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Abstract
Intervertebral disc (ID) degeneration (IDD) is one of the main causes of chronic 
low back pain, and degenerative lesions are usually caused by an imbalance 
between catabolic and anabolic processes in the ID. The environment in which the 
ID is located is harsh, with almost no vascular distribution within the disc, and 
the nutrient supply relies mainly on the diffusion of oxygen and nutrients from 
the blood vessels located under the endplate. The stability of its internal 
environment also plays an important role in preventing IDD. The main feature of 
disc degeneration is a decrease in the number of cells. Mesenchymal stem cells 
have been used in the treatment of disc lesions due to their ability to differentiate 
into nucleus pulposus cells in a nonspecific anti-inflammatory manner. The main 
purpose is to promote their regeneration. The current aim of stem cell therapy is 
to replace the aged and metamorphosed cells in the ID and to increase the content 
of the extracellular matrix. The treatment of disc degeneration with stem cells has 
achieved good efficacy, and the current challenge is how to improve this efficacy. 
Here, we reviewed current treatments for disc degeneration and summarize 
studies on stem cell vesicles, enhancement of therapeutic effects when stem cells 
are mixed with related substances, and improvements in the efficacy of stem cell 
therapy by adjuvants under adverse conditions. We reviewed the new approaches 
and ideas for stem cell treatment of disc degeneration in order to contribute to the 
development of new therapeutic approaches to meet current challenges.
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Core Tip: Mesenchymal stem cells have a strong self-renewal capacity and multidirectional differentiation potential, and their 
secreted vesicles promote regeneration of myeloid cells, increase extracellular matrix production, and alleviate inflammatory 
status. We reviewed the current relevant targets of stem cell exosomes for the treatment of intervertebral discs and the 
adjuvant tools used in conjunction with stem cell therapy. This will help to improve the therapeutic efficacy of stem cells and 
their exosomes, which will also contribute to development of more efficient treatment strategies and approaches for the 
restoration of disc degeneration.
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INTRODUCTION
Intervertebral discs (IDs) have a complex structure with a unique internal environment. They contain nucleus pulposus 
cells, fibrous rings, and extracellular matrix (ECM)[1], Mesenchymal stem cells (MSCs), a class of pluripotent stem cells 
with the capacity for self-renewal and the ability to differentiate into a variety of tissues in vitro, were first mentioned in 
1970 in guinea pig bone marrow[2]. Isolation and culture of MSCs from human bone marrow was first described in 1992. 
Since then, MSCs have been isolated and cultured from different human tissues, such as fat, amniotic membrane, gingiva, 
thymus, and placenta. MSCs from different sources differ in phenotype and function[3], for example, in solving the 
problem of ID withdrawal, umbilical cord-derived MSCs have a greater capacity for cell proliferation and osteogenesis 
than bone marrow-derived MSCs[4]. Stem cell therapy is designed to restore this balance of secreting exosomes and 
vesicles, mixing other substances to promote their differentiation into nucleus pulposus cells, regulating the content of the 
ECM, and when treated accordingly resisting interference by the harsh environment of the IDs[5,6]. These synergistic 
approaches provide new possibilities for stem cell therapy of (IDD)[7,8].

MIRNA IN EXOSOMES
For signal transduction pathways, many miRNAs play a crucial role in the growth and development of IDs. MSCs deliver 
miRNA-31 to the nucleus pulposus and upregulate the Wnt/β-catenin pathway to inhibit apoptosis of nucleus pulposus 
cells and regulate production of the ECM[9]. Similarly, under the stimulation of external effects, miRNA-21 can be 
transfected into mesenchymal cell exosomes, enhancing the ability of MSCs to differentiate into osteoblasts and promote 
vascular regeneration[10]. In other related studies, exosomes derived from bone marrow MSCs inhibited apoptosis and 
inflammation by upregulating autophagy through the protein kinase β/mammalian target of rapamycin signaling 
pathway[11]. MSCs-derived exosomes can also inhibit apoptosis of nucleus pulposus cells through miRNA-532-5p 
transport, demonstrating that this transport is also effective in IDD therapy[12].

