from 
the center2 [male, 86%; median (IQR) age 57 (50, 64)]. In the training set, 50% (53/106) of the patients were diagnosed 
with VETC+, 49% (23/47) were diagnosed with VETC+ in the internal set, and 49% (18/37) were diagnosed with VETC+ 
in the external set. There were no differences in clinical characteristics or radiological features between the training set 
and the two test sets (Table 1). The representative images of CECT and immunohistochemical staining for CD34 were 
shown in Figure 4.

Clinical-radiological feature model construction
Details of the clinical data and the radiological features in the training set are provided in Table 2. There was a statistically 
significant difference in the values of the 8 features selected by univariate analysis; these features were associated with 
VETC+ HCC and were considered as candidates for backward stepwise multivariate analysis. After multiple LR analysis, 
intratumor necrosis [P < 0.001, odds ratio (OR) = 7.947, 95% confidence interval (CI): 2.367-26.682] and main tumor size (P 
< 0.001, OR = 1.873, 95%CI: 0.629-5.581) were confirmed as independent predictors of VETC+ and were used to construct 
the clinical-radiological feature model (Table 2). Based on receiver operating characteristic (ROC) analysis, the AUCs for 
the clinical-radiological feature model was 0.833 (95%CI: 0.753-0.913), 0.781 (95%CI: 0.644-0.918), and 0.684 (95%CI: 0.498-
0.862) in the training, internal test, and external test sets, respectively.

Feature selection and development of radiomics features
In total, 3376 radiomics features were extracted from two VOIs (1688 features for VOI-1, 1688 features for VOI-2). Among 
them, 1430 features from VOI-1 and 1328 features from VOI-2, both with an ICC > 0.8, were retained for subsequent 
feature selection. The selection process involved applying the variance threshold, the SelectKBest and LASSO regression 
(Figure 3A).

After eliminating highly collinear features, we constructed the intratumoral (11 intratumoral features used), 
peritumoral (10 peritumoral features used), and combined (7 intratumoral and 6 peritumoral features used) radiomics 
models on the training set with multivariate LR (Table 3). Based on selected radiomics features, we built the intratumoral, 
peritumoral, and combined radiomics models.

Validation of radiomics feature models
The performance of the combined radiomics model in predicting VETC was evaluated using LR, SVM, DT, and RF 
(Table 4 and Figure 3). Among these models, LR exhibited the best performance and was chosen as the classifier for all 
subsequent analyses in this article. The AUC for the intratumoral model was 0.772 (95%CI: 0.684-0.860) in the training set, 
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Table 1 Characteristic baseline of patients in sets

Variables Total set (n = 190) Training set (n = 106) Internal test set (n = 
47)

External test set (n = 
37) P value

VETC (%) 0.986

Positive 94 (49) 53 (50) 23 (49) 18 (49)

Negative 96 (51) 53 (50) 24 (51) 19 (51)

Age (median, IQR) 57 (51, 66) 58.5 (51, 65.75) 56 (51.5, 67.5) 57 (50, 64) 0.708

Sex (%) 0.555

Male 153 (81) 83 (78) 38 (81) 32 (86)

Female 37 (19) 23 (22) 9 (19) 5 (14)

Hepatitis (%) 0.799

HBV or/and HCV 171 (90) 96 (91) 41 (87) 34 (92)

Negative 19 (10) 10 (9) 6 (13) 3 (8)

Cirrhosis (%) 0.008

Present 158 (83) 85 (80) 36 (77) 37 (100)

Absent 32 (17) 21 (20) 11 (23) 0 (0)

ALT (median, IQR) 32 (19, 51.75) 28 (18, 49) 40 (22.5, 63) 33 (22, 45) 0.094

AST (median, IQR) 37 (25, 61.5) 36.5 (23.25, 1.75) 49 (28.5, 78) 30 (24, 46) 0.041

GGT (median, IQR) 59.25 (31, 131.25) 61.75 (30, 127) 76 (38.5, 143.5) 49 (27, 98) 0.157

AFP (median, IQR) 49.06 (5.54, 9.25) 62.74 (6.62, 9.25) 56.78 (5.87, 16.5) 34.74 (5.22, 798) 0.516

Main tumor size (median, IQR) 5.7 (3.2, 9.28) 6.05 (3.02, 9.3) 6.9 (3.45, 11.15) 4.11 (3.2, 6.5) 0.098

Multiplicity (%) 0.037

≥ 2 46 (24) 29 (27) 14 (30) 3 (8)

1 144 (76) 77 (73) 33 (70) 34 (92)

Single lobe involvement (%) 0.064

Present 141 (74) 74 (70) 34 (72) 33 (89)

Absent 49 (26) 32 (30) 13 (28) 4 (11)

Intratumor hemorrhage (%) 0.179

Present 12 (6) 9 (8) 3 (6) 0 (0)

Absent 178 (94) 97 (92) 44 (94) 37 (100)

Intratumor necrosis (%) 0.131

Present 95 (50) 57 (54) 25 (53) 13 (35)

Absent 95 (50) 49 (46) 22 (47) 24 (65)

Arterial phase hyper 
enhancement (%)

0.701

Present 179 (94) 101 (95) 44 (94) 34 (92)

Absent 11 (6) 5 (5) 3 (6) 3 (8)

Well defined capsule (%) 0.143

Present 140 (74) 75 (71) 33 (70) 32 (86)

Absent 50 (26) 31 (29) 14 (30) 5 (14)

Washout (%) 0.249

Present 187 (98) 105 (99) 45 (96) 37 (100)

Absent 3 (2) 1 (1) 2 (4) 0 (0)
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Non-smooth tumor margin (%) 0.435

Present 116 (61) 69 (65) 26 (55) 21 (57)

Absent 74 (39) 37 (35) 21 (45) 16 (43)

VETC: Vessels encapsulating tumor cluster; IQR: Interquartile range; HBV: Hepatitis B virus; HCV: Hepatitis C virus; ALT: Alanine aminotransferase; AST: 
Aspartate aminotransferase; GGT: Gamma-glutamyl transferase; AFP: Alpha-fetoprotein.

Figure 3 Radiomics feature selection. A: The least absolute shrinkage and selection operator of the parameterized method was used to select the image 
omics features by logistic regression; select the optimal alpha of 0.0297 with log(alpha) of -1.527; B: The coefficients of the radiomics features were used for 
weighting. LASSO: Least absolute shrinkage and selection operator.
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Table 2 Univariable and Multivariable logistic regression for upstaging in the training set

Univariate analysis Multivariate analysis
Variables VETC- (n = 53) VETC+ (n = 53)

OR P value OR P value

Age, median (IQR) 63 (50, 67) 55 (51, 62) 0.997 0.096

Sex (%) 1.344 0.637

Male 40 (75) 43 (81)

Female 13 (25) 10 (19)

Hepatitis (%) 1.133 0.74

HBV or/and HCV 47 (89) 49 (92)

Negative 6 (11) 4 (8)

Cirrhosis (%) 0.669 0.626

Present 44 (83) 41 (77)

Absent 9 (17) 12 (23)

ALT, median (IQR) 23 (15, 38) 36 (20, 52) 1.010 0.011 1.001 0.738

AST, median (IQR) 29 (21, 50) 40 (28, 68) 0.989 0.022 0.991 0.450

GGT, median (IQR) 39 (27, 87) 100 (40, 185) 1.000 0.001 1.000 0.209

AFP, median (IQR) 62.23 (5.48, 446.4) 78.51 (8.05, 8213) 0.999 0.076

Main tumor size, median (IQR) 4.1 (2.4, 6.5) 8.9 (5.6, 10.8) 2.815 < 0.001 1.873 < 0.001

Multiplicity (%) 0.799 0.009 0.907 0.660

≥ 2 8 (15) 21 (40)

1 45 (85) 32 (60)

Single lobe involvement (%) 0.620 < 0.001 0.952 0.617

Present 46 (87) 28 (53)

Absent 7 (13) 25 (47)