Exosome-delivered exogenous miRNA-26a-5p can also be delivered to IDs, as METTL14 is highly expressed in patients 
with IDD, and the level of NOD-like receptor family pyrin domain containing 3 regulated by it leads to an increase in 
proinflammatory factors and apoptosis of nucleus pulposus cells. Exogenous miRNA-26a-5p inhibits METTL4 expression 
and thus treats disc degeneration[13]. It has also been found that miRNA-15a in exosomes can participate in the protein 
balance regulated by the phosphatidylinositol 3-kinase/protein kinase β and Wnt3a/β-catenin axes of IDD and 
downregulate matrix metalloproteinase-3. Therefore, type II collagen and aggrecan levels can be increased, along with 
differentiation of MSCs to nucleus pulposus cells[14,15]. BTB-and-CNC homologue 1 is a transcription inhibitor of heme 
oxygenase 1, which activates autophagy in nucleus pulposus cells. miRNA-155 in exosomes inhibits BTB-and-CNC 
homologue 1 expression by binding to the 3’ untranslated region of this transcription inhibitor, thereby treating IDD[16] 
(Table 1).

SPECIAL GENETICS AND MSCsS
Microtubules are an important part of the cytoskeleton that can regulate the assembly of proteins and the transport of 
substances within the cell. The stability of microtubules may extend their own life and ensure their normal basic 
functions. A decrease in transforming growth factor (TGF)-β1 is one of the possible factors involved in ID metamorphosis. 
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Table 1 Effects of mRNA in vesicles on differentiation of mesenchymal stromal cells into myeloid cells, for extracellular matrix 
production, and for inflammatory status

Differentiation to 
myeloid cells

Extracellular matrix 
production Inflammatory state RNA Target Ref.

Promotion lncRNA CAHM M1 macrophages Li et al[26]

Promotion Repression miR-199a GREM1 Wen et al[35]

Promotion miR-140-5p KLF5/N-
cadherin/MDM2/Slug

Wang et al[34]

Promotion miR-105-5p Sirt6 Sun et al[33]

Promotion Repression miR-129-5p p38 MAPK Cui et al[31]

Promotion Promotion miR-17-5p TLR4 Zhou et al[29]

Promotion miR-194-5p TRAF6 Sun et al[12]

Promotion miR-21 p38 MAPK Wang et al[10]

Promotion Repression miR-26a-5p METTL14 Xuan et al[13]

Promotion miR-532-5p AKT-mTOR Sun et al[12]

Promotion Repression miR-31 Wnt/β-Catenin Wang et al[9]

Promotion miR-155 BACH1 Shi et al[16]

Promotion miR-15a PI3K/Akt Zhang et al[14]

Promotion miR-217 EZH2 Hao et al[27]

Promotion Promotion cirRNA0050205 GPX4 Yu et al[25]

Promotion Promotion cirRNA0072464 NRF2 Yu et al[24]

AKT: Protein kinase B; BACH1: BTB-and-CNC homologue 1; EZH2: Enhancer of zeste homolog 2; GPX4: Glutathione peroxidase 4; GREM1: Gremlin1; 
KLF5: Kruppel-like factor 5; lncRNA CAHM: Long non-coding RNA colorectal adenocarcinoma hypermethylated; MAPK: Mitogen-activated protein 
kinase; MDM2: Murine double minute 2; mTOR: Mechanistic target of rapamycin; NRF2: Nuclear factor erythroid 2-related factor 2; PI3K: 
Phosphoinositide 3-kinase; TRAF6: Tumor necrosis factor receptor associated factor 6.

Stabilization of microtubules can promote the expression of collagen type 2 and SRY-box transcription factor 9 (SOX9) in 
nucleus pulposus cells[17], which alleviates and reduces IDD. SOX9 and TGF-β1 can be used to transfect bone marrow 
MSCs, and MSCs can successfully differentiate into chondrocytes, promote formation of ECM, restore ID integrity, 
improve the inflammatory state, and reduce pain and further IDD. Similarly, MSCs and induced cartilage progenitor cells 
also increase the level of SOX9 and TGF-β1 during differentiation into nucleus pulposus cells, with the purpose of 
regulating inflammatory states and increasing differentiation[15,18,19].