Intratumor hemorrhage (%) 0.609 1

Present 4 (8) 5 (9)

Absent 49 (92) 48 (91)

Intratumor necrosis (%) 0.850 < 0.001 7.947 < 0.001

Present 13 (25) 44 (83)

Absent 40 (75) 9 (17)

Arterial phase hyperenhancement 
(%)

1.112 0.363

Present 49 (92) 52 (98)

Absent 4 (8) 1 (2)

Well defined capsule (%) 1.018 1

Present 38 (72) 37 (70)

Absent 15 (28) 16 (30)

Washout (%) 1.815 1

Present 52 (98) 53 (100)

Absent 1 (2) 0 (0)

Non-smooth tumor margin (%) 1.717 0.014 1.109 0.881

Present 28 (53) 41 (77)

Absent 25 (47) 12 (23)
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VETC: Vessels encapsulating tumor cluster; IQR: Interquartile range; HBV: Hepatitis B virus; HCV: Hepatitis C virus; ALT: Alanine aminotransferase; AST: 
Aspartate aminotransferase; GGT: Gamma-glutamyl transferase; AFP: Alpha-fetoprotein.

Table 3 Selected radiomics features in intratumoral, peritumoral, and combined radiomics models on the training set

Intratumoral radiomics model Peritumoral radiomics model Combined radiomics model

Original_GLDM_DependenceEntropy Original_shape_Sphericity Original_GLDM_DependenceEntropy1

Lbp-3D-k_GLRLM_ShortRunHighGrayLevelEmphasis Lbp-2D_firstorder_Interquart-
ileRange

Original_GLRLM_RunLengthNonUniformity1

Lbp-3D-k_GLDM_SmallDependenceEmphasis Lbp-3D-k_firstorder_Minimum Wavelet-HHH_GLCM_SumEntropy1

Original_GLRLM_RunLengthNonUniformity Wavelet-
HHH_GLCM_SumEntropy

Wavelet-HHH_GLCM_SumEntropy2

Wavelet-HHH_GLCM_SumEntropy Original_GLRLM_RunVariance Original_GLRLM_RunVariance2

Lbp-3D-k_firstorder_Kurtosis Wavelet-LHL_firstorder_Variance Logarithm_firstorder_InterquartileRange1

Wavelet-HLH_GLRLM_GrayLevelNonUniformityNor-
malized

Lbp-3D-m1_firstorder_Skewness Wavelet-LHL_firstorder_Variance2

Squareroot_firstorder_Minimum Logarithm_firstorder_10Percentile Wavelet-HHH_GLCM_MCC1

Wavelet-LLH_GLCM_Imc2 Squareroot_firstorder_10Percentile Lbp-3D-k_firstorder_Kurtosis1

Wavelet-LHL_GLCM_MaximumProbability Wavelet-HLL_firstorder_Kurtosis Wavelet-HHH_firstorder_Kurtosis2

Wavelet-HLH_GLCM_MaximumProbability Lbp-3D-m1_firstorder_Skewness2

Wavelet-
HLH_GLRLM_GrayLevelNonUniformityNormalized_V11

Logarithm_firstorder_90Percentile2

1Intratumoral radiomics.
2Peritumoral radiomics.
GLRLM: Gray level run length matrix; GLCM: Gray level co-occurrence matrix; GLDM: Gray level dependence matrix; Lbp-2D: Local binary pattern in 2D; 
Lbp-3D: Local binary pattern in 3D.

0.768 (95%CI: 0.628-0.908) in the internal test set, and 0.673 (95%CI: 0.495-0.851) in the external test set. For the 
peritumoral model, the AUC values were 0.823 (95%CI: 0.745-0.901) in the training set, 0.757 (95%CI: 0.615-0.899) in the 
internal test set, and 0.605 (95%CI: 0.418-0.792) in the external test set. The combined radiomics model demonstrated the 
highest predictive performance across the training set and both test sets, with AUC values of 0.825 (95%CI: 0.747-0.903) in 
the training set, 0.788 (95%CI: 0.649-0.927) in the internal test set, and 0.680 (95%CI: 0.498-0.862) in the external test set 
(Table 5 and Figure 5).