METABOLITES AND MSCsS
MSCs-derived exosomes contain martrilin-3, which regulates the content of TGF-β1 in the IDs and differentiation of 
nucleus pulposus cells, promotes production of ECM, and inhibits release of inflammatory mediators[20]. Urolithin A 
was able to hinder hydrogen peroxide in inducing the aging of nucleus pulposus cells and destroying mitochondrial 
function. The silent information regulator 1/peroxisome proliferator-activated receptor gamma coactivator 1-alpha 
signaling pathway was activated by urolithin A in vitro, which protected the normal physiological function of 
mitochondria, linked nucleus pulposus cell aging, and increased the survival time of ECM while preventing further IDD
[21,22]. The compression produced by the degenerated ID can promote reactive oxygen species production by nucleus 
pulposus cells and cause oxidative stress, which leads to further apoptosis of nucleus pulposus cells. MSCs-derived 
exosomes can inhibit apoptosis of myeloid cells caused by excessive oxidative stress and ameliorate compression-induced 
mitochondrial damage, which relieves the pain caused by IDD[23].

GEL-LOADED MSCsS
Heat-responsive hydrogel can act as a carrier of the extracellular vesicles of MSCs. These vectors deliver vesicles in a 
continuous box, which contains vasorin (a type I transmembrane glycoprotein regulated by hypoxia-inducible factor 1) to 
the disc environment. Vasorin can regulate the expression of relevant matrix metalloenzymes in the nucleus pulposus 
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cells through Notch1 signaling, enhance the ability of nucleus pulposus cells to proliferate, migrate, and anabolize, and 
inhibit the apoptotic cells to release inflammatory mediators, preventing further exacerbation of IDD. However, whether 
vasorin can promote the proliferation and differentiation of MSCs has not been confirmed[21]. Therefore, the strategy of 
helping stem cells to treat IDD through gels is worth further study.

The combination of heat-sensitive decellularized ECM hydrogels with adipocyte-derived MSCs exosomes does not 
damage the therapeutic activity of MSCs. The heat-sensitive dECM@exo hydrogel system produces gelation in situ to 
help MSCs differentiate into nucleus pulposus cells and maintains the content of ECM. This hydrogel also creates a 
suitable environment for the proliferation and differentiation of nucleus pulposus cells[22]. Previous studies have 
demonstrated transport of MSCs with hyaluronic acid and platelet-rich hydrogels. This method enhances MSCs activity, 
promotes IDs to increase keratin 19 gene expression, induces differentiation of MSCs into nucleus pulposus cells, and 
maintains the original ID height and normal physiological activity of the ID environment[23]. This situation leads to 
increased expression of keratin genes, and it has been demonstrated that porcine nucleus pulposus-rich cell matrix 
induces differentiation into nucleus pulposus cells by stimulating porcine chordate cells[24].

CIRCULAR RNA AND EXOSOMES
Circular RNA, such as circ_0050205 and circ_0072464, is transmitted through exosomes into nucleus pulposus cells to 
promote cell proliferation and ECM synthesis[24,25]. Endogenous long non-coding RNA colorectal adenocarcinoma 
hypermethylated delivery by MSCs exosomes inhibits M1-type macrophage polarization, which reduces nucleus 
pulposus apoptosis, the release of inflammatory factors, and a reduction in ECM to prevent further IDD[26]. In the MSCs 
exosomes, miRNA-217 is transferred to the ID and binds to the forkhead box O3 promoter by targeting enhancer of zeste 
homolog 2. This maintains ID homeostasis and stimulates autophagy, thereby promoting collagen II and aggrecan 
content and inhibiting degradation of nucleus pulposus cells[15,27,28].

In other vesicles, overexpression of miRNA-194-5p inhibits the occurrence of disc degeneration by targeting tumor 
necrosis factor receptor associated factor 6. Lentiviral vectors have been shown to transport the growth and differen-
tiation factor 5 (GDF5) gene and integrate it into the chromosomal genome of nucleus pulposus MSCs, which then 
express GDF5 along with the MSCs genes. GDF5 can also increase the level of proteoglycan and type II collagen[12]. If 
vesicles are subjected to hypoxia, miRNA-17-5p regulates the proliferation and differentiation of human nucleus 
pulposus cells and the proliferation and synthesis of ECM through the toll-like receptor 4 pathway, alleviating 
progression of IDD. This is more effective than the direct injection of MSCs into the ID[29].

During disc degeneration, the release of inflammatory factors also leads to a decrease in the uptake of extracellular 
vesicles. Vesicles prevent excess death of nucleus pulposus cells by delivering peroxidase 2 and reversing the decline in 
therapeutic effectiveness of MSCs due to tumor necrosis factor-α damage[30]. miRNA-129-5p in vesicles increases MSCs 
proliferation and differentiation into nucleus pulposus cells by blocking the lrg1-mediated p38 mitogen-activated protein 
kinase pathway and polarizing macrophages to the M1 phenotype, ultimately alleviating disc degeneration[31].