Development of a radiomics nomogram and evaluation of model performance
To develop a clinically applicable approach that could predict the probability of VETC+ HCC, the clinical-radiological 
and radiomics features were incorporated into the radiomics nomogram (Figure 6A). The Rad-score, calculated by 
applying LR to the combined radiomics features weighted by their coefficients, served as an indicator for each patient. 
The calibration curves of the radiomics nomogram demonstrated a satisfactory fit in the training, internal test and 
external test sets (Figure 6B-D), as evidenced by the Hosmer-Lemeshow test P-values of 0.8633, 0.7965, and 0.3205 
respectively, which indicate the goodness-of-fit of the model. As shown in the nomogram (Figure 6A), by assigning each 
feature a value based on a point scale ranging from 0 to 100, one can obtain a total score by adding the scores for each 
feature. The risk of VETC+ HCC can be predicted by projecting the score to the bottom risk axis. The sensitivity, 
specificity, accuracy, and AUC of the clinical-radiological feature, combined radiomics, and radiomics nomogram models 
are shown in Table 6. The radiomics nomogram exhibited superior predictive performance, with an AUC of 0.859 (95%CI: 
0.787-0.931) on the training set, 0.848 (95%CI: 0.726-0.970) on the internal test set, and 0.757 (95%CI: 0.592-0.922) on the 
external test set, and achieved better discriminatory performance than the clinical-radiological feature and the combined 
radiomics models (Figure 7A-C). The Delong test revealed statistically significant differences in AUCs among the clinical-
radiological feature, the combined radiomics and the radiomics nomogram models on the internal test set (P = 0.004 and 
P < 0.001, respectively). The utility of the three predictive models was assessed using DCA, which calculated the net 
benefit at various probability thresholds (Figure 7D-F). The DCA results indicated that the radiomics nomogram model 
provided greater overall net benefit than either the radiological feature or the combined radiomics models, affirming the 
reliability of the nomogram as a clinical tool for predicting the risk of VETC+ HCC.
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Table 4 Performance of logistic regression, support vector machine, decision tree, and random forest in the combined radiomics for 
predicting vessels encapsulating tumor clusters

Set ML model AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV

Training

LR 0.825 (0.747-0.903) 0.726 0.736 0.717 0.722 0.731

SVM 0.874 (0.805-0.943) 0.764 0.792 0.736 0.745 0.765

DT 0.862 (0.794-0.930) 0.820 0.811 0.830 0.827 0.815

RF 1 (1.000-1.000) 1 1 1 1 1

Internal test

LR 0.788 (0.649-0.927) 0.745 0.783 0.708 0.720 0.773

SVM 0.766 (0.629-0.903) 0.681 0.739 0.625 0.654 0.714

DT 0.698 (0.556-0.840) 0.659 0.696 0.625 0.640 0.682

RF 0.723 (0.577-0.869) 0.702 0.739 0.667 0.667 0.696

External test

LR 0.680 (0.498-0.862) 0.676 0.500 0.842 0.750 0.640

SVM 0.632 (0.438-0.826) 0.676 0.500 0.842 0.75 0.640

DT 0.667 (0.482-0.852) 0.676 0.500 0.842 0.750 0.640

RF 0.614 (0.428-0.800) 0.568 0.444 0.684 0.571 0.565

LR: Logistic regression; SVM: Support vector machine; DT: Decision tree; RF: Random forest; CI: Confidence interval; AUC: Area under the curve; PPV: 
Positive predictive value; NPV: Negative predictive value.

Table 5 Performance evaluation of the logistic regression models on the training set and the two test sets

Set Model AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV

Training

Intratumoral radiomics 0.772 (0.684-0.860) 0.689 0.736 0.642 0.673 0.708

Peritumoral radiomics 0.823 (0.745-0.901) 0.745 0.774 0.717 0.732 0.760

Combined radiomics 0.825 (0.747-0.903) 0.726 0.736 0.717 0.722 0.731

Internal test

Intratumoral radiomics 0.768 (0.628-0.908) 0.638 0.696 0.583 0.615 0.667

Peritumoral radiomics 0.757 (0.615-0.899) 0.702 0.783 0.625 0.750 0.667

Combined radiomics 0.788 (0.649-0.927) 0.745 0.783 0.708 0.720 0.773

External test

Intratumoral radiomics 0.673 (0.495-0.851) 0.568 0.556 0.579 0.556 0.579

Peritumoral radiomics 0.605 (0.418-0.792) 0.568 0.389 0.737 0.560 0.583

Combined radiomics 0.680 (0.498-0.862) 0.676 0.500 0.842 0.750 0.640

CI: Confidence interval; AUC: Area under the curve; PPV: Positive predictive value; NPV: Negative predictive value.

DISCUSSION
The VETC pattern in HCC has been identified as a predictor of micro-metastasis, aggressive behavior, and unfavorable 
prognosis[13,26]. There is a lack of development and validation for CT radiomics model to preoperatively predict the 
VETC subtype of HCC, and the biologic underpinnings of the radiomics method deserve investigation. In our study, we 
established and validated a noninvasive CECT radiomics nomogram composed of radiomics features, and the clinical-
radiological feature of intratumor necrosis, and main tumor size predict VETC+. Our results showed that the combined 
radiomics model showed no additional value over the clinical-radiological feature model, but that the nomogram showed 



Zhang C et al. Preoperatively predicting VETC in HCC

WJGO https://www.wjgnet.com 868 March 15, 2024 Volume 16 Issue 3

Table 6 Diagnostic performance of the clinical-radiological feature, combined radiomics, and radiomics nomogram models

Set Model AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV

Training

Clinical-radiological feature 0.833 (0.753-0.913) 0.792 0.830 0.754 0.737 0.776

Combined radiomics 0.825 (0.747-0.903) 0.726 0.736 0.717 0.722 0.731

Radiomics nomogram 0.859 (0.787-0.931) 0.792 0.830 0.754 0.772 0.816

Internal test

Clinical-radiological feature 0.781 (0.644-0.918) 0.744 0.782 0.708 0.720 0.773

Combined radiomics 0.788 (0.649-0.927) 0.745 0.783 0.709 0.720 0.773

Radiomics nomogram 0.848 (0.726-0.970) 0.787 0.826 0.750 0.760 0.818

External test

Clinical-radiological feature 0.684 (0.498-0.862) 0.676 0.500 0.842 0.750 0.64

Combined radiomics 0.680 (0.502-0.866) 0.676 0.500 0.842 0.750 0.640

Radiomics nomogram 0.757 (0.592-0.922) 0.729 0.611 0.842 0.750 0.783

CI: Confidence interval; AUC: Area under the curve; PPV: Positive predictive value; NPV: Negative predictive value.

good discrimination performance (AUC: 0.859) on the training set and the two test sets for prediction of VETC+ 
compared with the combined radiomics model or the clinical-radiological feature model.

Feng et al[27] had reported that the presence of VETC demonstrated a significant correlation with various clinical 
characteristics, including tumor size exceeding 5 cm and the occurrence of tumor necrosis. In our study, maximum tumor 
diameter and tumor necrosis were also independent predictors for VETC subtype. This agrees with the findings reported 
by them in the clinical-radiological feature model which achieved areas under the ROC curve of 0.833, 0.781, and 0.684 on 
the training set, the internal test set and the external test set, respectively. Angiogenesis activation is a mark of aggressive 
VETC HCC. Increased diffusion distances from the existing vascularity supply as the tumor expands and increased 
cellularity due to proliferative tumor cells result in hypoxia and necrosis. Hypoxia and neoangiogenesis result in obvious 
necrosis in fast-growing HCC[28,29]. Neovascularity mainly occurs on the periphery of the tumor, and rapidly reduces 
central perfusion, leading to central necrosis.