The combination of electromagnetic radiation and tissue engineering can stimulate the bone morphogenetic protein/
Smad and mitogen-activated protein kinase-related p38 signaling pathway of ID stem cells to regulate differentiation of 
MSCs and increase their osteogenic capacity for the treatment of IDD[32]. Vesicles can also transmit exogenous miRNA-
105-5p to revitalized nucleus pulposus cells, and transmit miRNA-140-3p to regulate the kruppel-like factor 5/N-
cadherin/Murine double minute 2/Slug axis; all of which can slow down progression of IDD and restore normal ID 
physiological function[33,34]. miRNA-199a also exists in MSCs exosomes, which targets gremlin1 downregulation of the 
TGF-β pathway to prevent apoptosis of nucleus pulposus cells and inhibit progression of IDD[35].

MSCs MIXTURE
MSCs therapy alone has been shown to be effective in IDD, but its efficacy still falls short of expectations[36]. A recent 
study has shown that MSCs can be mixed with cell-free bioresorbable ultra-purified alginate gel for the treatment of IDD
[37]. Such mixed preparations inhibit cell necrosis in the IDs and the release of inflammatory factors and consolidate the 
therapeutic effect of MSCs. Similarly, the combination of MSCs with in situ bioresorbable gel (dMD-001) produced the 
above therapeutic effects in IDD and was used after discectomy to prevent IDD[38]. Similarly, when MSCs are combined 
with coenzyme Q10 for the treatment of most ID lesions, it reduces oxidative stress in the ID, inhibits degradation of 
nucleus pulposus cells, and steadily improves the efficacy of IDD treatment[39].

Gelatin microparticles can also be mixed with MSCs, which can regulate the release of TGF-β1 and bone morpho-
genetic protein-2 to promote regeneration of osteochondral tissue[38]. When bone marrow MSCs are injected into the 
human body, leakage and decreased viability of MSCs occur, and gelatin colloidal hydrogels using nanostructures can 
effectively prevent these conditions. Under the load of gelatin colloid, MSCs promote regeneration of IDs and increase the 
number of nucleus pulposus cells between the IDs, ECM content, and the ID height[39]. Selective cell retention 
technology can concentrate MSCs and then the gelatin vector described above is used, which has been shown to enhance 
the effect of carrier materials on MSCs in the treatment of IDD[40].

A novel amphiphilic copolymer, polyethylene glycol-PAPO, fused with lipophilic kartogenin into a complex, is an 
esterase-reactive micelle that can carry MSCs and maintain their activity. When this combination is injected into IDs, it 
protects them from oxidative stress, activates autophagy of MSCs, regulates gene expression in the ECM, promotes ECM 
production, and increases ID height and hydration between the IDs[41]. Previous studies have found that collagen 
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hydrogel can promote differentiation of MSCs[42]. A more recent study found that biocompatible earthworm gel fused 
with MSCs induced their differentiation into nucleus pulposus cells in a targeted manner and improved their differen-
tiation ability and efficiency[43]. For the expression of special genes such as SOX9, ACAN and COL2 in nucleus pulposus 
cells, the study found that MSCs increased the expression of appeal genes after superoxide dismutase 2 and catalase 
processing, thereby reducing the deterioration of inflammatory states and promoting repair of ID tissue[44]. MSCs can 
also fuse with connective tissue growth factor and TGF-β3, transport polydopamine nanoparticles to the corresponding 
positions between the nuclei of the IDs, and finally induce MSCs to differentiate into nucleus pulposus cells and fibrous 
ring cells, reconstructing the mechanical environment of the IDs[45] (Figure 1).

STIMULATION INDUCTION WITH MSCsS
Sustained mechanical stimulation is an innovative method of induced differentiation in MSCs, which can be continuously 
stimulated in a special microgel attached to them[46]. Repeated continuous stretching regulates transient receptor 
potential vanilloid 4 and Piezo1 channel proteins, regulates the value-added differentiation of MSCs into chondrocytes, 
regenerates the intercellular matrix, increases the water content in the IDs, and restores the normal structure of 
degenerated IDs[47]. In addition, formation of ECM has been found to correlate with tissue specificity. Therefore, the 
isolated nucleus pulposus cells and fiber rings are processed into corresponding hydrogels, which are specific in 
composition and space structure. Viscous fibrinogen-thrombin-genipin gels act specifically through the RhoA/LATS/
YAP1 signaling pathway to direct differentiation of MSCs into nucleus pulposus cells or fibrous rings. This helps patients 
with IDD to reduce the number of nucleus pulposus cells and fibrous ring damage, which may provide a new direction 
for the treatment of IDD[46,48]. In the treatment of IDD and recovery of ID height by using bleomycin to induce MSCs 
fibrosis and by stimulating the TGFβ-SMAD2/3 signaling pathway, the gene expression of related collagen and ECM is 
maintained, thereby maintaining the height of the ID and increasing its ability to resist wear[49].

HARSH ENVIRONMENT OF THE ID
The treatment of IDD with MSCs has been widely applied, and the role of MSCs in delaying ID lesions has been proven
[50]. However, the stability and efficacy of MSCs entering the ID are affected by the microenvironment of the ID. The IDs 
are located in an environment of nutritional deficiency, high tension, low pH, hypoxia, and high mechanical load[51]. In 
this environment with progression of IDD, most of the nucleus pulposus cells begin to die, resulting in a series of 
malignant chain reactions that lead to aggravation of oxidative stress, secretion of inflammatory substances, and 
aggravation of pain[5] (Figure 2).

Many studies have reported that the microenvironment in which cells are located has an important impact on their 
biological activity[52]. The low pH of IDs significantly inhibits acid-sensitive ion channels (ASICs), which are key 
receptors for extracellular protons in central and peripheral neurons related to IDD[53]. Due to the decreased activity of 
ASICs, MSCs differentiate into nucleus pulposus cells. When the number of nucleus pulposus cells decreases and 
production of ECM decreases, this increases the short-function peptide fragments that can recognize ASIC blockers, as 
ASICs can activate cell aging pathways, such as p53-p21/p27 and p16-Rb1 signaling factors, to induce apoptosis of 
nucleus pulposus cells[54]. ASIC blockers can significantly help stem cells overcome the acidic environment during IDD 
treatment, improve the ability of MSCs to proliferate and differentiate into nucleus pulposus cells, and help restore the 
normal state of IDs. 1,25(OH)2D3-treated nucleus pulposus MSCs have better tolerance to the hypertonic and acidic 
microenvironment in which the IDs are located[55]. This reduces apoptosis of nucleus pulposus mesenchymal cells, 
restores the height between the IDs, and delays occurrence of IDD.

The large changes in pressure between the degenerative IDs leads to a decrease in the survival and differentiation of 
MSCs[56]. Medullary pulposus cell-derived hydrogels help MSCs differentiate into nucleus pulposus cells[57]. A recent 
study found that the current methanipine cross-linked decellularization nucleus pulposus hydrogel-like cell delivery 
system can transport MSCs to the IDs[58]. The changes in ID pressure ensure that MSCs differentiate into nucleus 
pulposus cells, repair the reduced ECM, and maintain ID height to delay IDD.

MSCs pretreated with lithium chloride can increase the adaptability of MSCs[59], as lithium chloride helps MSCs 
antagonize oxidative stress and protect nucleus pulposus cells by activating more extracellular signal-regulated kinase 1/
2[60]. Extracellular signal-regulated kinase 1/2 plays a vital role in fighting inflammation, which is one of the main ways 
it works in the harsh environment of the IDs. This conduction pathway ultimately also helps to improve the ability of 
MSCs to reduce nucleus pulposus cell death, increase ECM production, and improve inflammatory status and IDD.

Significant progress has been made in the treatment of IDD by MSCs, but due to the harsh environment of the IDs[5], 
the therapeutic effect of MSCs is reduced due to the lack of oxygen in the environment[61]. However, it has been found 
that the differentiation of MSCs to chondrocytes under hypoxic conditions can be helped by the addition of leptin[62], 
which provides energy for cell differentiation through its dependent glycolysis.

FUTURE DIRECTIONS FOR STEM-CELL-BASED THERAPY
Stem cell-based therapy offers promise for disc degeneration. Related studies have applied exogenous stem cells such as 
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Figure 1 Mesenchymal stromal cell exosomes can treat disc degeneration through the appropriate target. The extracellular vesicles secreted by 
mesenchymal stromal cells can be enriched with a variety of RNAs, DNAs, and proteins that can be targeted to treat disc degeneration. They have been shown to 
have a corresponding effect in promoting stem cell differentiation into myeloid cells, increasing extracellular matrix production, and reducing the release of 
inflammatory factors (pain reduction). MATN3: Martrilin-3; SOX9: SRY-box transcription factor 9; TGF: Transforming growth factor.