Radiomics has been known as an important digital biopsy method to predict several biological features of tumors[12]. 
In this study, we constructed a machine learning-based CECT radiomics model, performed canonical screening of 
features and multiple validations, and confirmed robustness on various data resources. The suboptimal performance on 
the external test set may be ascribed to differences in the CT scan protocol and to heterogeneity of the data set, which 
came from two different institutions. However, the radiomics model showed remarkable performance in predicting the 
VETC subtype, and the results were reproducible, demonstrating that the approach may be applied to other patient 
samples. VETC is a heterogeneous pattern of angiogenesis involved in HCC biological behavior[12]. This may account for 
why the radiomics model had a favorable predictive ability in predicting VETC. In this study, the intratumoral or 
peritumoral radiomics model achieved identified good performance in predicting VETC. As shown in our study, the 
peritumoral radiomics model was superior to the intratumoral model, which was consistent with previous reports[20,30]. 
This result might suggest that VETC is more likely to be found in the peritumoral region. Moreover, the combined intrat-
umoral and peritumoral radiomics model exhibited better predictive performance than the intratumoral model in 
preoperative prediction of VETC in HCC. Furthermore, we combined the clinical-radiological feature and the radiomics 
models to create the radiomics nomogram model and validate its predictive power. Our study showed that the radiomics 
nomogram model had a higher predictive value than the single clinical-radiological feature model or the radiomics model 
with, AUC of 0.859, 0.848, and 0.757 on the training set, the internal test set and the external test set, respectively. Our 
result goes further by indicating a radiomics link between CT imaging and VETC subtype, which may facilitate the 
implementation of morphomolecular subtyping of HCC into clinical practice and application.

The radiomics model could reflect the heterogeneity of HCC[31]. First-order features mainly depend on the statistics of 
the intensity information. Texture analysis was recently found to provide a quantitative, objective assessment of tumor 
heterogeneity by analyzing the distribution and relationship of pixel or voxel grey levels and could reflect information on 
the lesion microenvironment[32]. In our study, of the eleven features in the intratumoral radiomics model, two were first-
order features and nine were texture features. Of the ten features in the peritumoral radiomics model, seven were first-
order features, one was a shape feature, and only two were texture features. The radiomics model had more texture 
features, especially the intratumoral radiomics model. The results demonstrated that VETC+ HCC have more diverse 
vascular patterns, including VETC, sinusoidal capillarization and other neovascularization patterns, which could lead to 
additional heterogeneity in texture compared with VETC- HCC.

Our study had several limitations. First, the radiomics model was constructed based on retrospective data with 
patients who underwent surgical or biopsy treatments at multiple institutions, which may have resulted in selection bias. 
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Figure 4 Contrast enhanced computed tomography and immunohistochemical staining for cluster of differentiation 34. A: Vessels 
encapsulating tumor cluster (VETC) + hepatocellular carcinoma (HCC) in a 71-year-old man, a mass (the arrow) can be seen in the lateral left lobe of liver; B: 
Immunohistochemical image for cluster of differentiation 34 (CD34) presented vessels that encapsulated tumor clusters and formed cobweb-like networks (original 
magnification, × 100); C: VETC-HCC in a 52-year-old man, a mass (the arrow) can be seen in the anterior right lobe of the liver; D: Immunohistochemical image for 
CD34 presented vessels with discrete lumens (original magnification, × 100).

Second, we defined “VETC ≥ 5%” as the VETC group[12,33] with reference to previous reports. However, the optimal 
cut-off value of VETC is not yet standardized. Future studies could be conducted to develop and verify the optimal cut-
off value for HCC. Third, the sample size of our study was relatively small, especially the external validation group, and 
larger sample sizes are needed for radiomics analysis in future studies. Finally, the radiomics marker is limited by its 
complexity and lack of algorithmic standardization. In future studies, the development of a deep learning-based 
predictive model will be constructed and validated. Therefore, a further prospective study avoiding the above limitations 
is needed to validate those results.

CONCLUSION
In conclusion, the CECT radiomics model could noninvasively predict the VETC subtype in patients with HCC. The 
radiomics nomogram constructed from clinical-radiological features and combined radiomics features demonstrated 
good performance in preoperatively predicting VETC, and their combination showed superior predictive performance 
compared with the single model. Thus, this combination may be useful for the preoperative identification of VETC 
subtype in HCC, which could help select HCC patients with poor prognosis, early recurrence, and Sorafenib benefit. 
Therefore, it could provide valuable information for assisting clinicians in pretreatment decision-making.
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Figure 5 Receiver operating characteristic of the combined radiomics models. A: Receiver operating characteristic (ROC) of combined radiomics 
model using four machine learning algorithms on the training set; B: ROC of combined radiomics model using four machine learning algorithms on the internal test 
set; C: ROC of combined radiomics model using four machine learning algorithms on the external test set. ROC: Receiver operating characteristic; LR: Logistic 
regression; SVM: Support vector machine; DT: Decision tree; RF: Random forest; CI: Confidence interval; AUC: Area under the curve.

Figure 6 The radiomics nomogram and calibration curves for the radiomics nomogram. A: The radiomics nomogram combining intratumor necrosis, 
main tumor size, and radiomics score, was developed on the training set; B: Calibration curves for the radiomics nomogram on the training set; C: Calibration curves 
for the radiomics nomogram on the internal test set; D: Calibration curves for the radiomics nomogram on the external test set.
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Figure 7 Receiver operating characteristic and decision curve analysis for three models. A: Receiver operating characteristic (ROC) of clinical-
radiological features on the training set; B: ROC of clinical-radiological features on the internal test set; C: ROC of clinical-radiological features on the external test 
set; D: Decision curve analysis on the training set; E: Decision curve analysis on the internal test set; F: Decision curve anal. ROC: Receiver operating characteristic; 
CI: Confidence interval; AUC: Area under the curve.
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ARTICLE HIGHLIGHTS
Research background
Vessels encapsulating tumor clusters (VETC) is an independent risk factor for poor prognosis in hepatocellular carcinoma 
(HCC) and patients with VETC+ HCC show shorter overall survival and disease-free survival and are more prone to 
progression and metastasis relative to patients with VETC- HCC. So far, VETC is currently determined only on histologic 
examination after surgical resection.

Research motivation
Preoperative diagnosis of VETC status in HCC is of great significance for predicting the prognosis of HCC patients and 
determining treatment strategies.

Research objectives
This study aimed to develop and validate a preoperative nomogram based on contrast-enhanced computed tomography 
(CECT) scanning combined with radiomics and clinical-radiological features to provide a preoperative reference for 
accurate prediction of VETC status in patients with HCC.

Research methods
This was a retrospective, diagnostic study conducted from January 2017 to March 2023, at two centers. The study 
included 190 (training set: 106; internal test set: 47; external test set: 37) HCC patients who underwent CECT. Variance 
threshold, SelectKBest, the least absolute shrinkage and selection operator algorithm and multivariable logistic regression 
analysis were used to select the useful features and transform them into models. Receiver operating characteristic analysis 
was employed to compare the identified performance of models in predicting the VETC status of HCC on both training 
and test sets.

Research results
Among 190 individuals used for radiomics modeling, with the majority being male (81%) and a median age of 57 years 
(interquartile range: 51-66), 94 (49%) were confirmed to have the VETC subtype. The nomogram model included clinical-
radiological features and 13 radiomics features and showed good performance for predicting the VETC subtype, with 
area under the curves of 0.859, 0.848, and 0.757 in the training set, internal test set, and external test set, respectively. The 
radiomics nomogram outperformed any clinical-radiological feature and the combined radiomics models in terms of 
clinical predictive abilities, according to a decision curve analysis.

Research conclusions
The findings of this research indicate that a nomogram, developed using clinical-radiological features and combined 
radiomics features, holds the capability to accurately forecast the VETC status of HCC.

Research perspectives
Our findings may be useful for preoperative identification of VETC subtype in HCC, which could help select HCC 
patients with poor prognosis, early recurrence, and sorafenib benefit.
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