MSCs to treat disc degeneration with promising results[63]. As the field of stem cells continues to be studied[64], the 
histology of the IDs becomes clearer, and studies targeting the way in which stem cells restore disc structure are 
becoming more advanced. How to improve the efficiency of stem cell therapy for disc degeneration and how to resist the 
harsh disc environment for stem cell therapy are the focus of research[65]. This also includes how to help stem cells 
restore the normal physiological structure of the IDs under hypoxia and lack of blood supply[5]. This is a new direction 
that needs to be developed in the field of stem cells.

Sometimes it is not the stem cell therapy that is ineffective, as the way MSCs are administered similarly affects their 
behavior once inside the body. Overall, factors such as injection point site, syringe, carrier material, and buffer can affect 
the therapeutic efficacy of stem cells. Different injection sites may lead to variations in reflux of the cellular injection fluid
[66], and the syringe (needle size/shape) may lead to variations in the shear rate and shear stress of the cellular injection 
fluid, which can affect the viability of the injected cells. There are various challenges in the clinical application of stem 
cells, both for local administration and circulatory system administration[65]. Therefore, does the appropriate route of 
administration always  guarantee the clinical outcome of MSCs? Obviously not. While performing stem cell therapy, we 
not only need to choose the appropriate delivery method but also need to consider the individualization of the patient at 
the same time. We need to consider all these factors together in order to make the most appropriate stem cell treatment 
plan, thus improving the efficiency of MSCs treatment[67].

Different sources of MSCs have their own advantages and disadvantages in terms of therapeutic efficacy, and one of 
the major dilemmas that needs to be explored further is the production of stable MSCs at the production site[68]. Current 
research allows us to understand the current potential of MSCs for cell transplantation, tissue engineering, and cell-based 
therapies to improve the lives of those affected by disc injuries[65]. This requires us to deepen our understanding of 
MSCs, refine therapeutic approaches, and address the challenges of translating research findings into clinical practice. We 
can do this by further optimizing the sources of MSCs[69], delivery methods and timing of interventions, as well as 
standardized protocols for isolation, expansion, and characterization. Conducting well-designed clinical trials will help 
evaluate the safety, efficacy, and long-term outcomes of MSCs-based therapies[70]. As the clinical application of MSCs 
continues to be studied globally, stem cell therapeutic drugs are gradually being introduced, and more research teams 
and medical institutions are involved, this will gradually deepen the clinical application of stem cell therapy and bring 
hope to the majority of lumbar disc patients.
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Figure 2 The harsh environment in which the intervertebral discs are located. There is almost no vascular distribution in the intervertebral discs, and 
the nutrient supply relies mainly on the diffusion of oxygen and nutrients in the subendothelial vessels. The closer to the center of the nucleus pulposus, the lower the 
partial pressure of oxygen and the concentration of proteoglycans, which results in an extreme microenvironment, such as nutrient deficiency, high osmotic pressure, 
and acidic PH.

CONCLUSION
IDs have a complex structure with a unique internal environment. They contain nucleus pulposus cells, fibrous rings, and 
ECM, which are in a dynamic balance of self-renewal. Stem cells therapy is designed to restore this balance of secreting 
exosomes and vesicles, mixing other substances to promote their differentiation into nucleus pulposus cells, regulating 
the content of the ECM, and when treated accordingly resisting interference by the harsh environment of the IDs. These 
synergistic approaches provide new possibilities for stem cell therapy of IDD. They contain nucleus pulposus cells, 
annulus fibrosus, and ECM, and as the nucleus pulposus cells age and the ECM is lost, among other things, the disc 
becomes less stable. Stem cell therapy aims to restore the structure of the disc by secreting exosomes and vesicles, it mixes 
other substances to promote their differentiation into nucleus pulposus cells, regulates the content of the ECM and resists 
interference from the hostile environment of the IDs when treated accordingly. These synergistic approaches offer new 
possibilities for stem cell therapy for IDD. In the future, as people continue to explore the field of stem cells in disc 
therapy, stem cells will bring more hope to disc degeneration.
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